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In 1977 John Backus became the fourteenth winner of the Association for Computing 
Machinery’s prestigious Turing award. The award citation highlighted two of Backus’s 
technical achievements: leading the group that developed the FORTRAN system in the mid-
1950s, and introducing the metasyntactic notation now known as BNF to the Algol 60 
project. In his Turing award lecture, however, Backus appeared to take a rather negative view
of his award-winning achievements. He described “conventional programming languages”, a 
class surely including Fortran along with Algol’s many descendants, as “fat and flabby” and 
creating “unnecessary confusion in the way we think about programs”.1

For Backus, the deficiencies of these languages reflected shortcomings in machine 
architecture. He explained that “[c]onventional programming languages are basically high 
level, complex versions of the von Neumann computer”, by which he meant not just the 
machine’s architecture but also its code:

Von Neumann programming languages use variables to imitate the computer’s storage cells; control 
statements to elaborate its jump and test instructions; and assignment statements imitate its fetching,
storing and arithmetic. (Backus (1978), 615)

Backus’s particular objection was to the assignment statement. He claimed that it limited 
programmers to thinking in terms of one word of data at a time, a restriction imposed by what
he termed the “von Neumann bottleneck”. By this, Backus referred to the fact that 
conventional computers only transferred one word of data at a time between the store and the 
central processor. As a consequence, programming languages forced programmers to focus 
on managing the details of this low-level data transfer. Backus believed that functional 
languages could remove this burden, making programming easier and program texts simpler 
and clearer. However, he also found the functional, or applicative, style as it existed in 1978 
unsatisfactory:

[M]ost applicative systems employ the substitution operator of the lambda calculus as their basic 
operation. This operation is one of virtually unlimited power, but its complete and efficient realization 
presents great difficulties to the machine designer. Furthermore, in an effort to introduce storage and 
to improve their efficiency on von Neumann computers, applicative systems have tended to become 
engulfed in a large von Neumann system. For example, pure Lisp is often buried in large extensions 
with many von Neumann features. (Backus (1978), 616)

1 For the text of the lecture, from which the inline quotes in this section are taken, see Backus
(1978).
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The constructive part of his lecture was devoted to outlining “a functional style and its 
algebra of programs”. In place of the lambda calculus, Backus proposed to base his system, 
known as FP, on a set of “combining forms” which would allow functions to be defined 
without using the machinery of variables and substitution. By choosing forms with “attractive
algebraic properties”, Backus aimed to make his FP system a suitable vehicle for reasoning 
about programs as well as writing them.

For Backus, the existence of different styles was explained by the fact that “underlying every 
programming language is a model of a computing system that its programs control”. In the 
case of the von Neumann languages this was a physical model, the “von Neumann 
architecture” of the conventional computer; functional languages, in contrast, were based on 
mathematical models such as the lambda calculus or Backus’s own set of combining forms. 
In both cases, however, language characteristics derived from the properties of the underlying
model, and Backus made no mention of the possible influence of programming practices or 
problems on language style. This omission is noteworthy, because the historiography of 
programming languages had, at least intermittently, paid attention to the role of such matters 
in the development of individual languages. The pioneering work of Saul Rosen and Jean 
Sammet grouped languages by their area of application, and accounts of the origins of 
particular languages, such as those found in the ACM SIGPLAN conferences on the history 
of programming languages, usually began by discussing the motivation for the development 
of the language. Indeed, at the first conference, in 1978, Backus himself discussed the origins
of Fortran and stressed a number of these aspects, such as the demand for automatic 
programming in the early 1950s and the economics of programming.2

The differing properties of their underlying models affected Backus’s evaluation of the two 
language styles. The von Neumann architecture was first of all an approach to hardware 
design, and for Backus this meant that the conventional languages based on it were inelegant,
inefficient, and unsuitable for expressing more abstract ideas about program structure. He 
considered that applicative languages, on the other hand, should be based on abstract 
mathematical models specifically chosen to deliver desirable properties. Subsequent 
historical accounts of functional programming have tended to follow Backus’s lead here, 
positioning the mathematical model as the historical ancestor of the programming languages 
themselves. In 1989, Paul Hudak, the co-designer of the Haskell language, wrote a survey 
article including a historical account of the development of functional languages, structured 
as comments on and explications of a series of noteworthy languages (Hudak 1989). Hudak’s 
account began with the lambda calculus, discussed Lisp, ISWIM, and APL before reaching 
Backus’s FP system, and then moved on to the functional languages of the 1980s, concluding 
with Haskell itself. A more recent survey in 2012 by David Turner, designer of the functional 
languages SASL, KRC, and Miranda, similarly examined a series of “milestones” (Turner 
2012). Turner’s history, like Hudak’s, began with the lambda calculus and Lisp and ended 
with Haskell, though there were minor differences in the languages discussed en route.

It is striking that in these accounts the lambda calculus has recovered from Backus’s rather 
dismissive evaluation, and the development of the functional programming style is now 
presented as a progressive and relatively unproblematic articulation of the original insights of
the lambda calculus. As Hudak put it,

2 Rosen (1967) and Sammet (1969) are the classic references from the 1960s. Backus (1981) 
reflected on the history of Fortran at the first ACM SIGPLAN History of Programming 
Languages conference in 1978. The papers were collected and published as Wexelblat (1981).



the lambda calculus is usually regarded as the first functional language, although it was certainly not 
thought of as a programming language at the time, given that there were no computers on which to 
run the programs. In any case, modern functional languages can be thought of as (nontrivial) 
embellishments of the lambda calculus. (Hudak (1989), 363)

Lisp features heavily in histories of functional programming, and Turner described it, rather 
than the lambda calculus, as “the first functional programming language”. At the same 
conference at which Backus described the origins of Fortran, John McCarthy (1981) 
presented his view of the early development of Lisp. As both Hudak and Turner 
acknowledged, however, McCarthy’s account raised problems for the view that functional 
languages were simply an articulation of ideas present in the lambda calculus. 

It is often thought that the lambda calculus also formed the foundation for Lisp, but this in fact 
appears not to be the case [McCarthy 1978]. The impact of the lambda calculus on early Lisp 
development was minimal, and it has only been very recently that Lisp has begun to evolve more 
towards lambda calculus ideals. (Hudak (1989), 363, citation in original.)

LISP was not based on the lambda calculus, despite using the word “LAMBDA” to denote functions. At 
the time he invented LISP. McCarthy was aware of (Church 1941) but had not studied it. (Turner 
(2012), citation in original.)

