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Preface

This book is a historical and philosophical study of the programming work carried
out by John von Neumann in the period 1945-8. The project was inspired by the
earliest known surviving example of von Neumann’s coding, a routine written in
1945 to ‘mesh’ two sequences of data and intended to be part of a larger program
implementing the algorithm now known as mergesort. These programs had a certain
longevity, versions of them appearing in a 1948 report on programming technique
that von Neumann wrote with his collaborator Herman Goldstine. The publication of
that report marked the end of von Neumann’s active interest in programming theory.
He continued to design and write programs as opportunities presented themselves,
but computer programming was no longer at the forefront of his creative work.

It would be hard to overstate the importance of this passage of work. Among
other things, it encompassed the elaboration of the model misleadingly known as
the ‘von Neumann architecture’, which became the foundation of the design of
the overwhelming majority of computers built since 1945, the design of the first
machine code for those computers, the basis of the overwhelming majority of all
programming carried out since 1945, and the promulgation of a highly influential
methodology of program development, including the flow diagram notation.

For all the importance of this work, its history is less well known. Many of the
primary texts are unpublished or available only in expensive and hard to obtain
editions. As a result, von Neumann’s work is often (mis)interpreted in the light of
subsequent understandings of computers and programming. Von Neumann himself
is a controversial figure, and in recent years his role in early computing has been
eclipsed in popular representations by that of Turing. It is a good time to carry out a
clear-eyed re-examination and re-evaluation of von Neumann’s work.

At the heart of the book is an examination of the 1945 manuscript in which von
Neumann developed the meshing routine. The text of the manuscript itself, along
with a preliminary document describing the code he used to write this program, are
reproduced as appendices. The program is approached in three chapters describing
the historical background to von Neumann’s work, the significance of the sorting
application itself, and the development of the EDVAC, the machine for which the
program was written. The subsequent chapters widen the focus again, discussing

v



vi Preface

the subsequent evolution of the program and the crucial topic of subroutines, before
concluding by situating von Neumann’s work in a number of wider contexts.

The book also offers a unifying philosophical interpretation of von Neumann’s
approach to coding. Even when its historical importance is recognized, the technical
content of his work is routinely disparaged. It is said to be too rooted in the details
of computer hardware, or too complex and/or mathematical, or to lack the elegance
of other approaches to automatic computation. Nevertheless, there is a clear and
unifying vision running through it which we should at least try to understand before
moving to criticism.

This project has benefited greatly from archival work done in connection with
the ENIAC in Action project, and I would like to thank my collaborators on that
project, Tom Haigh and Crispin Rope, and to gratefully acknowledge the financial
support of the Mrs. I. D. Rope Second Charitable Foundation, which made much
of the earlier research posssible. The manuscripts transcribed in Appendices A and
B are reproduced by kind permission of the American Philosophical Society, and I
would also like to thank the staff of the APS Library for the enthusiastic assistance
that made working there such a pleasure.

Mark Priestley
London, 2018
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Chapter 1
Introduction

In the summer of 1944 the mathematician John von Neumann encountered the
ENIAC, then under construction at the University of Pennsylvania’s Moore School
of Electrical Engineering in Philadelphia. ENIAC was being built for the Ballistic
Research Laboratory (BRL) of the US Army’s Ordnance Department, based at the
Aberdeen Proving Ground on the Maryland coast some 70 miles from Philadelphia.
In 1943, faced with a backlog of routine calculations, BRL had agreed to support
John Mauchly’s proposal to build an electronic computer capable of solving the
differential equations involved in producing firing tables for the new weapons they
were developing.

Despite being a member of BRL’s Scientific Advisory Committee and engaged
in a nation-wide search for computing facilities that could be deployed on behalf of
the Manhattan Project laboratory at Los Alamos, it appears that von Neumann first
heard about ENIAC in a casual conversation with Herman Goldstine at Aberdeen
railway station. Goldstine, a University of Michigan mathematician, had been called
up into the Army and posted to Aberdeen in August, 1942. He was given the job of
running BRL’s satellite computing unit at the Moore School, a group of human
computers performing ballistic computations with the aid of a differential analyzer.
When Mauchly and Presper Eckert appeared with proposals for a giant electronic
calculator to automate these calculations, Goldstine was immediately interested, and
his support was instrumental in getting the project approved and funded by the Ord-
nance Department. He became BRL’s official representative on the ENIAC project
and played a crucial role in bringing it to a successful conclusion.

