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Abstract Modern computing has been shaped by the problems and practices of
mathematics to a greater extent than is often acknowledged. The first computers
were built to accelerate and automate mathematical labour, not as universal logical
machines. Very specific mathematical objectives shaped the design of ENIAC, the
first general-purpose electronic computer, and its successor, EDVAC, the template
for virtually all subsequent computers. As well as machine architecture, software
development is firmly rooted in mathematical practice. Techniques for planning
large-scale manual computation were directly translated to the task of programming
the new machines, and specific mathematical practices, such as the use of tables in
calculation, profoundly affected the design of programs.
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1 Introduction

If there is a truth universally acknowledged in the history of computing, it is this:
the “modern computer” was invented in the early 1940s and its design was first
described in the First Draft of a Report on the EDVAC (von Neumann 1945b). In the
preceding three years, a group at the University of Pennsylvania’s Moore School of
Electrical Engineering had designed and built ENIAC, a giant machine that among
other things demonstrated the feasibility of large-scale electronic calculation. As
ENIAC’s design neared completion in 1944, the team began to plan a follow-up
project, the EDVAC. They recruited the mathematician John von Neumann as a
consultant, and in early 1945 he wrote a report describing, in rather abstract terms,
the design of the new machine. This was the first systematic presentation of the new
ideas, and proved highly influential. By the end of the decade the first machines
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Fig. 1 The communities of computing (redrawn extract from Mahoney (2005), fig. 5, copyright
© Institute of Materials, Minerals and Mining, reprinted by permission of Taylor & Francis Ltd,
http://www.tandfonline.com, on behalf of Institute of Materials, Minerals and Mining.)

based on the EDVAC design were operational, marking the first step on a ladder of
technological progress leading to the ubiquity of computational machinery today.

Historian Michael Mahoney (2005) challenged such machine-centric views of
computer history. Mahoney urged historians to turn their attention to the history
of computing, not just the technical history of computers. He further argued that
the history of computing cannot be understood as a single unified narrative. The
computer can be many things to different people, generating a multitude of diverse
stories. Mahoney supported his argument by appealing to a particular view of the
nature of the computer: while acknowledging that the first computers were built to
perform scientific calculations, he believed that the machines based on the EDVAC
design were something different, not just calculators but “protean machines” that
could be bent to any task.

But making it [the computer] universal, or general purpose, also made it indeterminate.
Capable of calculating any logical function, it could become anything but was in itself
nothing (well, as designed, it could always do arithmetic). (Mahoney 2005, 123)

A machine which is in itself nothing cannot have much of a history. Instead,
Mahoney urged, historians of computing should tell the stories of how the machine
was introduced to and transformed, and was itself transformed by, a wide range of
existing “communities”: the people involved in areas of application such as data
processing, management, or military command and control systems (Fig. 1).

It is striking that, despite Mahoney’s revisionist intentions, this schema retains
a prominent place for the traditional origin story involving ENIAC and EDVAC.
On Mahoney’s account, EDVAC has a dual nature. On the one hand, it is a room-
sized mathematical calculator, built for very specific purposes by a particular group
of people. But at the same time it is an abstract machine, “in concept a universal
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Turing machine”. According to Mahoney, it is this second, spectral machine which
moves between communities. Being universal and general-purpose, its potential for
use in different fields can be taken for granted.

From this point of view, the computer’s mathematical origins are little more than
an historical curiosity. Mahoney followed logician-turned-historian Martin Davis
(2000) in seeing the crux of the computer’s evolution as being an injection of logic
between ENIAC and EDVAC that turned a brute calculator into an ethereal logic
machine with, incidentally, the capability to do “arithmetic”.1

However, the idea that a new technology can transform many application areas is
not the novelty that Mahoney seems to suggest, and does not depend on the universal
nature of the technology being transferred, as two examples from the prehistory of
computing illustrate. In the 1920s, Leslie Comrie began an extended investigation
into the use of punched card machinery to support scientific calculation, work that
was continued by Wallace Eckert in the USA. Similarly, Tommy Flowers took with
him to Bletchley Park the experience that he had gained with electronic switching
before World War 2 in the British GPO, and deployed it very effectively in the
development of the Robinson and Colossus machines. In this perspective, the idea
that the invention of the computer might give rise to different histories of adoption
in different areas is simply another example of a regular historical pattern.

The computer remains a special case in its breadth of application, of course, and
this is a fact that calls out for explanation. In response, Mahoney appealed to the
modern computer’s “protean” nature. But how does the computer come to have such
a nature? The conventional answer to this is technological: the “stored-program”
concept, itself said to be derived from Turing’s description of a universal machine,
is the particular feature that allows a single machine to perform an unlimited variety
of tasks.2 But there is an unsatisfying circularity in the suggestion that it is the
“universal” logico-technical properties of the computer that make it inevitable that
it will find universal application. It is more illuminating to start with a functional
characterization: if the computer is a technology of automation, what was it intended
to automate? In his proposal for the ACE, a machine to be built at the UK’s National
Physical Laboratory, Turing suggested an answer to this question:

How can one expect a machine to do all this multitudinous variety of things? The answer is
that we should consider the machine as doing something quite simple, namely carrying out
orders given to it in a standard form which it is able to understand. (Turing 1946, 3)

The modern computer, in other words, is a machine that obeys orders. As a matter
of historical contingency, the first such machines were developed to automate the
specific processes involved in large-scale mathematical calculation. This is far from
being the incidental detail that Mahoney suggests, however, and deeply affected

1 Similar views were widely canvassed in connection with Turing’s centenary celebrations in 2012.
An alternative perspective, challenging the view that logic played a central role in the development
of EDVAC, has been articulated recently by historians including Tom Haigh (2014) and Edgar
Daylight (2015). See also Section 5, below.
2 The stored-program concept has been discussed, and its usefulness as an analytical category
critiqued, by Haigh et al. (2014).
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the ways in which computers could be deployed in areas outside mathematics, as
computer scientist Donald Knuth’s comments on the problems of carrying out data
retrieval with electronic computers illustrate:

Computers have increased the speed of scientific calculations by a factor of 107 or 108,
but they have provided nowhere near this gain in efficiency with respect to problems of
information handling. [. . .] We shouldn’t expect too much of a computer just because it
performs other tasks so well. (Knuth 1973, 551)

The first half of this chapter describes the effects of the mathematical context of
innovation on the ENIAC and EDVAC projects and the machines they developed.
The computer’s mathematical origins are reflected in more than just its physical
characteristics, however. The modern computer automated a certain kind of human
labour, that of following a plan of computation in a more or less mechanical way.
Many of the established practices of manual calculation were transferred to the new
machines and profoundly shaped the ways in which they were used. The second
half of this chapter examines how two such practices, the social organization of
large-scale computation and the use of mathematical tables, were translated into the
context of the automatic computer and the consequences of this for the way the new
task of programming was conceived.

2 The organization of large-scale calculation

In the 1790s, the French engineer Gaspard Riche de Prony embarked on a mammoth
project to calculate a new set of tables of logarithmic and trigonometric functions
(Grattan-Guinness 1990). The undertaking was industrial in scale, and to manage
it de Prony employed the principle of the division of labour recently described by
Adam Smith in The Wealth of Nations, first published in 1776.

De Prony divided his workforce into three sections. The first section consisted of
a small number of leading mathematicians who derived the formulas that would be
used to calculate the various functions. These formulas were passed on to a second
section of skilled but less eminent mathematicians whose job was to work out how
to calculate the values of the formulas using the method of differences.

An advantage of the method of differences was that it enabled the functions to
be calculated using only the basic operations of addition and subtraction. The third
section consisted of relatively unskilled labour, many of them hairdressers who had
been made redundant by changing fashions after the French revolution. The workers
of the third section carried out sequences of additions and subtraction as specified
by calculating sheets prepared by the second section. Rough working was carried
out on loose sheets of paper, and the results were transcribed onto the calculating
sheets, which were then passed back to the second section for checking.