These comments raise a number of questions, of which the most obvious is, if Lisp was not, 
in fact, straight-forwardly derived from the lambda calculus, where did it come from? What 
are the real historical origins of the functional programming style? This paper proposes an 
answer these questions based on an examination of the programming work carried out by the 
first AI researchers in the mid-1950s that informed the original Lisp design. It will turn out 
that linguistic innovation was indeed prompted by perceived shortcomings in the existing 
“von Neumann style” of language, but not the ones highlighted by subsequent writers on 
functional languages.

Backus’s terminology of “language style” is perhaps rather unfamiliar, and in section 1 I 
examine how “style” and the related term “paradigm” came to be used in connection with 
programming languages, and what an historical account of the origins of a “language style” 
might involve. The structure of the remainder of the paper is as follows. Section 2 traces the 
origins of the functional style to early experiments in programming AI applications in the 
mid-1950s. These experiments led researchers to develop new programming concepts and 
techniques, and in the course of doing so, to reflect on what they saw as the limitations of 
existing styles of programming. In section 3, I use this self-reflection on the part of 
programmers as the starting point for a description of the conventional style, which I tag with
the label “programming as planning”. One of the key innovations of the md-1950s was in the 
way subroutines were used, and in preparation for a discussion of this in section 5, section 4 
describes the role of subroutines in the “programming as planning” style. Section 6 then 
describes how these technical innovations became integrated in a new language, Lisp. 
Finally, section 7 discusses some general conclusions emerging from the historical survey.

1 On the very idea of programming language style

Backus’s use of the notion of “style” to distinguish the two types of language he is comparing
might seem natural enough, but the developers of the programming languages of the late 
1950s did not think of themselves as producing stylistic variants on existing work. New 
languages were proposed to address practical difficulties in programming, and languages 



were described according to the application area they addressed or the particular features that 
they offered. Lisp, for example, was routinely grouped together with the non-functional 
languages IPL, COMIT and FLPL as a list-processing language.3 Why did Backus instead 
appeal to the notion of “style” as a way to classify languages?

Programming languages first appeared as objects of historical study in the mid-1960s, a 
period capped by the publication of Saul Rosen’s collection of reprints and Jean Sammet’s 
comprehensive survey.4 Rosen did not attempt to categorize languages other than by 
describing a small group as “Languages for Processing Lists and Strings of Symbols”. 
Sammet, on the other hand, explicitly addressed the question of classification, and proposed a
rather Borgesian taxonomy:

it is a little easier to propose definitions for classes of programming languages. The terms to be 
defined are the following: Procedure-oriented and nonprocedural; problem-oriented, application-
oriented, and special purpose; problem-defining, problem-describing, and problem-solving; hardware,
publication, and reference. Note that some of these are overlapping and that a particular language 
may fall into more than one of these categories. (Sammet (1969), 19) 

However, many programming languages had in fact been developed for specific application 
areas, such as COBOL, a project that Sammet herself had been involved in, and in the body 
of the book she actually classified languages according to their intended purpose or 
application area. Languages were grouped into chapters with titles such as “languages for 
numerical scientific problems”, “languages for business data processing problems” and 
“string and list processing languages”.

As Sammet continued to write about programming languages in the early 1970s, however, 
she began to talk about “style” as an additional dimension along which programming 
languages could be described.

It is probably true that a single extensible language must restrict itself to a particular type of 
application area. Even within these, some of the variations in style can be enormous. It often turns out
that the style of a language is based more on the personal views of the person who developed it than 
on any rational basis. Thus languages which are different in purpose and application area may have a 
similar syntax. Conversely, the same application area will surely breed different syntactic styles. 
(Sammet (1971), 142.) 

“Style” appears here as an attribute of a language. In the following year, Sammet discussed 
style in more detail, but now related it to the choices that could be made by an individual 
programmer:

Style in a programming language has many facets, ranging from personal views on the importance (or 
non-importance) of blanks and punctuation, to the use (or non-use) of a GOTO command, to the 
selection of a particular word for getting input data (e.g., READ vs. GET). The major identifiable 
elements of style are vocabulary, personal preferences, and requirements affecting style. (Sammet 
(1972), 304.)

3 See, for example, Feigenbaum and Feldman (1963), vi, Rosen (1967) and Sammet (1969).

4 For a more extended discussion of the historiography of programming languages, see 
Priestley (2008), 12–17.



Note the shift here from talking about the style of a language to style in a language. Sammet 
is no longer using style as a way to categorize or distinguish programming languages. Rather,
the term now refers to the linguistic choices that a programmer can make when writing a 
program, such as choosing long or short identifiers, or eschewing the newly controversial 
GOTO statement.

An early use of this notion of style appeared in a 1964 discussion of Lisp by Fischer Black.5 
Black argued that style was not a measure of a program’s efficiency, but of 

how easy it is to write or read a program, how easy it is to explain the program to someone else … 
above all , style is a matter of taste, of aesthetics, of what you think looks nice, of what you think is 
elegant. (Black (1964), 96)

Style, for Black, was “developed by a series of choices”. After describing a number of rather 
superficial alternatives, he focused on “two of the more complex choices you can make in 
LISP”, namely the decision of whether or not to use the language’s “functionals” and its so-
called “program feature”.

The notion of style as a set of choices made by a programmer was popularized in a 1974 
book, The Elements of Programming Style, written by Bell Labs programmers Brian 
Kernighan and P. J. Plauger. The book was intended as a programming language analogue of 
the style guides available for writers of English, such as Strunk and White’s The Elements of 
Style, a book that Kernighan and Plauger described as a model for their own. For Kernighan 
and Plauger, style was not an attribute of programming languages. Their examples were taken
from a range of languages, with an emphasis on Fortran and PL/I. They referred to the “work 
of E. W. Dijkstra and Harlan Mills on structured programming” as the source of their rules on
“properly specifying flow of control”, and the book stayed firmly within the territory of what 
Backus called the von Neumann languages. Kernighan and Plauger offered a “pragmatic and 
down-to-earth” discussion aimed at “improving current programming practice”. Rather than 
discussing principles, they considered many examples culled from programming textbooks, 
and formulated 62 rather detailed “rules of programming style”. Whereas Sammet and Black 
had been fairly non-prescriptive, Kernighan and Plauger made a series of very definite 
recommendations about what constituted good programming style.

A second edition of the book was published in 1978, by which time Kernighan and Plauger 
felt that programming style had become a “legitimate topic of discussion”. The new edition 
gave a greater prominence to “structured coding techniques that actually work well in 
practice”, and at around the same time articles giving advice on how to use these techniques 
in established languages such as Fortran and Cobol were beginning to appear (see Sakoda 
(1974) and Van Gelder (1977), for example). In parallel with the development of new 
“structured languages”, some of these proposals found their way into revised versions and 
standards of existing languages.