In mid-1944 ENIAC was still more than a year away from completion, but its
design was more or less fixed and the team were eager to pitch ideas for a follow-up
project before the generous war-time funding arrangements dried up. Von Neumann
immediately saw ENIAC’s potential and helped bring it about that the first problem
it ran, in the winter of 1945/6, was a series of calculations for Los Alamos. However,
his collaboration with the ENIAC team focused on the design of the new machine
written up in the famous First Draft of a Report on the EDVAC, now regarded as the
first definitive statement of the principles underlying the modern computer.
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2 1 Introduction

The First Draft concluded with a brief and rather incomplete discussion of the
instructions that would be used to control EDVAC. This might give the impression
that programming was an afterthought in the development of the new machine, but
in fact von Neumann devoted a significant amount of time and effort to the topic in
1945; in particular, he developed a number of sets of instruction and tested them by
writing programs. One example of this work has been preserved in the archive of
Goldstine’s papers in the American Philosophical Society. A 23-page manuscript,
transcribed in Appendix B of this book, contains a detailed and systematic account
of the development of a program for what von Neumann called the ‘meshing’ of two
sequences of data, a routine that he planned to use as part of an implementation of
the algorithm now known as mergesort.

This data-processing application was rather different from the mathematical
problems that were expected to form the normal workload of machines like ENIAC
and EDVAC, but proved to be surprisingly central to the evolution of von Neumann’s
thinking about programming. The sorting application thus provides a lens through
which to examine the origins of the software development methodology presented
in the reports entitled Planning and Coding Problems for an Electronic Computing
Instrument that he and Goldstine issued in 1947 and 1948.

1.1 Programs as texts and artefacts

This approach assumes that historical and philosophical insight can be gained by the
detailed examination of individual programs, in this case von Neumann’s evolving
meshing and sorting routines. The study of individual programs is uncommon in
the literature, and exactly what it might involve is a more complex question than
appears at first sight. The answer will depend on what programs are taken to be.

At first, it seemed natural to think of programs as texts. When computer time was
a scarce and expensive resource, most programming was a paper exercise seen as
a novel form of mathematical or logical activity. Programs were taken to be sets of
orders or instructions given to slave-like machines. Naturally, human programmers
and mechanical computers spoke different languages, and the notion of translation
was invoked to describe the transformation of these orders into a form the machine
could ‘understand’ (Nofre et al. 2014).

If programs are texts, the study of programs is a form of reading. The activity
of reading programs has occasionally been emphasized by computer scientists, but
the systematic study of program texts has never formed a central part of computer
science education. More commonly, programs are used as a textual resource for
the craft practice of programming where existing code is copied and then altered
for a new purpose. Reading programs for their own sake has instead been adopted
by scholars with a more humanist orientation, in the fields of software studies and
critical code studies, applying the techniques of literary analysis and close reading
to program texts (Montfort et al. 2013, for example).
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Von Neumann’s manuscript was subjected to a close reading by Donald Knuth
(1970), who adopted the perspective of a computer scientist or programmer rather
than that of a literary scholar. Knuth translated von Neumann’s code into a typical
late-1960s assembly language, a notation now almost as arcane as von Neumann’s
original symbolism. The details of Knuth’s analysis are still valuable, but this book
hopes to inspire and make possible a reading of von Neumann’s original texts.

The textual analogy is not the only way to think of computer programs, however.
Turing pointed to a general equivalence between programs and machines, and in
practical contexts this has been thought of as a distinction between static code and
dynamic processes running on computers. The historian Michael Mahoney placed
the emphasis firmly on the latter:

Ultimately it is [programs’] behaviour rather than their structure [. . .] that interests us. We
do not interact with computers by reading programs; we interact with programs running
on computers. The primary source for the history of software is the dynamic process, and,
where it is still available, it requires special tools of analysis. Programs and processes are
artefacts, and we must learn to read them as such. (Mahoney 2005, p. 129)

As Mahoney pointed out, however, this implies that a prerequisite for studying
a program is a machine to run it on, along with all the necessary system software,
operating systems, database systems and the like. For many, if not most, historical
programs, this infrastructure no longer exists, reducing the attempt to study software
to a never-ending exercise in emulation and reconstruction.