The third section had little scope for the exercise of judgement or initiative. As
Smith had observed, the division of labour often broke a complex task down into
activities that were simple enough to be mechanized. Fully aware of de Prony’s
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approach, Charles Babbage took advantage of this when beginning the development
of his first Difference Engine in the 1820s:

If the persons composing the second section, instead of delivering the numbers they calcu-
late to the computers of the third section, were to deliver them to the engine, the whole of
the remaining operations would be executed by machinery. (Babbage 1822, 10)

More than a hundred years after Babbage, large-scale computation was still being
organized along the lines pioneered by de Prony. David Grier (1998) has described
the organization of the Math Tables Project (MTP), a Depression-era project aimed
at providing jobs for unemployed office workers in New York. The work of the
MTP was directed by a Planning Committee which “developed the mathematical
methodology, and prepared the computing instructions” that were passed onto the
Computing Floor Division. This consisted of two groups of trained mathematicians
who could be trusted to work independently: the “Special Computing Unit”, who
among other responsibilities helped the project leaders to prepare the worksheets
for the “Manual Unit”, and the “Testing Section”. The Manual Unit were unskilled
workers who were trained to perform to perform specific operations, such as multi-
plication by a single digit. Their work was directed by the worksheets.

Desk calculating machines were widely used in the 1930s to perform arithmeti-
cal operations, including multiplication and division. As the MTP grew, it acquired
numbers of second-hand calculators and the size of the Manual Unit shrank as its
suitably qualified members were promoted to the Machine Unit.

From the French revolution right through to the mid-twentieth century, then, the
organization of large-scale calculation took the form of a pyramid resting on the
base of a large group of mathematically unsophisticated (human) computers. The
computers were expected to perform individual arithmetico-logical operations, with
or without mechanical assistance, and to closely follow a plan telling them what
operations to perform, in what order, and how and where to record the results. The
ability to work independently and the exercise of initiative or judgement were not
required.

It was precisely these characteristics that machine developers of the early 1940s
were hoping to automate and that George Stibitz, designer of an influential series of
machines at Bell Telephone Laboratories, made the defining property of computers
understood as machines rather than human beings.3

By “calculator” or “calculating machine”, we shall mean a device (mechanical, electrical or
what not) capable of accepting two numbers, A and B, and of forming some or any of the
combinations A+B, A−B, A×B, A/B. By “computer”, we shall mean a machine capable
of carrying out automatically a succession of operations of this kind and of storing the
necessary intermediate results”. (Stibitz 1945, 1–2)

In the 1830s Babbage had made the first attempt to design such a computer with
his work on the Analytical Engine. Around a hundred years later, Konrad Zuse in

3 The word “computer” before 1945 did not always refer to a human being. From the 1890s onward,
“computers” were also computational aids, sometimes booklets containing useful collections of
tables and methods (Hering 1891), but more often special-purpose circular slide-rules embodying
particular formulas or algorithms (Halsey 1896). David Mindell (2002) has traced the further usage
of the word in the 1930s in the field of fire-control systems in the US military.
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Germany and Howard Aiken in the USA independently began projects leading to the
construction of the first machines capable of automatically carrying out a sequence
of operations.

3 Automating calculation

In 1935, Zuse set up a workshop in his parents’ Berlin apartment and began work.
The following year, he submitted a patent application describing a machine which
would automatically execute “frequently recurring computations, of arbitrary length
and construction, consisting of an assembly of elementary arithmetic operations”
(Zuse 1936, 163). The operations to be performed were described by what Zuse
called a “computation plan” which would be presented to the machine in some suit-
able form, such as a punched tape. As an example, Zuse gave a plan for calculating
the determinant of a 3×3 matrix. This involved a total of 17 operations, each with
two operands: 12 multiplications, two additions and three subtractions.

Zuse developed a series of machines designed along these lines. The third of
these machines, the Z3, was completed in 1941 and is now considered to be the first
programmable computer. The Z3 and its predecessors were destroyed in air raids,
but Zuse’s next machine, the Z4, survived and was moved to Zurich, where it played
an important role in the post-war development of European computing.

In 1937, Harvard graduate student and physics instructor Howard Aiken wrote
a proposal for “an automatic calculating machine specifically designed for the
purposes of the mathematical sciences” (Aiken 1937). He observed that existing
punched-card calculating machinery did “the reverse of that required in many math-
ematical operations”, in that it allowed the evaluation of a limited range of formulas
on sequences of data read from punched cards. By contrast, Aiken believed that the
characteristic of scientific calculation was that it required long and varied sequences
of operations to be carried out on relatively small amounts of data. In principle, this
could be done on existing machinery by manually switching from one operation to
another: it was precisely this manual switching that Aiken planned to automate.

Aiken managed to enlist the help of IBM in building his machine, officially called
the IBM Automatic Sequence Controlled Calculator; it later became widely and
more conveniently known as the Harvard Mark I. On its completion in 1944, IBM
donated the machine to Harvard, where it ran for many years, initially under the
control of the US Navy.

Every aspect of Mark I was determined by its role in mathematical calculation.
Like Zuse’s machines, it was equipped with a number of general purpose registers,
or counters, which stored results and allowed them to be retrieved when needed.
Aiken explained the need for storage registers as a consequence of the pragmatics
of conventional mathematical notation:

The use of parentheses and brackets in writing a formula requires that the computation
must proceed piecewise. [. . .] This means that a calculating machine must be equipped with
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means of temporarily storing numbers until they are required for further use. Such means
are available in counters. (Aiken 1937, 198)

The counters stored incoming numbers by adding them to their existing contents,
thus enabling Mark I to carry out addition in general. Subtraction was carried out
using complements. There were specialized units for multiplication and division,
to compute the values of selected exponential and trigonometric functions, and to
interpolate between values read from a paper tape. But the heart of the machine
was the sequence mechanism. This read a list of coded instructions that had been
punched onto a paper tape and invoked the corresponding operations. By simply
changing the tape, Mark I could be instructed to carry out any desired computation.

4 The structures of computation

The sequence of operations performed by the Z3 or Mark I was determined by
the sequence of instructions read from the machines’ tapes. To evaluate a simple
formula, the tape would simply contain one instruction for each operation that the
machine was to execute, but this approach did not scale up well to more complex
problems. Many calculations have an iterative structure in which a small sequence
of operations is repeatedly performed. It would be wasteful to punch a tape with the
same instructions over and over again, and in many cases this would not even be
possible. In general, a mathematician cannot tell in advance how many iterations of
the operations will be required and instead has to rely some property of the results
obtained so far to determine when the calculation should stop.

The conditional branch instructions of modern programming languages address
these issues by allowing computations to diverge when necessary from the default
sequence of instructions. The earliest computers did not have branch instructions,
however, and various ad hoc approaches were adopted instead. Babbage proposed
mechanisms to “back up” the Analytical Engine’s cards so that instructions could
be repeated, while Mark I’s tapes were made “endless” by gluing one end to the
other. An endless tape would loop indefinitely, carrying out the instructions on it
over and over again. To interrupt a loop, Mark I had a conditional instruction that
stopped the machine when, say, the results obtained so far reached certain limits of
tolerance, but in order to continue with the next stage of the computation a new tape
had to be mounted by the operators and the machine restarted. The first machine to
fully automate computation, allowing loops and conditional branches to be freely
utilized, was ENIAC.

ENIAC was the brainchild of a physicist, John Mauchly, who had taken up
wartime employment at the Moore School.4 The school had a long-standing collab-
oration with the Army Ordnance Bureau’s proving ground in Aberdeen, in nearby
Maryland, and in particular with its Ballistics Research Laboratory (BRL), an im-
portant centre of calculation in the interwar years. BRL had supported the Moore

4 The following two sections draw extensively on the material in (Haigh et al. 2016).
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School’s acquisition of a differential analyzer, with the understanding that in the
event of war it would be made available for BRL’s use. Developed by Vannevar
Bush (1931) at MIT, the analyzer was a cutting-edge analogue machine which used
mechanical integrators to solve differential equations.