5 Best known as an economist, in 1964 Black completed a thesis at MIT which “combined 
the fundamentals of logic with computer science” and spent a year at the consultancy Bolt, 
Beranek and Newman working on the “theory of handling information for libraries and 
hospitals of the 21st century” (Merton and Scholes 1995). Sammet may have been familiar 
with Black’s article, as the book containing it is included in the list of references on Lisp on 
page 467 of (Sammet 1969).



This example illustrates a process by which a set of stylistic rules guiding programming in a 
language can turn into permanent syntactic features of a language. The notion of a 
programming language style can therefore be seen as parasitic on that of programming style: 
once a prescriptive rule has been proposed, it is but a short step to designing a language 
whose syntax will enforce that rule. This suggests a view of the evolution and development of
programming languages that contrasts rather sharply with the idea that languages are based 
on explicit computational models.

It was in this context that Backus chose to use the word “style” to distinguish the two broad 
classes of language that he discussed in his Turing award speech. He did not explain why he 
chose this word: he had not used it earlier in theoretical work that defined a range of 
“language classes” (Backus 1973), but the popularity of Kernighan and Plauger’s book, along
with Sammet’s earlier work, would certainly have given the term currency within the 
programming community.

The notion of a programming language style should be contrasted with that of a “paradigm”, 
a term brought to prominence by Backus’s successor as Turing award winner, Robert Floyd.6 
As is traditional with the term “paradigm”, Floyd used it in a number of different senses. His 
first example of a paradigm, “the technique of structured programming” was a large-scale 
method of program design, involving both the top-down decomposition of the problem at 
hand, and the bottom-up synthesis of more detailed issues, such as the relevant abstract data 
types. But a paradigm could equally well be a very simple, low-level technique, such as the 
use of simultaneous assignment.

Unlike a style, which is naturally thought of as a property of a language, Floyd’s paradigms 
are language-independent design techniques. The relationship between the two is that a 
language can support a paradigm, for example by having explicit control structures that 
support structured programming, or a simultaneous assignment statement. This conforms to 
present-day usage. Computer scientist Peter van Roy (2009) defines a paradigm as “an 
approach to programming a computer based on a mathematical theory or a coherent set of 
principles”. A paradigm can be supported by many languages, and equally, a language can 
support one or more paradigms. In this paper I will therefore continue to use Backus’s term 
“style”, which refers more directly to purely linguistic features.

2 Complex information processes

Backus considered Lisp, or at least its “pure” subset, to be a functional programming 
language, a view endorsed by later writers including Hudak and Turner. As noted above, 
however, Lisp was originally classified as a list-processing language. A list in this context is a
data structure in which a varying amount of information can be stored as a program runs and 
which allows dynamic relationships between data items to be easily defined and manipulated.

The use of lists can be traced back to the Logic Theory Machine (LT), a program developed 
by Allen Newell and Cliff Shaw of the RAND Institute, and Herbert Simon from the 
Carnegie Institute in Pittsburgh.7 LT proved theorems in the propositional calculus, and lists 
were used to represent and store the structure of logical formulas and other data generated by 

6 Floyd was the Turing award winner in 1978, and his lecture was published as Floyd (1979).

7 Newell and Simon (1956b) give a comprehensive description of LT. 



the program. The program was running on RAND’s Johnniac computer by the summer of 
1956, when Newell and Simon presented it at the famous “Dartmouth research project”, a 
summer school recognized as a foundational event in the history of artificial intelligence 
(McCorduck 2004; Boden 2006).

The curious description of the LT program as a “machine” is echoed in the language of the 
organizers of the Dartmouth meeting. They proposed an investigation into the mechanization 
of intelligence and learning, and programming had a rather subsidiary role:

The study is to proceed on the basis of the conjecture that every aspect of learning or any other 
feature of intelligence can in principle be so precisely described that a machine can be made to 
simulate it. … If a machine can do a job, then an automatic calculator can be programmed to simulate 
the machine.8

The detailed work proposals attached to the proposal support the sense that programming 
would not be central to the work of the Dartmouth meeting. It was not mentioned in 
proposals by Claude Shannon and Marvin Minsky, while John McCarthy planned to study the
relation of language to intelligence, including the development of “an artificial language 
which a computer can be programmed to use on problems requiring conjecture and self-
reference”. The most concrete proposal was from IBM’s Nathaniel Rochester who, motivated
by frustrations with existing programming technique, planned an investigation into machine 
invention and discovery.

Newell and Simon were not involved in planning the Dartmouth meeting, and their approach 
was less theoretical. They first met in 1952 when Simon began a consultancy contract at 
RAND. He recalled that Newell was then engaged on an air defence project, and “had this 
marvellous device … for simulating maps on old tabulating machines”.9 Simon and Newell 
struck up a productive collaboration, focusing on their shared interest in extending the use of 
computers beyond numerical applications. They became interested in chess, and by 1954 
were talking about the possibility of putting a chess program on Johnniac.

In November 1954, Oliver Selfridge came to RAND to talk about some programming 
experiments in pattern recognition that he and Gerald Dinneen were carrying out at MIT’s 
Lincoln Laboratories. The details of Selfridge and Dinneen’s programs were a revelation to 
Newell, and by the end of the year, he had identified a class of “ultracomplicated problems” 
such as chess, “design problems, including programming a computer … [and] very complex 
information processing tasks like translating languages or abstracting scientific articles”.10 
Computers could not be programmed to solve these problems, Newell felt, without adopting 
the strategies outlined by Selfridge and Dinneen. 

8 McCarthy et al (1955). McCorduck (2004), 119, notes that “[a]rtificial-intelligence workers
continually use machine when they mean what an outsider would call a program”. This usage
is reminiscent of the equivalence that Turing noted between individual machines and their 
symbolic representations in a universal machine, but this may not its source. Early AI shared 
the cybernetic fascination with special-purpose gadgets, and was slow to fully internalize 
Turing’s point about the universality of the computer. See Priestley (2011), 147–153, for 
more on this.

9 Simon’s recollection is quoted in McCorduck (2004), 148. The historical narrative in the 
following paragraphs draws extensively on McCorduck’s book.



Over the following year, Newell and Simon considered the prospects of programming a 
number of problems, including chess and theorem-proving in geometry. As they thought more
about the details of programming ultracomplicated problems, they came to refer to them 
instead as complex information processes. LT was an example of such a process, but Newell 
and Simon didn’t develop it out of an interest in theorem proving per se. Rather, it was, like 
chess, a small and tractable representative of the broader class of problems.11

Following Newell and Simon’s presentation of LT at the Dartmouth meeting, a number of 
other researchers began writing programs to carry out a variety of complex tasks. Papers 
describing several of these were collected in the influential 1963 anthology Computers and 
Thought.12 At this time, machine-building and neural net approaches was not seen to be 
delivering significant results, and the infant discipline of AI chose to constitute itself around 
the writing of programs, where a number of apparently innovative and substantial 
achievements could be found.