Even this attempt would be rather artificial in the case of von Neumann’s 1945
program, written for a computer that was never built, never run, then rewritten for
a different machine and—perhaps—run five years later when that machine finally
came into service. It is not clear that it ever was an artefact, or that it is useful to
study it as one. It would be straightforward to build a simulator on which to run
the program, but it was only intended to perform a small and rather simple data
manipulation and there are limits to what would be learned from this exercise.

Another issue with Mahoney’s proposal arises from the fact that, as he argued
elsewhere in his article, software is embedded in its social context. Even in the
situation where programs have survived and can be run on a historical machine, the
‘dynamic process’ only captures a small part of the significance of the software to
its original users. Mahoney’s proposal seems to edge us towards the second of the
two modes of history identified by Jon Agar (1998), ‘one centred on texts, the other
on recapturing spirit’.

Historians do not have to make a sharp choice between treating software as text
or artefact, however. At different stages in the passage from conception to use, one
aspect or the other will dominate, and the historian’s interest can legitimately be
directed to either. In an influential article, McClung Fleming (1974) enumerated the
similarities in approach to studying artefacts and texts, and this book loosely follows
the schema that he proposed, beginning with the identification of the artefact in
question.



4 1 Introduction

1.2 The background to the 1945 manuscript

By the summer of 1944, the ENIAC team had identified two major shortcomings of
the machine they had not yet completed: it could only store and manipulate a few
numbers, and the process of setting it up to run a new problem was cumbersome and
time-consuming. Since the beginning of the year, they had been exploring ideas and
technologies to address these problems but had not articulated a compelling case for
embarking on a new development project. Von Neumann brought a much clearer
sense of computational priorities: drawing on his wartime consulting experience, he
had identified the solution of non-linear partial differential equations as a critical ob-
stacle to the development of various fields of applied mathematics. These equations
could not be solved analytically, and numerical solutions were beyond the scope of
all existing and planned computational devices.

A machine with ENIAC’s speed would be needed to solve such equations, but it
would also need a large fast store to hold the mass of numeric data required. This
fitted well with the ENIAC team’s inchoate plans, and BRL were soon persuaded
that a new machine would address parts of their computational workload that even
ENIAC could not reach. By September, a contract had been agreed authorizing the
Moore School to begin work on a new machine and soon afterwards von Neumann
was appointed as a consultant to the new project. In the early months of the collabo-
ration he contributed to discussions on a wide range of issues, but it was understood
that the primary focus of his work was the logical control of the new machine.

This logical control includes methods for translating a problem into a form which can be in-
serted into the EDVAC; means for telling the EDVAC by coded signals which mathematical
operations are to be performed on these data; and means for abstracting from the machine
the solutions which are desired. (Eckert et al. 1945)

As he travelled back and forth across the country, von Neumann continued to
think about EDVAC, keeping in touch with the Philadelphia group by writing to
Goldstine. He was in Aberdeen briefly at the beginning of February 1945, but soon
headed west to Los Alamos. Nevertheless, as he reported:

I am continuing working on the control scheme for the EDVAC, and will definitely have a
complete writeup when I return. (von Neumann 1945d)

By the middle of March, he was back in Princeton and met the rest of the team
for a series of meetings set up to discuss the problems of logical control. At the end
of March, it was reported that:

Dr. von Neumann plans to submit within the next few weeks a summary of these analyses
of the logical control of the EDVAC together with examples showing how certain problems
can be set up. (Eckert et al. 1945).

The details of the problems von Neumann was going to consider were not
recorded. Sorting was a topic of interest, the meeting on March 23 noting that ‘two
switches give an appreciable gain only in systematic sorting problems’, but there
is no evidence that von Neumann took any steps to code a sort routine until April
when, as discussed in Section 2.2, sorting became a high-priority topic for the team.
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Towards the end of April, von Neumann sent the manuscript of what became the
First Draft to the EDVAC team. The First Draft only mentions sorting in a couple of
places, as one of the applications that should be taken into account when estimating
the size of EDVAC’s memory. At the beginning of May, however, he sent Goldstine
a letter with new material to be incorporated into the manuscript, commenting that
he had also ‘worked on sorting questions’ and noting rather cryptically that:

My present EDVAC sorting scheme requires ∼130 minor cycles ∼4 tanks for the logical
instructions (∼1.5% memory capacity), and uses the code specified without any changes.
(von Neumann 1945e)

These estimates suggest that the sorting scheme had been worked out in detail but
unfortunately the letter did not include any more information about it.