When war broke out, BRL faced the challenging task of compiling firing tables
for a vast range of new ordnance and ammunition. These tables integrated large
amounts of experimental data and ballistic calculation, and told gunners how to
aim their weapons to hit a specific target. To compile a table, many trajectories—
the predicted paths of projectiles fired from the gun—had to be calculated, each
requiring the solution of a set of differential equations that could take a human
computer several hours. Invoking the terms of the earlier agreement, BRL set up a
satellite computing centre at the Moore School overseen by Herman Goldstine, a
mathematician whose wartime commission had seen him posted to BRL. Goldstine
and his wife Adele were responsible for training and supervising teams of computers
calculating trajectories. The Moore School’s differential analyzer was extensively
used in these calculations.

Mauchly was not directly involved in the firing table work, but he supervised a
group carrying out manual computation and was familiar with the design and use of
the analyzer. He had a long-standing interest in the use of electronics for calculation,
and in August 1942 brought these interests and experience together in the form of a
brief proposal for an electronic analogue of the differential analyzer. He estimated
that the use of “high-speed vacuum tubes” would allow trajectories to be calculated
in a fraction of the time taken by the mechanical analyzer, let alone by manual
calculation. The proposal eventually came to the attention of Herman Goldstine,
who saw great potential in it. Mauchly and Presper Eckert, a talented electronic
engineer who had trained Mauchly when he first arrived at the Moore School, wrote
a more detailed outline and a collaboration was soon agreed whereby the Moore
School would build an electronic machine for BRL.

Although it was envisaged that the machine would spend a lot of its time calculat-
ing trajectories, its design was not limited to that particular application. As Mauchly
had explained:

There are many sorts of mathematical problems which require calculation by formulas
which can readily be put in the form of iterative equations. [. . .] Since a sufficiently approx-
imate solution of many differential equations can be had simply by solving an associated
difference equation, it is to be expected that one of the chief fields of usefulness for an elec-
tronic computor [sic] would be found in the solution of differential equations. (Mauchly
1942)

Mauchly’s use of the phrase “electronic computer” seems very natural to modern-
day readers, but would have been quite unfamiliar in 1942. Mauchly had described
the new machine as an “electronic difference analyzer”, but “computer” was soon
added to the machine’s name to reflect its potential generality, as Grist Brainerd, the
Moore School academic in charge of the project, explained:

The electronic difference analyzer and computer is a proposed device never previously built,
which would perform all the operations of the present differential analyzers and would in
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addition carry out numerous other processes for which no provision is made on present an-
alyzers. It is called a “difference” analyzer rather than a “differential” analyzer for technical
reasons. (Brainerd 1943)

The new machine soon became terminologically independent of its predecessor,
being dubbed the “Electronic Numerical Integrator and Computer”, or ENIAC.5 The
numerical solution of differential equations by iterative means became ENIAC’s
signature application, but over the course of its working life it was applied to a
much wider range of calculations than simply trajectories. Nevertheless, as late as
the early 1950s, “artillery and bomb ballistics computation” made up a quarter of
its workload (Reed 1952).

Mauchly may have used the term “computer” to emphasize that ENIAC, unlike
a simple calculator, would be automatically sequenced and, like a human computer,
able to work independently. In this respect, electronic speed was problematic, as
it meant that the familiar technique of reading coded instructions from paper tape
was simply too slow. Instead, the team adopted what they later described as a stop-
gap solution in response to the urgency of a wartime project and designed ENIAC
as a collection of specialized calculating units. They shared with Zuse and Aiken
the view that calculations could be specified as sequences of instructions, but they
adopted a different technological approach to realizing the instruction sequences.
Instructions were set up on “program controls” on each unit, and computations were
sequenced by cabling these controls together in problem-specific configurations.
As it turned out, this gave ENIAC a flexibility that allowed a greater degree of
automation than was possible on the tape-controlled machines.

The ENIAC team delivered their first progress report at the end of 1943, six
months after the start of the contract funding the project. After extensive research
into the existing state of the art, a new design for the machine’s basic electronic
counters had been decided on, but nothing had been constructed apart from a few
test circuits. Plans for some units were fairly well advanced, but others had barely
been started. There were many open questions about the design of the machine,
and it had not yet been demonstrated that large numbers of unruly electronic valves
could be persuaded to collaborate reliably and work as required.

Despite the provisional and incomplete state of the hardware design, however,
the report was accompanied by detailed plans showing how ENIAC could be set up
to calculate a ballistic trajectory.6 Acting as a kind of feasibility test, this exercise
enabled the team to settle many aspects of ENIAC’s design. Different algorithms
were investigated, the choice between them being governed by a variety of practical
considerations. Would the numerical properties of the equations allow a reasonable
degree of accuracy to be preserved throughout the calculation? Would the number of
operations to be carried out and intermediate values to be stored physically fit onto

5 In a 1962 affidavit, Brainerd recalled that Paul Gillon of the Ordnance Bureau, an enthusiastic
supporter of the project, came up with the new name.
6 Haigh et al. (2016) attributed these plans to Arthur Burks. Subsequent archival research suggests
that the work was in fact split between Burks and Adele Goldstine, with Goldstine taking the lead
on the mathematical analysis of the problem, expressed in a “setup form”, and Burks mapping it
onto ENIAC’s distributed programming system in the form of a “panel diagram”.
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ENIAC? Analysis by the Moore School mathematician Hans Rademacher showed
that the relatively unfamiliar Heun method would be suitable, and the problem was
reduced to a set of 24 simple difference equations. This analysis also enabled the
size of ENIAC’s accumulators to be fixed: numbers had to be stored to a precision
of ten decimal digits to enable the computed results to be sufficiently accurate for
BRL’s purposes.

The analysis of the structure of the computation was just as significant as the
numerical work. The trajectory calculation was split into four basic sequences of
instructions: setting up the initial conditions, performing an integration step, printing
a set of results, and carrying out a check procedure. These sequences were combined
in a complex structure which included two nested loops: after the initial sequence
was complete, a loop would print a set of results and carry out the check procedure
40 times; each set of results was calculated by performing the integration step 50
times.7 In 1943, the team had little idea how a computation of such complexity
would be controlled, and proposed a unit called the “master programmer” which
would control the repetition of instruction sequences and move from sequence to
sequence when required.

In the following months, the team set to work on the master programmer. Central
to its design was a multi-functional device known as a “stepper” which controlled
the initiation of up to six program sequences, one after the other. Each stepper had a
counter associated with it to keep track of how many times the current sequence had
been executed. Once a sequence had been repeated a specified number of times, the
stepper would move the machine on to the next sequence. Conditional control was
enabled by routing pulses derived from the results already calculated into a special
“direct input” socket which advanced the stepper independently of the number of
repetitions that had been counted.

ENIAC, then, was designed to solve a specific type of mathematical problem, but
it had to be able to do so completely automatically: if its operators had to change
instruction tapes, as on Mark I, the advantages of its electronic speed would be
lost. The analysis of the trajectory calculation revealed the level of control flexibil-
ity required and led to the design of the master programmer, a device capable of
controlling highly complex computations built up using the fundamental structures
of loops and conditional branches. As a result, ENIAC was capable of tackling a
wide range of problems, although in practice physical constraints such as its small
amount of high-speed storage limited its scope of application (Reed 1952).

7 ENIAC would therefore carry out 2000 integration steps to calculate a single trajectory, many
more than was feasible in a hand calculation. This was one reason why the numerical properties of
the method to be used had been studied so closely: with many more arithmetical operations being
carried out, errors could be expected to accumulate more rapidly.
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5 The computer as mathematical instrument

By the summer of 1944, ENIAC’s design was virtually complete and the team were
beginning to think about the future. Anxious to secure a new contract before the
generous wartime funding arrangements dried up, they proposed to BRL’s director,
Colonel Leslie Simon, a new research and development project for a machine which
would address two perceived weaknesses of ENIAC’s design: its paucity of high-
speed storage, and the time-consuming way in which problems were set up.