These programs were described as sharing a “heuristic” approach to programming. Newell 
and Shaw defined a heuristic as “a process that may solve a given problem, but offers no 
guarantee of doing so”, and referred to “complex processes (heuristics) that are effective in 
problem solving”.13 Light can be thrown on these rather vague definitions by considering 
what Newell and Simon had previously had earlier said about simple processes: a simple 
process was one that could be precisely specified in advance. Simple processes can be found 
to solve difficult tasks, such as playing chess, but may be computationally infeasible to carry 
out.

We shall find that we pay the price of complexity of process in order to carry out difficult tasks with 
limited computing power – i.e. limited in speed and memory. (Newell and Simon (1956a), 3–4.)

However, complex processes proved a bit harder to define. After giving an impressionistic 
account of the thought processes of a human chess player, Newell and Simon observed:

Our inability to [name all the different processes that go on] seems to be a major characteristic of 
complex processes – they consist of a great many subprocesses, each quite different from the others. 
It also seems characteristic that the complexity lies not in the component processes, but in the ways 
these are organized, so that the choice among them at each moment is highly conditional and flexible.
(Newell and Simon (1956a), 5–6.)

The force of these definitions comes from the fact that, rather than being an abstract notion, 
the idea of a simple process was firmly rooted in Newell and Simon’s perception of 

10 Newell (1954), 1. See Selfridge (1955) and Dinneen (1955) for details of their work on 
pattern recognition.

11 Newell and Simon (1956a) introduces the term “complex information process” and gives 
the earliest description of LT.

12 See Feigenbaum and Feldman (1963). For the historical background, see McCorduck 
(2004) and Boden (2006).

13 Newell and Shaw (1957), 220, 218. The Oxford English Dictionary cites this paper as the 
earliest computer-oriented use of the term “heuristic”.



contemporary programming practice. The authors of the Dartmouth proposal had expressed a 
sense that all was not well with current understanding of programming technique: 

[T]he major obstacle is not lack of machine capacity, but our inability to write programs taking full 
advantage of what we have. (McCarthy et al, 1955)

Newell and Simon didn’t just note the symptom, however, but offered a diagnosis:

[O]ne of the sober facts about current computers is that, for all their power, they must be instructed in
minute detail on everything they do. To many, this has seemed to be harsh reality and an irremovable 
limitation of automatic computing. It seems worthwhile to examine the necessity of the limitation of 
computers to easily specified tasks. (Newell and Simon (1956a), 1.)

In his detailed work proposal for the Dartmouth meeting, Rochester had made similar 
observations:

In writing a program for an automatic calculator, one ordinarily provides the machine with a set of 
rules to cover each contingency which may arise and confront the machine … one must sometimes go 
at problems in a very laborious manner whereas, if the machine had just a little intuition or could 
make reasonable guesses, the solution of the problem could be quite direct. (McCarthy et al (1955), 
10).

In Rochester, Newell and Simon’s view, then, progress depended on the development of new 
programming techniques which would allow complex as well as simple processes to be 
coded. Before looking at the details of their proposals, however, it is useful to outline the 
characteristics of the existing languages and approaches that they believed suitable only for 
programming simple problems.

3 Programming as planning

In 1947, John von Neumann and Herman Goldstine had published the first in a series of three
reports entitled Planning and Coding of Problems for an Electronic Computing Instrument. 
These reports outlined a methodology for program development and included a compendium 
of example routines coded for the machine under development at the Institute of Advanced 
Study in Princeton. The reports are best known for introducing the flow diagram to a wide 
audience as a notational aid for designing programs.14

The reports’ title highlights a key feature of the proposals, a division of labour between the 
two activities of planning and coding. “Planning” referred to a three-step “mathematical stage
of preparations” preceding coding. The first step was to model the problem to be solved as a 
set of equations and conditions. These equations were then to be transformed into 
“arithmetical and explicit procedures” which would typically replace the “rigorous” 
mathematical definition of the problem with an “approximate” method of numerical solution. 
The third stage in planning was therefore to estimate the precision of the approximation 
process, by analysing the numerical properties of the chosen method of solution. 

14 See Goldstine and von Neumann (1947). In 1946, Haskell Curry and Willa Wyatt used a 
“Flow Chart” to illustrate the structure of an ENIAC program, but they did not use it in the 
development of the program and their notation differed “in principle” from von Neumann and
Goldstine’s (Curry 1949, 7),



Once the planning stage was complete, coding could begin. Von Neumann and Goldstine’s 
use of this term was much wider than its modern usage. The coding stage included the 
drawing of flow diagrams, the preparation of tables indicating how memory was to be 
allocated, and an number of rather more technical intermediate steps to be carried out before 
the actual program instructions were written down.

Von Neumann and Goldstine recognized that there was nothing in their description of the 
planning stage that was specific to automatic computing, and the details of their proposals 
reflected established practice in the organization of large-scale computing.15 Historians have 
traced the origins of the division of labour in computation back to the work of Gaspard de 
Prony in the early 19th century (Grattan-Guinness 1990), and little changed in the 150 years 
that separated this from the depression-era Mathematical Tables Project:

The operations of the Mathematical Tables Project were overseen by a planning committee, a group of
six mathematicians who prepared the computing plans. … Each member of the committee would take 
responsibility for one computation, researching the background for the table, recommending a certain
mathematical approach, preparing worksheets for the computers, and checking the final results. (Grier
(2005), 212-3)

Thanks to the changing meaning of the word “computer”, this would serve almost verbatim 
as a summary of the procedures adopted by Harvard’s Computation Laboratory in 1944 for 
preparing problems for the “Automatic Sequence Controlled Calculator” built for them by 
IBM:

When a problem is referred to the Computation Laboratory, the first step in its solution is taken by the 
mathematician who chooses the numerical method best adapted to computation by the calculator. … 
Such functional, value and control tapes as are required are then computed, coded and punched. 
(Harvard (1946), 50)

Similar accounts of how to prepare problems for automatic computation were given by the 
developers of the other automatic computing machines of the early 1940s. These machines 
were not intended to revolutionize the way in which large-scale computations were 
organized. Within the overall pattern of a division of labour established for more than a 
century, automatic computers replaced a certain class of rather mechanical human labour but 
left the overall structure of the workflow involved in planning and carrying out calculations 
unchanged.