However, the contents of this letter were not included in the text of the report
that was reproduced and circulated in June. As a result, the prominence of the First
Draft has had the effect of concealing the programming work that was part of its
preparation. The code is presented on its last page, with the important feature of
address modification only mentioned in passing in the final remark of the report.
The details are incomplete, even though von Neumann had sent a complete version
to Goldstine in May. There is no mention of the detailed coding work that von
Neumann had done which must, in turn, have affected the development of the code
itself.

As work progressed, von Neumann carried on coding. By September, a major
change had complicated the structure of EDVAC’s memory, as explained in Section
3.3. The new plans were described in a progress report at the end of September in
which Eckert and Mauchly characterized von Neumann’s contribution as follows:

Dr. von Neumann [. . .] has contributed to many discussions on the logical controls of the
EDVAC, has proposed certain instruction codes, and has tested these proposed systems by
writing out the coded instructions for specific problems. (Eckert and Mauchly 1945, 3)

Von Neumann’s manuscript is associated with this period in EDVAC’s history. A
significant side-effect of the memory upgrade was to substantially change the way
the machine was programmed. In a second manuscript, reproduced in Appendix A
of this book, he gave a rather abstract description of EDVAC’s new architecture
and a set of instructions very similar to those used in the meshing program. Eckert
and Mauchly (1945, 75-7) reproduced a version of this ‘order code’ in their report,
describing it as ‘essentially that which von Neumann has proposed after trying out
various coding methods on typical problems’.

Von Neumann’s manuscripts are undated, but they were most likely written in
the late summer or early autumn of 1945. They then had to be typed and copied for
circulation to interested parties. In November, Goldstine sent some reports to Calvin
Mooers, who was working on a computer project led by John Atanasoff at the Naval
Ordnance Laboratories. There was close collaboration between this project and the
Moore School: von Neumann advised at the start of the project, and Mauchly made
regular consultancy visits. Although the project was abandoned in 1946, Mooers
himself developed an interest in coding and was one of the few outsiders invited to
give a talk at the Moore School lectures in the summer of 1946 (Campbell-Kelly
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and Williams 1985). It appears that Goldstine had intended to send von Neumann’s
program to Mooers:

I am sorry we have not as yet sent you the von Neumann sorting problem. My secretary has,
however, been extremely busy with some other work and will get that report to you as soon
as she possibly can. (Goldstine 1945a)

The technologies of document reproduction available in 1945 hindered the dis-
semination of research in ways that are now hard to imagine. Von Neumann’s
manuscript was typed up on at least two separate occasions: Goldstine’s archive
preserves one copy of one typescript and five copies of a second. In each of these
six documents, all the mathematical material as well as the code of the program
itself was inserted by hand. This work was not all carried out by Goldstine’s hard-
pressed secretary, Akrevoe Kondopria1; he received a note from a friend who signed
himself ‘Jimmy’ and wrote, perhaps reproachfully:

Here’s that MS with formulas filled it – the first 9 pp I left with you. I’m in opticians having
bifocals fitted, alas! (Jimmy nd)

It is difficult to identify who filled in all the formulas in the typescripts of von
Neumann’s program, but certainly more than one person was involved, including
von Neumann himself, and handwriting similar to Jimmy’s is found on one of the
typescripts. The date January 17, 1946, is pencilled in the margin of one typescript,
suggesting that work was still going on two months after Goldstine had written to
Mooers. But it all may have been for nothing: there are no letters in Goldstine’s
papers acknowledging receipt of the program, and the presence of six copies of the
document suggests it may never in fact have been dispatched.

Arthur Burks (1989) came to believe that the surviving manuscript contained the
detailed version of the sorting program that von Neumann had, in May, promised
to send to Goldstine, and that there was no other code waiting to be discovered.
However, while von Neumann had referred to a ‘sorting’ program, the manuscript
distinguishes sorting and meshing as separate tasks and only gives code for the
meshing problem. More significantly, von Neumann wrote that his program used the
First Draft code ‘unchanged’, but the manuscript uses the later, rather different code.
It seems quite possible that there were earlier versions of von Neumann’s program
that have not been found, and that he had also worked on the sorting problem.