At around the same time, John von Neumann discovered ENIAC. Despite the
fact that he had been a member of BRL’s Scientific Advisory Committee since
1940, he only found out about the machine, according to Herman Goldstine, thanks
to a chance meeting at Aberdeen railway station. Within a month of this meeting,
however, an agreement had been reached for a contract to develop a new machine.
Historians have speculated about von Neumann’s role in helping to bring about this
decision, but one likely consequence of his involvement was to establish just what
the new machine was for. In 1943, BRL had a very clear idea of why they needed
ENIAC: they faced a bottleneck in the calculation of firing-table trajectories, and the
need to address this requirement shaped ENIAC’s design in many ways. By contrast,
in a context where it was cutting back on long-term research projects, the Bureau of
Ordnance might not have been so keen to support a proposal framed in terms of the
need to address shortcomings in a machine it was still in the process of paying for.
As Babbage had discovered a century earlier, this is not a great strategy for winning
a funding body’s support.

Matters moved quickly. On August 29, at a meeting attended by both Goldstine
and von Neumann, BRL’s Firing Table Reviewing Board decided to support a new
contract with the Moore School, to develop “a new electronic computing device”.
The Board minuted that the new machine would be “cheaper and more practical to
maintain” than ENIAC, would be able to store large quantities of numerical data,
and would be easy to set up for new problems. The Board also noted that the new
machine would be “capable of handling many types of problems not easily adaptable
to the present ENIAC” (see Haigh et al. 2016, 134).

Von Neumann brought to the meeting the perspective of a user, not a computer
builder. Although he proved more than capable of engaging with the gritty details of
vacuum tubes, he was also engaged in a continent-wide search for raw computing
power for a variety of projects, including the Manhattan Project at Los Alamos. In
March he had used the IBM punched card machines at BRL to carry out some test
calculations on hydrodynamical shock problems, noting that:

The actual computations on each problem required 6-12 working hours net, and the entire
program (setting up, etc), insofar as these three problems were concerned, took less than
ten days. [. . .] In the truly many-dimensional cases the possibility of using other types of
machines will also have to be investigated. (von Neumann 1944b, 375, 379)

The possibility of using ENIAC for similar work was quickly investigated. By
August 21, as Goldstine reported:
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Von Neumann is displaying great interest in the ENIAC [. . .] He is working on the aero-
dynamical problems of blast and runs into partial differential equations of a very complex
character. By greatly simplifying his equations he is able to get a one dimensional equation
that is solvable in four hours on the IBM’s. We calculate that it will take ten seconds on the
ENIAC counting the printing time. (Goldstine 1944b)

But not even ENIAC was powerful enough. The day after deciding to support
the new contract, the Firing Table Reviewing Board sent a detailed memo to Simon
outlining the rationale for their decision. Since the new machine would be more
flexible and capable of storing large amounts of numerical data:

It would make possible the solution of the complete system of differential equations of
exterior ballistics [. . .] these equations are too complicated in character to be handled by
the differential analyzer, the Bell Telephone machines, the IBM machines, or the present
ENIAC in a reasonable length of time. (BRL 1944)

The Board also noted the application of the new machine to the “extensive and
unusual computations” needed to make use of the data produced by BRL’s new wind
tunnel. Existing machines, including ENIAC, would be “most useful in extensive
but less complicated routine calculations”. The wind tunnel played a prominent role
in selling the new proposal to BRL and its paymasters. In mid-September Brainerd
wrote to Colonel Paul Gillon of the Bureau of Ordnance referring to:

some rather extensive discussions concerning the solution of problems of a type for which
the ENIAC was not designed. [. . .] Dr. Von Neumann is particularly interested in math-
ematical analyses which are the logical accompaniment of the experimental work which
will be carried out in the supersonic wind tunnels. Unfortunately practically all of these
problems are tied up in non-linear partial differential equations, the solutions of which is
is impractical to obtain with any known equipment now existing or being built. (Brainerd
1944a)

Brainerd was now careful to suggest that ENIAC’s perceived shortcomings were
not defects, but rather adaptations to the particular type of problem it was designed
to solve. These representations evidently had the required effect: towards the end
of October, a supplement to the ENIAC contract was signed authorizing a nine-
month contract on “an Electronic Discrete Variable Calculator”, starting on January
1, 1945.8 Von Neumann’s existing role at BRL was expanded, allowing him to act
as a consultant to the Moore School for the new project (Goldstine 1944a).

Simon received yet another memo on the subject, this time from von Neumann
himself, in January 1945. Von Neumann emphasized the importance of “general
aerodynamical and shock-wave problems” and the need to make “full and efficient
use of the Supersonic Windtunnel”, and he pointed out that ENIAC and the Bell
Labs machines were not really suited to the kind of calculations required:

The differential equations are usually partial and 2 or 3 dimensional, and they are therefore
in the simplest cases just on the margin of what the present equipment can handle, and in
all other cases far outside its compass. [. . .] The EDVC [sic] is being designed with just this
type of problem in view. (von Neumann 1945a)

8 Brainerd (1944b) described the machine thus in a memo to the Bureau of Ordnance. By the time
the project’s first progress report was issued, at the end of March 1945, it had firmly acquired the
acronym EDVAC, in which the C stood for “computer”.
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In the latter part of 1944, then, a rather vague aspiration to build a machine that
would address some of ENIAC’s shortcomings was refined into a proposal for a
computer optimized to solve a class of problems of pressing concern to BRL, multi-
dimensional, non-linear, partial differential equations. Brainerd was quick to spell
out the connections between this application and the team’s technical ambitions:

If a two-dimensional problem is to be solved [. . .] many thousands of values of quantities
must be stored while the process is being carried on. It is on this point of the great amount
of storage capacity required that existing and contemplated machines fall down. There is
also a further point that the programming of the carrying out of the solutions is far more
complicated than permitted by existing or contemplated machines. (Brainerd 1944a)

EDVAC, then, needed a large high-speed store because the calculations it was
being built to carry out generated large amounts of numerical data. But this also
suggested a solution to the problem of setting up the machine quickly:

To evaluate seven terms of a power series took 15 minutes on the Harvard machine of
which 3 minutes was set up time, whereas it will take at least 15 minutes to set up ENIAC
and about 1 second to do the computing. To remedy this disparity we propose a centralized
programming device in which the program routine is stored in a coded form in the same
type storage devices [sic] suggested above [to hold numerical data]. (Goldstine 1944c)

All previous automatic computers had used different storage media for numbers
and program instructions: numbers were stored in counters of various kinds, while
instructions were read from paper tape or, in the case of ENIAC, set up on dedicated
pieces of hardware. If instructions were to be available at electronic speed, they
could not be read when needed from an external medium, but had to be placed on the
machine before the computation began. As Goldstine noted, a new device—mercury
delay lines—had been proposed for the cost-effective storage of large amounts of
numerical data. If instructions were coded as numbers, as on the Harvard and Bell
Labs machines, it would obviously be possible to use the same kind of device to
hold the instructions.

At this point, Goldstine’s proposal was that, instead of using different media to
store numbers and instructions, they could be held in storage devices of the same
type. What is often taken to be a defining characteristic of the modern computer,
storing data and instructions in a single device, was adopted rather gradually. In the
First Draft, after carefully listing all the different types of information that EDVAC
would have to store, von Neumann commented:

While it appeared, that various parts of this memory have to perform functions which dif-
fer somewhat in their nature and considerably in their purpose, it is nevertheless tempting
to treat the entire memory as one organ, and to have its parts even as interchangeable as
possible for the various functions enumerated above. (von Neumann 1945b, 6)

Some problems needed lots of programming instructions but used little numerical
data, while others were exactly the reverse. As Eckert explained the following year,
a single store would give EDVAC valuable flexibility:

Aside from simplifying the construction of the machine, this move eliminates for the de-
signer the problem of attempting to find the proper balance between the various types of
memory [. . .] The proper subdivision of the memory, even for a restricted set of problems,
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such as the ENIAC is designed to handle, is too variable from problem to problem to permit
an economical compromise. (Eckert 1946, 112)

However, the code proposed in the First Draft clearly distinguished numbers and
instructions, and treated the two kinds of data rather differently. EDVAC’s memory
would still be explicitly partitioned, recreating on a problem-by-problem basis the
separate storage devices that Goldstine envisaged.