This continuity of practice should come as no surprise. All the developers of the automatic 
machines of the early 1940s had had extensive experience in carrying out or supervising 
large-scale manual computation. What was new was the need to be completely explicit about 
the operations that the machine would carry out. It turned out that the instructions given to a 
machine needed to be structured in rather different ways from those given to human 
computers, and the best ways to do this only emerged with experience. The fundamental 
notion was that of a sequence of instructions, each specifying one a single arithmetical 
operation to be carried out. These sequences were then arranged in larger structures, such as 

15 They wrote that “the first step has nothing to do with computing or machines … the 
second step has, at least, nothing to do with mechanization: It would be equally necessary if 
the problems were to be computed ‘by hand’ … [the third step] is necessary because of the 
computational character of the problem, rather than because of the use of a machine” 
(Goldstone and von Neumann, 1947, 19).



loops to repeat the instructions in a sequence, and conditional branching to choose between 
alternative sequences or terminate a loop. This was the level of program structure that von 
Neumann and Goldstine’s flow diagrams depicted and that the first machine codes could 
express. These codes also allowed instructions to be at least partially rewritten as a program 
was running, a feature which greatly increased the flexibility and usefulness of the new 
machines.

This historical survey provides the background against which to read Newell and Simon’s 
mid-1950s comments about programming technique. The assumptions behind the 
organization of large-scale manual computation were precisely that all the steps in a 
calculation could be foreseen, planned and laid out in detail before work started. Newell and 
Simon’s proposals for an alternative, more flexible approach to programming depended 
heavily on the use of subroutines, and to appreciate the novelty of their ideas it is useful first 
to briefly examine the role of subroutines in the “programming as planning” approach.

4 Subroutines

It is often necessary in large computations to carry out certain processes more than once, but 
at irregular intervals. To avoid having to repeatedly write out the instructions for such 
processes, the early automatic computers included diverse mechanisms enabling 
subcomputations to be executed when required. For example, the Harvard (1946) machine 
had dedicated units, described as “electromechanical tables”, to compute certain 
trigonometric and exponential functions, and an interpolation unit which read tabular data 
from tape and calculated intermediate values.

As this terminology suggests, these developments represented a translation of the use of 
mathematical tables in manual computation into the world of automatic machinery. Tables 
hold the precomputed values of commonly occurring functions, and when the value of such a 
function was required, a human computer would interrupt work on the main calculation sheet,
take the appropriate volume of tables down off the shelf, look up the required value, and copy
it into the appropriate place on the worksheet. Interpolation was used to obtain values for 
arguments that fell between those printed in the table.16

Some early computer designs allowed for the explicit storage of precomputed values but, as 
the Harvard machine’s designers realized, there was an alternative. The speed of the new 
automatic computers meant that they could be programmed to compute function values when 
required. This idea was soon generalized so that any repeated sequence of instructions could 
be easily reused, not only those computing familiar mathematical functions. This gave 
programmers something new to do: they could look out for repetitions of code sequences and 
turn them into subroutines. In 1946, for example, mathematicians Haskell Curry and Willa 
Wyatt planned an interpolation routine for ENIAC, and recommended that programmers look
for sequences of operations that could be isolated as repeatable “stages” in the computation 
(Curry and Wyatt 1946).

The provision and use of mathematical tables implies yet another division of labour, between 
the calculations carried out by the original compilers of a table and the later work of 
computers using the published table. This distinction was quickly institutionalized in the 
programming world in the form of “subroutine libraries”. The Harvard programmers set up a 

16 For a comprehensive history of mathematical tables and their use, see Campbell-Kelly et 
al (2003).



“tape library” holding “such control tapes as are of general application” (Harvard 1946, 50), 
and in a January 1947 report on EDVAC programming Samuel Lubkin gave an example of a 
“standard subroutine” to compute square roots “in the form it would take in a library of 
subroutines”. In March of that year, Jean Bartik’s programming group was contracted by BRL
to develop a set of exponential and trigonometric subroutines for ENIAC. The library concept
and techniques for writing and using library subroutines were more widely disseminated in a 
1951 programming textbook by Maurice Wilkes, David Wheeler and Stanley Gill which 
made, as its subtitle promised, “special reference to the EDSAC and the use of a library of 
subroutines”.17

However, nobody writing about programming treated the identification of new subroutines, 
as opposed to the use of those already provided in a library, in any detail, and they were 
rather uncommon in practice. Of the 30 “stages” in Curry and Wyatt’s interpolation program, 
only four were identified as being reusable. In the Monte Carlo programs run on ENIAC in 
1948, there was only one subroutine (to compute a pseudo-random number) in approximately
800 program instructions. Von Neumann and Goldstine did not include subroutine 
identification as a step in their program planning process, and the flow diagram notation itself
did not provide an obvious way represent a subroutine explicitly. Wilkes, Wheeler and Gill 
included a chapter on “library subroutines and their use in constructing programs”, but gave 
few details on how to identify and write new subroutines.

Finally, the emphatic distinction made between “master routines” and subroutines meant that 
calling hierarchies were rather flat. Typically, a master routine would call a small number of 
subroutines, but it was rather rare for one subroutine to call another.18 In manual computation,
looking up a value in a table is an exception from the normal process of working through a 
computation sheet. This exceptionality reappears in the role that subroutines play in the 
programming as planning approach. The techniques widely used for subroutine call and 
return further meant that recursive calls, where a subroutine calls itself, were not possible.

None of these things are necessary features of subroutines, which soon came to be used much
more ubiquitously and flexibly. The first steps in this development took place as part of an 
explicit attempt to address perceived deficiencies in the “programming as planning” 
approach.

5 Programming complex processes

17 For the EDVAC subroutine, see Lubkin (1947), 20, 28. Lubkin’s rather casual use of the 
term “library” suggests that it already had some currency within the EDVAC group. The work
of Bartik’s group is discussed in Bartik (2013) and Haigh et al (2016). Wilkes et al (1951) 
describe the EDSAC subroutine library in great detail, including what became known as the 
“Wheeler jump”, an innovative and influential coding technique for transferring control 
between the main routine and what were termed “closed subroutines”.

18 In Willkes et al (1951), some library subroutines, such as those to carry our integration, 
call “auxiliary subroutines” which represent the function being integrated. The three-level 
terminology of master, sub-, and auxiliary routines suggests a rather stereotyped and limiting 
approach, though of course the use of subroutines in actual EDSAC programming practice 
may have been more flexible.



Newell and Simon (1956a) thought it a problem that computers had to be “instructed in 
minute detail on everything they do”. I have called  this the  “programming as planning” 
approach, and suggested that it is the result of the translation of established practices in 
manual computation into the new situation created by the automation of the work carried out 
by (human) computers. Newell and Simon argued that a new approach was necessary to 
program what they called “complex information processes”.