1 Kondopria is identifiable from the ‘bureaunym’ (Barany 2018) ‘AK’ appearing at the foot of
Goldstine’s letter. She later worked with Goldstine and von Neumann on the Electronic Computer
Project at the Institute for Advanced Study.



Chapter 2
Sorting and collating

Von Neumann’s manuscript describes a routine to merge two sorted sequences into
one, intended to be used as part of a larger program to sort a sequence of data. These
applications were, and continued to be, of importance to the EDVAC team, despite
seeming very different from the normal workload of an automatic mathematical
computer. This chapter describes the migration into the new world of electronic
computation of concepts and practices that were for the most part familiar from the
domain of data processing.

2.1 Punched card machines

The fundamental principle of the IBM accounting method and similar systems was
the representation of information by means of perforations in cards. Standard IBM
cards contained 80 columns, each of which could be punched in one of 12 places
to represent the digits 0–9 or the special characters X and Y. Punching a single
hole allowed a column to hold a single digit; later schemes allowed letters to be
coded by punching multiple holes in a single column. Cards were known as unit
records and could hold various pieces of information about a business entity such as
a customer or a transaction. Subsets of the card’s columns that held discrete pieces
of information such as a social security number were known as fields.

Once punched, unit records were grouped into files, or decks of cards, such as
the file containing the daily payroll records for all of a factory’s employees. These
files were processed by a wide variety of special-purpose machines. The original
punched card machine was the tabulator, developed for the US Census of 1890.
Reflecting the needs of this application, the arithmetical capability of tabulators was
limited to making counts, but they were soon joined by more powerful machines
capable of computing and printing totals and sub-totals of the numerical information
punched on the cards. By the 1930s, these simple machines were being increasingly
replaced by more general ‘Electric Accounting Machines’.

7



8 2 Sorting and collating

For an accounting machine to perform its required function, the selection and
order of the cards presented to it was crucial. Different files, and different orderings
of the cards within them, would be required for different purposes. An important part
of the accounting method, therefore, was to perform physical operations on decks
of cards to bring about the required logical relationships between the information
stored on them. Machine support was also available for this purpose:

When the punching has been completed, the cards are usually in miscellaneous order. The
next step is to arrange them in sequence by some desired classification—that is, to group
them according to some information which is punched in them. The Electric Card-Operated
Sorting Machine is used for this purpose. (IBM 1936, 2–6)

A sorter examined one column of a card and depending on the perforation in that
column sent the card to one of thirteen output pockets, one for each punch position
and one for rejects. It therefore split an input deck into multiple decks which had to
be reassembled by the operator to create a single sorted deck.

This simple operation formed the basis of semi-automated procedures to perform
more complex tasks, such as rearranging a deck of cards so that the cards were in
ascending order of some field, such as employee number. To sort on a field of more
than one column, multiple sorts had to be performed, one for each column in the sort
field, starting with the least significant column. After each sort, the subdecks had to
be reassembled and reintroduced into the machine by hand. Thus sorting a deck
of cards on a 5-digit employee identification number, for example, would require
five passes of the deck through a sorter, with a manual collection of the cards being
performed after each pass.

While sorters split card files into multiple decks, collators performed the opposite
task of combining two files into one. The collator was developed in 1937 in response
to the data processing demands created by the Social Security Act introduced by
Roosevelt in 1935.

The ‘world’s biggest bookkeeping job’ was done in a Baltimore brick loft building, chosen
because it had 120,000 square feet of floor space and was structurally strong enough to
bear the weight of 415 punching and accounting machines. A production line was set up to
punch, sort, check, and file half a million cards a day. The collator became a widely used
device in government and business generally.

H. J. McDonald, who sold the account, recalls that IBM President Watson ordered the de-
velopment of the collator because ‘The Social Security agency punched cards from records
sent in by employers all over the country. There were millions and millions of them, and if
we hadn’t had some way of putting them together we would have been lost; we just couldn’t
have done it.’ (Eames and Eames 1973, 109)

The collator could perform a range of functions, but its most important job was:

to file two sets of cards together. This operation is referred to as merging; that is, two sets
of cards are filed or merged together according to a control field. For example, in a payroll
application, at the end of a pay period, the Daily Payroll cards must be in sequence by
Employee Number. [. . .] At the end of each day, the Daily Payroll cards are sorted and
then filed by Employee Number behind the cards of the preceding day. This will eliminate
sorting all the Payroll cards together by Employee Number at the end of the pay period.
(IBM 1945, 3)
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Fig. 2.1 Merging two card files on a collator. Adapted from (IBM 1945, 4).