The tape of Alan Turing’s universal machine of 1936 also held both data and
coded instructions, a fact that has led some writers to suppose that there is a simple
“stored program” concept, invented by Turing and subsequently implemented by the
new machines of the mid-1940s. The complexities and confusions surrounding the
term “stored program” have been analysed by Haigh et al. (2014), and it is sufficient
here to note that EDVAC’s unitary memory was not the result of the application of
an insight drawn from mathematical logic, but of a series of pragmatic engineering
decisions taken during the design of a machine requiring an unprecedentedly large
store in order to address a particular class of mathematical problem.

A more significant innovation of the First Draft was to give programs the abil-
ity to modify their own instructions in certain ways as computations progressed.
This had profound consequences for EDVAC’s mathematical capabilities, making it
feasible to write programs that operated on large vectors and matrices, not just on
a small number of individual variables. Without this, the machine would not have
been able to solve the partial differential equations of interest to von Neumann.
There is nothing like this in Turing’s earlier logical work.

Like ENIAC, then, EDVAC was designed and sold to its sponsor as a mathe-
matical instrument with a rather specific purpose. Designing a machine capable of
carrying out the required calculations led to a number of features that that are now
considered definitional of the modern computer, such a large unitary memory and
code that allows programs to modify their own instructions. There is no need to
postulate an “injection of mathematical logic” in order to explain the origins of the
computer and little, if any, evidence in the archival record of such an injection.

6 Planning and coding

The last two sections have examined some of the ways in which the computer’s
mathematical origins shaped its technological design. The influence of mathematics
was not limited to hardware, however: the following sections will explore how the
work practices within which automatic computers were situated profoundly affected
early conceptions of computer programming.

The ENIAC progress report issued at the end of 1943 positioned the plans for
the trajectory calculation in the context of a “general setup procedure” consisting
of three phases. The first phase was mathematical, involving “the reduction of the
given set of equations or relations to such a form that they can be solved by the
ENIAC” (Moore School 1943, XIV (1)). This involved transforming the equations
so that they only used the basic operations provided by ENIAC and ensuring that the
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computation would fit within the limits of its hardware, both in terms of the number
of operations involved and the accuracy of the results that would be obtained. For the
trajectory calculation, this phase resulted in a set of difference equations allowing a
numerical solution of the equations of exterior ballistics to be calculated.

The second phase involved mapping these difference equations onto ENIAC’s
hardware. Variables were assigned to accumulators, and decisions were taken about
numerical matters such as the number of decimal places and the position of the
decimal point. Once this was done:

this phase of setup reduces to the somewhat routine task of scheduling the operations and
the corresponding connections. There are many possible arrangements for each problem,
however, so that some skill is involved in chasing a suitable and preferred one. (Moore
School 1943, XIV (2))

The results of this phase were given in a “setup form” describing the sequencing
of the operations and the numerical details, and a “panel diagram” giving details of
exactly how switches would be set and connections plugged so that ENIAC would
perform the operations in the required order. Plans for the trajectory calculation
were attached to the report. Based on the information in the panel diagram, the third
phase of the procedure was rather more routine, involving “the manual plugging
in of the various conductor cables and the manual setting of the various program
switches” (Moore School 1943, XIV (3)).

The report claimed no originality for this three-phase procedure, pointing out its
similarity to the way equations were set up on the differential analyzer. But its roots
go back much further than that: the three phases correspond quite clearly to the basic
division of labour devised by de Prony in the eighteenth century. The first phase,
putting “the given equations [. . .] in a form suitable for the machine”, corresponds
to the work of the mathematicians in de Prony’s first section, and Adele Goldstine
and Arthur Burks, developing detailed computational plans that used only basic
arithmetical operations, would have been natural members of the second section.
The most significant change is a direct consequence of automation: the arithmetical
hairdressers of de Prony’s third section have been replaced by ENIAC, and human
labour is only required to set up ENIAC to perform the calculation and supervise it
while in operation.

The similarity extends even to the checking of calculations. De Prony had called
for calculations to be carried out in two different ways, with the workers of the
second section checking that the results were consistent. Every time ENIAC printed
a set of results, a single integration step would be carried out with known data and
the results printed. These would be checked by the operators, and any discrepancies
with the expected results would indicate that a hardware fault had occurred.

Howard Aiken’s group at Harvard employed a similar division of labour when
preparing computations for Mark I. The first step was taken by “the mathematician
who chooses the numerical method best adapted to computation by the calculator”
(Harvard 1946, 50). Relevant factors considered at this stage included the accuracy
and the speed of the calculation, and also the ease with which it could be checked.

The chosen method was then expressed in terms of Mark I’s basic operations. A
variety of notations were used at this stage. Coding sheets (Harvard 1946, 49) were



16 Mark Priestley

used to define the basic sequence of operations to be punched onto instruction tapes,
and diagrams were prepared showing how to wire the plugboards that some of Mark
I’s more complex units possessed.

Mark I was not fully automatic, however, and its operators were a integral part
of computations, being required, for example, to change tapes when necessary. As
well as coded instructions for Mark I, therefore, detailed operating instructions had
to be drawn up for each calculation. In this context, the equivalent of de Prony’s
third section was the cyborg assemblage of Mark I and its operators. The Harvard
group preserved the traditional status distinctions between the sections: operators
were “enlisted Navy personnel” (Bloch 1999, 87), whereas the mathematicians were
civilians or commissioned officers.

Historians have sometimes described the origins of programming as a secondary
process that followed the development of the computing hardware. For example,
Nathan Ensmenger (2010, 34) writes that programming was “little more than an
afterthought in most of the pioneering wartime computing projects”. At least in
the case of ENIAC and EDVAC, this is not true: detailed plans, or programs, were
prepared as part of the design process in both projects and directly influenced central
aspects of the machines’ design, such as ENIAC’s master programmer.

It would be more accurate to say that the participants in these wartime projects
did not view programming as being something particularly novel or problematic.
Machines were built to carry out specific mathematical tasks and their designers as-
sumed that existing well-understood procedures for planning and organizing large-
scale calculations could be straightforwardly applied to the new situation. Moving
from human to automatic computation led to changes in the way that the accuracy of
calculations was estimated and their results checked, but the overall workflow of the
planning process was unchanged. The biggest difference was that instead of handing
a computation sheet to a human, the instructions it contained had to be translated
into machine-readable form, but once the sequence of low-level operations had been
decided on, this was thought to be a straightforward procedure. The changes brought
about by automation were localized at a late stage in the overall planning process,
as von Neumann pointed out when preparing a “tentative computing sheet” for a
Monte Carlo simulation. It was, he said,

neither an actual “computing sheet” for a (human) computer group, nor a set-up for the
ENIAC, but I think it is well suited to serve as a basis for either. (von Neumann 1947, 152)

In the first of an influential series of reports on Planning and Coding of Prob-
lems for an Electronic Computing Instrument, Goldstine and von Neumann (1947)
gave a detailed account of how existing practices of large-scale calculation could be
adapted for use with automatic computers. Although the word “programming” was
being used in its modern sense as early as 1944,9 Goldstine and von Neumann chose
not to use it. Instead, they split the overall workflow into the two major phases of
“planning” and “coding”. The division between the two phases marked the point at
which techniques specific to automatic computers became important.

9 Goldstine was an early adopter of the terminology; see, for example, the uses of “programming”
and “program routine” by Brainerd (1944a) and Goldstine (1944c) quoted in the previous section.
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Goldstine and von Neumann described planning as a “mathematical stage of
preparations”. Echoing the approach taken by the ENIAC and Mark I designers,
they explained that planning involved developing equations to model the problem at
hand, reducing these to “arithmetical and explicit procedures”, and estimating the
“precision of the approximation process”. They emphasized that all three steps in
the planning stage were “necessary because of the computational character of the
problem, rather than because of the use of a machine” (Goldstine and von Neumann
1947, 19).