Complex programs, in Newell and Simon’s sense, should be distinguished from those that are
merely large. In 1956, Herbert Benington gave a talk on the “production of large computer 
systems”, drawing on his experience managing software development for the SAGE air-
defence system.19 Benington outlined a process which started with an “operation plan” and 
went through three levels of increasingly detailed specifications before reaching the stage of 
coding. Documentation was described as “an immense, expensive task” and included the 
operational, program, and coding specifications as well as detailed flowcharts and coded 
program listings. The SAGE system was described as a “real-time control system” consisting 
of 100,000 instructions and 80 component subprograms, each dealing with a “logically 
independent subfunction” of the system. The subprograms operated on shared data tables, and
were coordinated by a centralized control program. Benington commented that

… only the most thorough testing of the entire program ensures that system threads have been 
carefully worked out, that incompatibilities are discovered, and that all contingencies are accounted 
for.

Benington’s paper illustrates how the “programming as planning” approach had evolved as 
the uses of computers had expanded. Despite the unprecedented size and complexity of the 
SAGE system, its development started from the assumption that the system’s behaviour could
be comprehensively specified in advance, and that the job of the control program was simply 
to ensure that these plans were correctly carried out. In direct contrast to this, Newell and 
Simon were interested in systems whose behaviour could not be specified in advance, and 
where the control program would have to exhibit a degree of flexibility.

Their approach, first used in the Logic Theory Machine (LT) discussed above, built on the 
earlier work of Selfridge (1955) and Dinneen (1955), who had proposed a two-level 
architecture to address the pattern recognition problem. Some simple routines carried out 
what we would now call image processing tasks, and a higher-level routine attempted to use 
these routines to classify the original images. The novelty was that the classification process 
could not be specified in advance. Rather, the top-level program employed heuristics in an 
attempt to find a plausible classification of the presented image.

Newell and Simon extended Selfridge and Dinneen’s work in many ways, in particular by 
clearly defining the strategies and heuristics applicable to theorem proving and, later, more 
general problem solving, but the structure of LT preserved the two-level approach. The key 
features of “complex information processes” that they identified included the following 
(Newell and Simon 1956a, 1956b):

1. They contain a large number of subprocesses. These subprocesses need not be 
complex themselves, but could be “simple and easily understood”.

19 See Benington (1956). Background on the SAGE project can be found in Hughes (1998) 
and Benington (1983), which also reprints the text of the 1956 talk.



2. The subprocesses can be highly diverse. They need not be recognizable steps in a 
complete solution of the complex task and, individually, they are not “central or, 
usually, even necessary” to the overall task.

3. Complexity arises from the way in which the subprocesses are combined, the “pattern 
in which [they] operate”. The application of the subprocesses is highly contingent, 
and will depend on information from the environment and also the outcomes of 
previous subprocess execution.

4. This overall progress of the computation is controlled by a “master process”.  The 
master routine makes use of heuristics: its course of action is not fixed in advance, but
is supposed to respond dynamically to the evolving information available. “Large 
numbers of the processes have the function of determining the conditions under which
other processes will operate.”

LT was not written in machine code, a level of notation that Newell and Simon found “not at 
all suitable for human thinking or communication about a complex system.” Instead, drawing
upon current research on programming systems, they designed a pseudo-code which would 
allow them to express the features of complex information processes more naturally. In 1956, 
they called their pseudo-code the “logic language” (LL). They began by writing LT in LL and
simulating its behaviour by hand, and then implemented LL to run on the Johnniac.

In some respects, LL resembled other pseudo-codes and languages of the mid-1950s, and in 
particular its exact contemporary, Fortran. Programs consisted of instructions which were 
executed in sequence except where a conditional branch instruction caused a deviation from 
the default sequence. Instead of the numbers and arrays required for numerical programming,
however, LL supported the manipulation of lists holding the elements (such as logical 
connectives and variables) making up the expressions of the propositional calculus.

LL was radically different from Fortran, however, in the way it addressed one of the key 
features of complex information processes, namely the definition and flexible manipulation 
of large numbers of subprocesses. As Newell and Simon noted:

Most current computing programs … call for the systematic use of a small number of relatively simple 
subroutines that are only slightly dependent on conditions.

This is the type of problem that Fortran was designed for. In keeping with its orientation 
towards mathematical applications, subroutines were referred to as “functions”, and a small 
number of routines for evaluating some simple mathematical functions were built in to the 
system. Additional functions could not be defined in Fortran, but were coded separately and 
then added to the master tape.

Library subroutines exist on the master FORTRAN tape in relocatable binary form. Placing a new 
subroutine on that tape involves (1) producing the routine in the form of relocatable binary cards, and 
(2) transcribing those cards on to the master tape by means of a program furnished for that purpose. 
(IBM (1956), 40)

Only with the arrival of Fortran II in 1958 did the language permit the in-line definition of 
functions and subroutines. These could call each other freely, but recursive calls were not 
possible. By contrast, LL could express complex “organizations of processes that are often 
hierarchical, iterative and recursive”. 

LL did not make a strong distinction between instructions and subroutines. It was organized 
around the notion of an “information process” (IP), in effect a function or subroutine whose 



“inputs and outputs are comprised of symbolic information”. LL defined a set of 44 
elementary IPs, and new IPs could be defined in terms of these by giving a routine 
description rather similar to a Fortran II function definition. Newell and Simon emphasized 
the potentially hierarchical nature of this process:

We can define a set of new IP’s in terms of the elementary IP’s, then another set of IP’s in terms of 
both the elementary and defined IP’s, and so on; thus creating a whole hierarchy of IP’s and their 
corresponding routines.

There were very few restrictions on the extent to which one IP could call others. In particular,
recursive calls where an IP called itself directly or indirectly were possible. 

LL embodied a vision of program structure that was completely different from that of the 
“programming as planning” tradition that lay behind the Fortran proposals.

A FORTRAN source program consists of a sequence of FORTRAN statements. (IBM (1956), 7)

Bearing in mind that Fortran functions were placed on the master tape, this definition implies 
that functions were not even considered part of a Fortran program, at least not until Fortran II.
In contrast to this, an LL program is not thought of as a sequence of instructions with 
occasional calls to subroutines. Rather, the subroutine hierarchy is constitutive of the 
program, with only an executive routine to determine how subroutines are to be called:

a program – e.g., LT – is a system of subroutines … organized in a roughly hierarchical fashion. There is 
a “master routine,” each instruction of which is defined by another routine; the instructions in these 
subroutines, in turn, are defined by yet other subroutines, and so on. Eventually, primitive instructions
are reached, and their defining subroutines, which are in machine language, are executed. (Newell and
Shaw (1957), 234-5)

A program is a system of subroutines, and even primitive instructions are thought of as being 
defined by subroutines. LL thus turned the traditional program structure, where a main 
program consisting of a series of instructions occasionally calls subroutines from a library, 
inside out. Everything in LL was a subroutine, and at run-time the most promiscuous calling 
structures could arise.