The coding phase was less familiar and so discussed in much more detail. It was
divided into two stages. A “macroscopic” stage corresponded to the second phase
of the ENIAC setup procedure. It began by expressing the structure of the program
in diagrammatic form, using the new flow diagram notation that Goldstine and von
Neumann had developed, and drawing “storage tables” summarizing the data used
by the program. The subsequent “microscopic” stage corresponded more closely to
what in understood by “coding” today, and involved expressing the contents of the
various boxes in the flow diagram in machine code. Some routine manipulations of
the code were then carried out to turn it into its final machine-readable form.

By 1948, two further Planning and Coding reports, containing a number of
worked examples, had been issued. The reports were highly influential and the flow
diagram notation was widely adopted. Ensmenger (2016) has pointed out that as
programming industrialized, flow diagrams came to function as boundary objects,
notations inhabiting “multiple intersecting social and technical worlds” and flexible
enough to enable communication between groups as disparate as managers, system
analysts and programmers. Initially, however, they sat on the boundary between the
planning and coding stages of the program preparation process. As computers came
to be used for tasks that were not exclusively mathematical, or where a “mathemati-
cal stage of preparation” became less applicable, development began with a stage of
“analysis” whose results, documented as a flow diagram, became the input for the
more machine-oriented aspects of the workflow.

As experience with the new machines was gained, it quickly became apparent
that planning and coding was not quite as straightforward as expected. The exercise
of preparing instructions for a machine revealed the extent to which planners had
relied on the humans of the third section to display intuition and common sense,
even when they were supposedly acting “mechanically”. The English mathematician
Douglas Hartree, one of ENIAC’s first users, commented on a typical breakdown in
an automated calculation:

A human computor, faced with this unforeseen situation, would have exercised intelligence,
almost automatically and unconsciously, and made the small extrapolation of the operating
instructions required to deal with it. The machine without operating instructions for dealing
with negative values of z could not make this extrapolation. (Hartree 1949, 92)

The moral that Hartree drew from this experience was that programmers needed
to take a “machine’s-eye view” of the instructions being written, and this blurring
of the boundaries between human and machinic agency is nicely captured in the
image of the human “automatically” exercising intelligence. However, it was more
common to call for a more exhaustive and rigorous planning process. In what is
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often described as the first programming textbook, the Cambridge-based team of
Maurice Wilkes, David Wheeler, and Stanley Gill explained that:

A sequence of orders [. . .] must contain everything necessary to cause the machine to per-
form the required calculations and every contingency must be foreseen. A human computer
is capable of reasonable extension of his instructions when faced with a situation which has
not been fully envisaged in advance, and he will have past experience to guide him. This is
not the case with a machine. (Wilkes et al. 1951, 1)

As this indicates, Goldstine and von Neumann’s view of computer programming
as a form of planning quickly became standard. The first challenge to the perceived
limitations of this approach would not emerge until the mid-1950s, a development
outlined in the final section of this chapter.

7 From tables to subroutines

The influence of mathematical practice on the use of automatic computers is visible
not only in the organization of complete computations, but also in the details of
specific programming techniques. An interesting example of this is the relationship
between the use of tables in manual computation and the development of the idea of
the subroutine.

The use of tables was so engrained in mathematical practice that the Harvard
Mark I’s designers put it on a par with the familiar operations of addition, subtrac-
tion, multiplication and division, writing that the machine was designed to carry out
computations involving “the five fundamental operations of arithmetic”: the fifth
operation was described as “reference to tables of previously computed results”
(Harvard 1946, 10). Tables were a ubiquitous feature of manual computation. A
typical table would hold the precomputed values of a function, and when a value
was required the (human) computer would interrupt work on the main calculation,
take the appropriate volume of tables down off the shelf, look up the required value,
and copy it into the appropriate place on the worksheet. Interpolation was used to
obtain values for arguments that fell between those printed in the table.

Mark I contained dedicated hardware to support each arithmetic operation. Table
look-up was implemented by three “interpolation units”. These units read numerical
data from tapes containing equally spaced values of the function argument, each fol-
lowed by the coefficients to be used in the interpolation routine (Harvard 1946, 38,
47). When a function value was required, the argument was sent to an interpolation
unit. The unit would then search the tape for the appropriate value of the argument,
read the interpolation coefficients, and carry out a hardwired routine to calculate the
required value.

Mark I also had special-purpose units to compute logarithms and values of the
exponential and sine functions. Unlike the interpolators, these units did not read a
tape, but executed a built-in algorithm to compute the required values directly. Nev-
ertheless, the units were described as “electro-mechanical tables” (Harvard 1946,
11), a terminological choice that makes clear that Mark I’s designers were not only
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transferring the use of mathematical tables in manual computation into the world of
automatic machinery, but also using the experience of the past as a way of making
sense of the new machine.

ENIAC’s designers also considered table look-up to be one of the machine’s basic
capabilities (Moore School 1943, XIV (1)), and took a similarly explicit approach to
supporting the use of tables. Numerical information was stored on three “portable
function tables”, large arrays of switches on which a table of around 100 values
could be set up, indexed by a two-digit argument. This data was read by a “function
table” unit, the whole arrangement being optimized to make it convenient to read the
five values required for a biquadratic interpolation. Unlike Mark I, however, ENIAC
had no dedicated interpolation unit. It was left to the user to set up an interpolation
routine suitable for the problem at hand, and many examples of such routines are
presented in Adele Goldstine’s 1946 manual and other reports.

There is a tension apparent in Mark I and ENIAC between the alternatives of
looking up tabular data and computing values when needed. While mathematical
functions could be computed on demand, some applications, such as calculating a
trajectory, made use of empirical data for which no formula was available. There
was no alternative to storing such tables explicitly. The volume of tabular data to
be stored was one of the issues that the EDVAC team considered when estimating
the size of memory the machine would need, and von Neumann summarized the
situation as follows:

In many problems specific functions play an essential role. They are usually given in form of
a table. Indeed in some cases this is the way in which they are given by experience [. . .], in
other cases they may be given by analytical expressions, but it may nevertheless be simpler
and quicker to obtain their values from a fixed tabulation, than to compute them anew (on
the basis of the analytical definition) whenever a value is required. (von Neumann 1945b,
4-5)

He suggested that common functions such as log, sin and their inverses could
be treated by table look-up rather than calculation. Interestingly, Mark I’s designers
had made precisely the opposite choice, providing the dedicated electromechanical
tables to compute the values of these elementary functions on demand.

Large computations would typically have to look up many values, and so per-
form multiple interpolations. On Mark I, this would simply require repeated calls
to the interpolation units, but the situation was a bit more complicated on ENIAC
where the interpolation routine was set up by the programmer. Clearly, setting up
the instructions repeatedly would be a wasteful and ultimately infeasible approach.
To perform multiple interpolations, the designers had to find a way to return to a
different place in the main instruction sequence each time the interpolation routine
was carried out. This capability was provided by the versatile steppers, the key com-
ponents of ENIAC’s master programmer. The mid-1944 progress report explained
how this could be done, making the connection with interpolation explicit:

Thus within a given step of integration a certain interpolation process may be used several
times. This sequence need be set up only once; by means of a stepper the same sequence
can be used whenever needed. (Moore School 1944, IV-40)
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This idea of “computation on demand” was naturally soon generalized, and it
was recognized that it would be useful to be able to easily reuse any sequence of
instructions, not only those computing familiar mathematical functions. In August,
1944, von Neumann reported to Robert Oppenheimer on the progress of the Bell
Labs machine. Like Mark I, this machine would read instructions from paper tape,
but unlike the Harvard machine, it would have more than one sequence unit. As
von Neumann (1944a) noted, it would employ “auxiliary routine tapes [. . .] used for
frequently recurring sub-cycles”. There is no suggestion that these auxiliary tapes
would be limited to the purpose of interpolation or table look-up.

This turned out to be an issue even on Mark I: its electromechanical tables took
a long time to calculate a value, as they used the full numerical precision of the
machine. Programmers Richard Bloch and Grace Hopper soon found it necessary
to develop more efficient routines for specific problems. As Mark I only had one
sequence mechanism, however, they had no alternative to recording and reusing
these routines by hand, as Hopper recalled:

And if I needed a sine subroutine, angle less than π/4, I’d whistle at Dick and say, “Can I
have your sine subroutine?” and I’d copy it out of his notebook. (Hopper 1981)

It quickly became clear that it would be useful to plan in advance, and to make
routines that were likely to be generally useful available for reuse. In 1945, to test
the usability of the EDVAC code he had designed, von Neumann wrote a program
to merge two sequences of data. After completing the code, he noted the potential
generality of the procedure and commented that it could

be stored permanently outside the machine, and it may be fed into the machine as a “sub
routine”, as a part of the instructions of any more extensive problem, which contains one or
more [merge] operations. (von Neumann 1945c, 25-6)10

Subroutines were extensively discussed by the EDVAC group in the summer of
1945, and in September Eckert and Mauchly provided the following account in a
progress report:

It is by the use of “subsidiary chains” of orders, to be called into use from time to time, as
they are needed, by a “higher” set of orders, that a computational routine can be compactly
represented. What is more, this corresponds to the way in which mathematical processes
are most easily and naturally thought about. The rule for interpolation is not written down
anew each time it must be used, but is regarded as a “subsidiary routine” already known to
the computer, to be used when needed. (Eckert and Mauchly 1945, 40)

Eckert and Mauchly made here the familiar connection between subroutines and
interpolation, and hence the use of tables, but it is striking that the direction of the
metaphor is now reversed and the terminology of automatic computing is used to
characterize a familiar and long-established mathematical practice.

10 It is not clear whether the term “subroutine” originated with von Neumann or whether he took it
over from the Mark I programmers. Assuming that Hopper in 1981 was not providing a verbatim
report of her 1944 conversation with Bloch, von Neumann’s manuscript is the earliest documented
usage that I know of, and it is perhaps significant that the term does not appear in (Harvard 1946).
In fact, the more general term “routine” seems to appear only once in that volume (on page 98),
suggesting that it was not in common use in Harvard.
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The idea that subroutines would be recorded in a notebook already seemed out-
dated, and the benefits of more systematic ways of storing and sharing code were
becoming recognized. Herman Goldstine (1945) commented that “[e]vidently one
would collect in his library tapes for handling standard types of problems such as
integrations and interpolations”, and even in Harvard sequence tapes of “general
interest” were “preserved in the tape library” (Harvard 1946, 292).

The idea of a subroutine library soon caught on and the developers and users
of various machines began to plan standard libraries. As well as convenience, the
promise of greater reuse made it economic to analyze the library routines to ensure
that they were efficiently coded and would work correctly in a range of contexts. In
a January 1947 report on EDVAC programming, Samuel Lubkin (1947, 20, 28) gave
an example of a “standard subroutine” to compute square roots “in the form it would
take in a library of subroutines”, while at around the same time ENIAC operator Jean
Bartik was contracted by BRL to run a programming group charged with developing
“the technique of programming the production of trigonometric and exponential
functions” along with a number of other routines of interest to ballisticians.11 Some
years later, the library concept and techniques for writing and using subroutines
were more widely disseminated in the textbook by Wilkes et al. (1951) which made,
as its subtitle promised, “special reference to the EDSAC and the use of a library of
subroutines”.12

The metaphor of the “library” is telling. Authors working in libraries consult
reference books, but the texts they are writing do not form part of the library. At
best, they will be added to the shelves only after being completed, published and
found worthy of preservation. Similarly, a subroutine thought to be generally useful
might, after extensive checking, be placed in a library, but the main routines written
to solve specific problems were treated quite separately and were less likely to be
permanently stored. Work practices reinforced the distinction between the two types
of code. Wilkes et al. (1951, 43) described how EDSAC subroutines and master
routines were punched on separate tapes and only combined at the last minute to
form a program tape for an actual computation. The subroutines themselves were
punched on coloured tape and stored in a steel cabinet, while the master copies were
kept under lock and key. In contrast to these complex and bureaucratized procedures,
the master routine tapes could be treated very casually, as the story of Wilkes’ Airy
program reveals (Campbell-Kelly 1992). At Harvard (1946, 292), there was also a
contrast between the care that would go into the preparation of a library tape for
Mark I and one intended to be run but once.

Subroutines, then, are a technique with roots in the mathematical practice of table
use that allowed programs to be efficiently structured and written. However, while
a mathematician carrying out a complex calculation would not normally develop
a new interpolation routine, say, programmers did identify new and unanticipated

11 See (Anonymous 1947) for the complete list of problems assigned to the group. As Bartik (2013,
115-120) described, however, much of the group’s effort was diverted to developing EDVAC-style
codes in advance of ENIAC’s conversion to central control.
12 Not to be confused with EDVAC, EDSAC was an electronic computer developed in Cambridge
by a team led by Maurice Wilkes. It came into operation in 1949.
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subroutines while writing new programs. Among the first to notice this were BRL
mathematicians Haskell Curry and Willa Wyatt who in 1946 planned an interpola-
tion routine for ENIAC. They divided the program into a number of “stages” and,
noting that some stages could be reused to avoid having to recode them, went on
to make the methodological recommendation that programmers identify reusable
stages by looking for repeated code: “the more frequently recurring elements can be
grouped into a stage by themselves” (Curry and Wyatt 1946, 30).

However, other writers did not follow this lead. Subroutines were not explicitly
represented in the flow diagram notation, and in the Planning and Coding reports
Goldstine and von Neumann offered no guidance on how to identify useful new
subroutines. Some of the library subroutines described by Wilkes et al. (1951), such
as those carrying out integration, made use of “auxiliary subroutines” which defined
the function being integrated, but more general uses of user-defined subroutines
were not considered.

As a result, perhaps, ad hoc subroutines were rather uncommon in practice. Of
the 30 stages in Curry and Wyatt’s interpolation program, only four were identified
as being reusable. In the Monte Carlo programs run on ENIAC in 1948, there was
only one subroutine (to compute a pseudo-random number) in approximately 800
program instructions (Haigh et al. 2016, 183-6). Programming guidelines for the
Harvard Mark II even suggested that in general “the method which involves the
fewest routines [. . .] is the logical choice” (Harvard 1949, 266).

The emphatic distinction between master routines and subroutines had another
consequence, namely that calling hierarchies were rather flat. Typically, a master
routine would call a small number of subroutines, but it was rather rare for one
subroutine to call another. The techniques used for subroutine call and return further
meant that recursive calls, where a subroutine calls itself, were not possible.

The practices of subroutine use that emerged in the early years of automatic
computing, then, reflected the ways in which tables were used in manual calculation.
Like a set of tables, a subroutine library is a resource that is available in advance of
a computation, and subroutine use was largely restricted to calling routines from a
library. Looking up a table is an exceptional task that takes the computer away from
the normal process of working through a computation sheet and, similarly, calling a
subroutine is an exceptional occurrence. Looking up a table is a self-contained and
non-recursive operation: when looking up a value in a table, you rarely have to look
up a second table in order to complete the operation. Similarly, complex structures
of calling relationships between subroutines appear to be uncommon.

These assumptions were still in evidence ten years later in the first widely-used
programming language, Fortran. Like the computer itself, Fortran was intended for
mathematical application. The source code was described as “closely resembling
the ordinary language of mathematics” and “intended to be capable of expressing
any problem of mathematical computation” (IBM 1956, 2). Subroutines were un-
derstood by analogy with mathematical functions. A formula containing a function,
such as a− sin(b− c), could be translated directly into Fortran as A-SINF(B-C)
(IBM 1956, 12). Fourteen functions were provided as “built-in subroutines” of the
language, but these were for rather simple operations such as returning the absolute
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value of a number. Functions that would typically have been tabulated, such as the
trigonometric and exponential functions, were not built in and were left for users to
define.