The number of levels in the main part of LT is about 10, ignoring some of the recursions which 
sometimes add another four or five levels. (Newell and Shaw (1957), 238)

This vision of program structure directly reflected – indeed, no doubt evolved in parallel with
– Newell and Simon’s analysis of the requirements of complex information processing. Some
years later, Simon reflected more generally on the properties of complex systems, concluding 
that such systems are necessarily hierarchical, and it is very tempting to see in this a 
reflection of the technical subroutine hierarchies found in LT and similar systems.20 Newell 
and Simon found the seeds of this approach to hierarchical organization in Selfridge and 
Dinneen’s work, but this earlier program was rather simple, consisting of a main routine 
which called a small number of simple, primarily computational, subroutines. The ubiquity of
subroutines and the use of recursion are new in LL. 

20 See Simon (1962). I thank one of the anonymous referees for drawing my attention to this 
paper.



6 Towards a new language style

As Newell and Simon moved on from LT to the more ambitious General Problem Solver, LL 
evolved in parallel, in the process acquiring the more general name of “Information 
Processing Language” (IPL). LL itself became retrospectively known as IPL-I. The most 
mature version of the language, IPL-V, was by 1960 available on the IBM 650, 704 and 709.21

But despite its distinctive philosophical approach and its various language innovations, IPL 
has never been seen as defining a new language style, nor as a functional programming 
language. 

Instead, some of IPL’s more significant features were incorporated into other languages. After
the Dartmouth conference, Nathaniel Rochester suggested to IBM programmer Herbert 
Gelernter that he follow up suggestions made by Marvin Minsky and develop a geometry 
theorem proving program. Gelernter and his colleagues soon decided that their program 
would use lists to store data, and they planned to translate IPL from its Johnniac 
implementation to the IBM 704 computer. However, John McCarthy, at this point a 
consultant to the project, advised against this and instead suggested that they use Fortran as a 
base language.22

What resulted was FLPL, a “Fortran-compiled List-Processing Language”, which added to 
Fortran a set of subroutines to enable the manipulation of lists.

Our list-processing functions merely serve to increase the “vocabulary” of the language so that list 
manipulation processes may be described within the Fortran framework as are ordinary computer 
processes. We are thus able to enjoy the same ease of programming, ease of modification, and 
extensive debugging aids available to programmers of standard numerical problems. (Gelernter et al 
(1960), 93)

As Gelernter points out, one of the attractions of this strategy was that Fortran was simply a 
more mature and better supported language than IPL. From a technical point of view, the 
major advantage of using Fortran instead of IPL was that it provided an “algebraic” notation. 

The algebraic structure of certain statements in this language corresponds closely to the structure of 
[a list], making possible the generation and manipulation of complex list expressions with a single 
statement. (Gelernter et al (1960), 87)

One of the goals of the Fortran project had been to allow programmers to use conventional 
mathematical notation in programs. As well as allowing programs to include expressions like 
X + Y, the language supported the notation of nested function calls. Thus the expression

XCARF(XCDRF(LPTS)) → β1, the name of the second point on LPTS. (Gelernter et al (1960), 94)

allows the two functions XCARF and XCDRF to be called in a single expression, with the 
result of the XCDRF function call being provided as the argument to XCARF. In IPL, in 
contrast, these two function calls would be written as two separate statements.

21 GPS was first described in Newell et al (1958). The history of IPL is sketched in Newell 
and Tonge (1960).

22 See Gelernter et al (1959), 88.



FLPL therefore represents an important step on the way to the functional language style, 
showing how the basic subroutines for list manipulation could fit with the algebraic notation 
for repeated function application that Fortran provided. However, other aspects of Fortran, in 
particular its lack of support for recursive subroutine calls, limited the capabilities of FLPL.

As well as consulting on the IBM project, McCarthy was involved in a number of projects of 
his own, several of which inspired him to develop new programming techniques.23 The first 
of these was the conditional expression, “invented … in connection with a set of chess legal 
move routines” written in Fortran in 1957-8. McCarthy found Fortran’s IF statement

very awkward to use, and it was natural to invent a function XIF(M, N1, N2) whose value was N1 or N2 
according to whether the expression M was zero or not. (McCarthy (1981), 176)

In the summer of 1958, McCarthy went back to IBM and worked on a program to 
differentiate algebraic expressions. Unlike the chess move routines, this program did use lists,
and McCarthy used his new conditional expressions to define recursive functions. The 
program also required the ability to apply a function to every element in a list, and McCarthy 
defined a function that he called maplist to do this. Maplist had to be able to take a function 
as an argument, and it was at this point that the lambda calculus entered the scene.

To use functions as arguments, one needs a notation for functions, and it seemed natural to use the λ-
notation of Church (1941). I didn’t understand the rest of the book, so I wasn’t tempted to try to 
implement his more general mechanism for defining functions. Church used higher order functionals 
instead of using conditional expressions. Conditional expressions are much more readily implemented 
on computers. (McCarthy (1981), 176, citation in original)

McCarthy (1959) wrote up his ideas about conditional expressions and recursive functions as 
part of a proposal to include them in the emerging Algol language definition. As FLPL 
supported neither concept, however, he was unable to implement the differentiation program 
immediately. There wasn’t any great enthusiasm on his part or IBM’s to attempt further 
modifications of Fortran, and instead, when he moved to MIT after the summer, he began the 
implementation of a new language, Lisp. Far from being an implementation of the lambda-
calculus, Lisp programs were initially expressed

in an informal notation called M-expressions intended to resemble FORTRAN as much as possible. 
Besides FORTRAN-like assignment statements and gotos, the language allowed conditional 
expressions and the basic functions of LISP. Allowing recursive function definitions required no new 
notation from the function definitions allowed in FORTRAN I [sic] – only the removal of the restriction 
– as I recall, unstated in the FORTRAN manual – forbidding recursive definitions. (McCarthy (1981), 
177)

Although the M-expressions were defined in McCarthy (1960), the first publication to 
mention Lisp, users of the language quickly adopted an alternative parenthesis-heavy notation
that was easier to process mechanically. This paper is frequently cited as the original 
reference on Lisp, but its main purpose was to give a theoretical description of how lists 
could be defined recursively and it did not describe the complete Lisp language.24

Lisp, then, was the product of a complex historical process in which we can recognize at least
the following steps.