However, new subroutines could not be defined in the Fortran language itself, but
had to be written in machine code, and then added to the library in rather a complex
and labour-intensive process.

Library subroutines exist on the master FORTRAN tape in relocatable binary form. Placing
a new subroutine on that tape involves (1) producing the routine in the form of relocatable
binary cards, and (2) transferring these cards on to the master tape by means of a program
furnished for that purpose. (IBM 1956, 40)

Only with the arrival of Fortran II in 1958 did the language provide more general
support for the definition and use of functions and subroutines.

The FORTRAN II subprogram facilities are completely general; subroutines can in turn
use other subroutines to whatever degree is required. These subroutines may be written
in source program language. For example, subprograms may be written in FORTRAN II
language such that matrices may be processed as units by a main program. (IBM 1958, 1)

8 Conclusions

This chapter began by considering the view expressed by Davis and Mahoney that
since EDVAC the computer has been intrinsically a universal logic machine, and
hence that its subsequent application to a host of application areas was, if not always
straightforward in practice, at least unproblematic in theory. A consequence of this
view is that the computer’s origins as a technological innovation to automate specific
mathematical processes are reduced to the level of an incidental detail.

In contrast, this chapter has shown that EDVAC, like its predecessors, was
planned, promoted, designed and built for very specific mathematical purposes.
This perspective dominated much computer development throughout the rest of the
1940s, and I have argued elsewhere (Priestley 2011, 147–153) that the identification
of machines based on the EDVAC design with Turing’s idea of a universal machine
was not widely made until the early 1950s. As Mahoney might have pointed out, the
story of the adoption of the computer by non-mathematical communities is often the
story of how the mathematical orientation of the early machines was overcome. As
Christopher Strachey, one of the first people to write substantial programs for non-
mathematical applications, commented:

the machines have been designed principally to perform mathematical operations. This
means that while it is perfectly possible to make them do logic, it is necessarily a rather
cumbersome process. (Strachey 1952)

What was invented in the 1940s was not just the automatic computer, however,
but modern computing. The machines were conceived as replacements for human
computers engaged in mathematical calculation. As Stibitz made clear, this is why
they are called computers. The computers’ job was to carry out, in ways specified
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by an explicit plan, a sequence of operations, and the central innovation of modern
computing was to automate the task of instruction following. Rather than describing
the take-up of a uniquely capable technology, Mahoney’s “histories of computing”
were to be the stories of how different communities came to reformulate their exist-
ing work practices in the form of computer programs.

The task of preparing instructions for the new machines to execute, the activity
that we now call programming, naturally became of central importance. Sections 6
and 7 showed how early thinking about programming was profoundly shaped by the
mathematical context in which the new computers were built. At the organizational
level, existing techniques for managing large-scale calculation were preserved as
far as possible. Goldstine and von Neumann’s Planning and Coding reports dealt
largely with mathematical applications and were rooted in a division of labour dating
back to the late eighteenth century. Machine-specific techniques were categorized as
coding issues, and it was assumed that the overall planning of a computation could
proceed along familiar lines. At a more detailed level, the particular ways in which
subroutines were used to make programming more efficient reflected aspects of the
use of mathematical tables in manual computation. This is not to say, of course, that
the use of subroutines was limited to mathematical functions—the EDSAC library
also included crucially important input and output subroutines. The point is, rather,
that the role of subroutines within programs and the ways in which they were used
were constrained by their association with existing practices of using mathematical
tables.

These two aspects are characteristic of a general approach to programming that
was widely accepted in the late 1940s and early 1950s. Many of the developments
of the 1950s, such as the move to automate coding that led to the development of
high-level programming languages such as Fortran, were aimed at making technical
improvements within this framework but did not break away from the overall model
or the mathematically-oriented thinking that underlay it.

The first explicit reflection on and challenge to this approach emerged, perhaps
unsurprisingly, in a non-mathematical context. In 1955, Allen Newell and Herbert
Simon began to consider the prospects of writing programs to solve what they
called “ultracomplicated problems” such as chess playing and theorem proving.
They chose the latter as a testbed, and by 1956 had developed the Logic Theorist
(LT), a program capable of finding proofs in the propositional calculus. They found
existing programming technique inadequate for developing LT, developing instead
a notion of “heuristic programming”.13

Newell and Simon’s critique of current approaches to programming focused on
precisely the two issues that I have taken as being emblematic of the mathematical
approach to programming. They first addressed the belief that computations had to
be planned in advance in exhaustive detail.

But one of the sober facts about current computers is that, for all their power, they must be
instructed in minute detail on everything they do. To many, this has seemed to be harsh real-
ity and an irremovable limitation of automatic computing. It seems worthwhile to examine

13 See (Priestley 2017) for a more detailed account of Newell and Simon’s critique and the take-up
of their work by the nascent AI community.
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the necessity of the limitation of computers to easily specified tasks. (Newell and Simon
1956, 1)

Secondly, they noted that the design of LT made extensive use of subroutines.
Recognizing that “most current computing programs [. . .] call for the systematic use
of a small number of relatively simple subroutines that are only slightly dependent
on conditions”, they argued for a view of program structure that was quite different
from the prevailing view of a program as a sequence of statements. Whereas “[a]
FORTRAN source program consists of a sequence of FORTRAN statements” (IBM
1956, 7), Newell and Simon held that:

a program [. . .] is a system of subroutines [. . .] organized in a roughly hierarchical fashion.
[. . .] The number of levels in the main part of LT is about 10, ignoring some of the recursions
which sometimes add another four or five levels. (Newell and Shaw 1957, 234-8)

This vision of the use of subroutines is quite different from the prevailing model
discussed in Section 7 of this chapter. Rather than corralling subroutines in libraries
that enforced limited and rather stereotypical patterns of use, Newell and Simon
viewed them as being fundamental programming structures on a par with loops
and conditional branching. Their programming work was highly influential in the
late 1950s in the emerging field of artificial intelligence (Feigenbaum and Feldman
1963), and it is very striking that in applying automatic computers to this new area
of application they rejected two aspects of the traditional approach that directly
reflected the specific practices of mathematical computation.

Certain aspects of Newell and Simon’s approach can be found in the personal
styles of earlier writers. In his proposal for the ACE, Turing gave some examples
of the “paper technique of using the machine”, culminating in the definition of a
routine CALPOL to calculate the value of a polynomial. The program for CALPOL,
or “instruction table” in Turing’s terminology, made use of eight subsidiary routines,
and its code bore out Turing’s general comment that:

The majority of instruction tables will consist almost entirely of the initiation of subsidiary
operations and transfers of material. (Turing 1946, 28)

Turing was exceptional among the computer developers of the early 1940s in
having no significant experience of large-scale manual computing. The intellectual
roots of his famous 1936 paper on computable numbers were in the logical theory
of recursive functions, which proceeds by building up complex definitions from
simpler ones. Turing adapted this approach for his machine table notation, and the
table defining the universal machine is built up largely by combining many simpler
tables (Priestley 2011, 77–92). It is precisely this style of thought that is reflected in
his practical programming examples such as the table for CALPOL.

Curry and Wyatt’s 1946 interpolation program for ENIAC was constructed by
combining a large number of small program fragments. Although he spent the war
as a BRL mathematician, Curry’s background and interests were, like Turing’s, in
mathematical logic rather than practical computation. In two later reports Curry
developed this approach into a general theory of program construction, one that he
explicitly opposed to the Goldstine/von Neumann model of subroutines and that
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bore more than a passing resemblance to his work in combinatory logic (De Mol
et al. 2013).

Neither Turing’s example nor Curry’s theory made an immediate impact, how-
ever. Rather than developments in logical theory, it was the stimulus to develop
programs for a new class of essentially non-mathematical problems that led, in the
mid-1950s, to the establishment of an alternative to the prevailing approach to pro-
gramming.
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