23 The following paragraphs draw on the account given in McCarthy (1981).



1. The use of lists and recursive functions in Newell and Simon’s LL and IPL languages.
2. The use of Fortran’s algebraic notation in FLPL to ease the writing of complex 

sequences of list-processing subroutines.
3. McCarthy’s development of the conditional expression.
4. His use of conditional expressions to define recursive functions.
5. His reformulation of the list data structure using concepts from recursive function 

theory.
6. His use of lambda notation for the very specific purpose of providing functional 

arguments to functions.

Many different motivations are visible here. Newell and Simon had developed a style of 
programming that used lists and recursion as a solution to the problem of programming 
complex problems. In contrast, FLPL’s use of algebraic expressions and McCarthy’s 
preference for conditional expressions seem to reflect rather more personal stylistic 
preferences. Implementation issues play an important role, and Fortran in particular was 
simultaneously an inspiration and an obstacle. Finally, theoretical results from logic did 
contribute, but as a resource to be drawn upon in a rather piecemeal fashion rather than 
something which straightforwardly provided a framework for the new language.

7 Conclusions

The starting point of this paper was Backus’s distinction between the von Neumann and 
functional styles of programming language, and the account he gave of the origins of the two 
styles. Backus suggested that a programming language style reflects an underlying 
computational model: in the case of the von Neumann style the underlying model is physical, 
but in the case of the functional style it is mathematical.

This account might be taken to suggest that, historically, programming languages and 
language styles emerge from underlying computational models through processes of 
derivation, evolution, and articulation. The papers by Hudak (1989) and Turner (2012) 
suggest that this may indeed be how the community of functional programming researchers 
understand the history of that style, but Backus’s own historiography was rather more 
complex: in 1978, as well as articulating the view that languages derive from computational 
models, he gave an account of the origins of Fortran that did not at all present it as “basically 
[a] high level, complex version[…] of the von Neumann computer”.

The account given in this paper of the historical origins of the two styles suggests that they 
have their roots not in differing computational models, but in different visions of the 
programming process. I have argued that the von Neumann, or “programming as planning”, 
style can best be seen as a translation into the age of automatically sequenced machines of 
existing practices of planning large-scale manual computations.25 The origins of the 
functional style, however, can be traced back to Newell and Simon’s realization in 1954 that 
programming a certain class of complex programs would require a radically different 
approach to design and program structure.

24 See Priestley (2011), 220–223 for more on this. In this connection, it is interesting to note 
the comment made by Turner (2012): “The theoretical model behind LISP was Kleene’s 
theory of first order recursive functions”. He added in a footnote: “McCarthy made these 
statements, or very similar ones, in a contribution from the floor at the 1982 ACM 
symposium on Lisp and functional programming in Pittsburgh. No written version of this 
exists, as far as [I] know”.



At the level of detailed program structure, one of the most striking differences between the 
two approaches is in their use of subroutines. The “programming as planning” approach 
established, or reinforced, the belief that problems could be specified, ideally mathematically,
before being coded. The tension implicit between this approach and the desirable property of 
code reuse was accommodated by the increasing use of extensive subroutine libraries. 
Subroutines remained exceptional, however, interruptions to the “main flow” of the program. 
Languages placed limits on the depth of calling hierarchies, and the issue of recursive 
subroutine calls remained controversial.

In contrast, Newell, Shaw and Simon proposed a programming style that made extensive use 
of user-defined and problem-specific subroutines, and allowed maximum flexibility in the 
way they could be combined. They implemented this style in the series of IPL languages, but 
despite their innovative features, these languages were in many ways conventionally 
structured, and have never featured in the genealogy of functional programming languages.

Section 6 outlined the process whereby Lisp, sometimes described as the “first functional 
programming language”, was developed in the context of practical programming in artificial 
intelligence in the late 1950s, a context that owed much to the Newell and Simon’s 
pioneering achievements, in particular the Logic Theory Machine. Throughout this period, 
McCarthy does not appear to have been inspired to create a language based on a single 
theoretical foundation. His work is rather an extended passage of bricolage, with important 
ideas being taken from sources as diverse as IPL, Fortran and recursive function theory (with 
a little bit of notation borrowed from the lambda calculus), all the while being informed by 
his desire to find the best way to express solutions to a variety of programming problems.

Gelernter and McCarthy’s work in these years is a clear example of the process outlined in 
Section 1, whereby individual stylistic choices – such as the decision to use Fortran’s 
algebraic expressions to express complex list-processing functions rather than IPL’s step-by-
step approach – later become constitutive elements of a new language. As Lisp historian 
Herbert Stoyan put it,

it was McCarthy who, as the first, seemed to have developed the idea of using functional terms (in the
form of “function calls” or “subroutine calls”) for every partial step of a program. This idea emerged 
more as a stylistic decision, proved to be sound and became the basis for a proper way of 
programming – functional programming. (Stoyan 1984, 299)

Similarly, McCarthy’s development of conditional expressions began as a personal choice 
based on the fact that he didn’t like the form of Fortran’s IF statement, but they later became 
the fundamental way of expressing conditional execution in Lisp.

As a result of these complex origins, Lisp was, as Backus noted, far from being simply a 
functional language, and in fact it allowed programmers to work in either the conventional or 
the applicative style. Interestingly, the choice between these alternatives was very closely 
related to the different Lisp programming styles identified by Black (1964), and in particular 
to the decision on whether or not to use the language’s so-called “program feature”. Lisp’s 
heterogeneity should not be attributed to a failure on McCarthy’s part to implement a more 
thorough-going theoretical programme, however; as Stoyan put it,

25 Rather than following Backus in seeing the languages as reflections of the underlying 
computer, it might be more accurate to describe the “von Neumann architecture” as having 
been developed to support a particular way of structuring and expressing computations.



around the end of the fifties, nobody, including McCarthy himself, seriously based  his programming 
on the concept of mathematical function. It is quite certain that McCarthy for a long time associated 
programming with the design of stepwise executed “algorithms”. (Stoyan 1984, 299).

As functional programming researchers have recognized in their historical reflections, then, 
Lisp does not fit well into the view that the development of functional programming consists 
in ever more refined articulations of the lambda calculus. It falls outside the scope of this 
paper to consider the process by which the “functional programing paradigm” was 
subsequently articulated around the idea of the lambda calculus, and came to adopt Lisp as its
figurehead, or more generally how programming paradigms become individuated. It is 
certainly a plausible hypothesis that the identification of a suitable abstract model of 
computation plays an important role in this process, but the lesson that this paper draws from 
history is rather that the role of programming problems and practices in the emergence of 
novel programming languages and language styles should not be underestimated.
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