This operation relied on a comparing unit which examined two numbers x and
y and triggered different operations depending on whether x < y, x = y, or x > y.
The numbers to be compared could both be read from cards; alternatively, a number
read from a card could be compared with one set up on the machine. This gave
the collator a wider range of functionality than simply merging two card decks.
The development of the collator therefore represented an introduction of conditional
control into IBM’s tribe of punched card machines.

The control panel then becomes the medium through which the comparing units are con-
trolled, and the medium through which the results of these comparisons are in turn directed
to control the movement of the cards in accordance with the requirements of the specific
application. (IBM 1945, 6)

The documentation for the collator included the depiction of merging shown in
Figure 2.1. This is the procedure that von Neumann coded in his 1945 manuscript,
but he consistently preferred to call the operation meshing rather than merging.

2.2 The unification of sorting and computing

The EDVAC team discussed sorting and collating intensively in the spring of 1945
and frequently returned to the topic thereafter. Nevertheless, as Eckert and Mauchly
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(1945, 54) observed, ‘sorting and collating are not always thought of as computing
operations’, raising the question of why these data-processing operations were so
important to a project dedicated to the design of an automatic scientific calculator.

Large punched-card operations were an integral part of scientific computation.
Harvard astronomer Leland Cunningham joined BRL during the war and worked
closely with the ENIAC team to plan the machine’s mathematical capabilities. He
was a member of the Ballistic Computations Committee that planned how ENIAC
would be used when it was delivered to BRL, and in April, 1945, he considered
the punched card support that would be needed (Cunningham 1945). Punched cards
were ENIAC’s input and output medium, and Cunningham realized that there would
be a lot of them—he estimated that 750,000 cards would be required in the first three
months of operation—and that they would require a lot of processing between runs.
He drew up four diagrams, which he labelled ‘flow-charts’, showing how ENIAC’s
input data would be prepared and its results processed by a menagerie of punched
card machines including punches, verifiers, reproducers, sorters, collators, summary
punches, printers and tabulators.

Experience showed that Cunningham’s foresight was well grounded. Records of
ENIAC’s early work, such as the Los Alamos computation and Douglas Hartree’s
program, give exhaustive details of the different card decks that had to be prepared
for problems which, mathematically, involved only the numerical solution of some
differential equations (Haigh et al. 2016). In Cunningham’s flowcharts and in these
early applications, ENIAC appears not so much as a revolutionary electronic com-
puter as a novel piece of equipment in a traditional punched card installation. Just as
IBM’s sorters automated a single process but required manual support to turn them
into effective tools, so ENIAC’s automation of the processes of computation relied
on support from the machines of the previous technological generation.

As Cunningham’s flowcharts vividly show, ENIAC was part of a computational
ecology in which computing and sorting were carried out by different devices and
the team seems to have assumed that the same would hold true for EDVAC. Mauchly
was particularly interested in the question of sorting and collating, and in late 1944
he interviewed several heavy users of punched card machinery, including William
Madow of the US Census Bureau (Norberg 2005, 79-80).

The Census Bureau had been involved with punched card equipment ever since
enlisting Herman Hollerith’s assistance to process the results of the 1890 census
(Truesdell 1965). Madow outlined some of the data-processing bottlenecks that the
Bureau faced, and suggested a number of special-purpose devices to carry out tasks
such as ‘forming the sum of the products of pairs of numbers’. Mauchly’s notes of
the meeting concluded with a rather mundane proposal for a ‘device which would
simultaneously provide the sums of squares of a variable, x, and the sums of squares
of a variable, y, and the sums of products, xy, as well as forming the sum of the x
values and the sum of the y values’ (Mauchly 1944a).

Another of Mauchly’s interviewees was Solomon Kullback, head of the US Army
Signal Corps’ Cryptanalytical and Cryptographic Department. Kullback had been
one of the first US liaison officers at Bletchley Park and the report he wrote at the
end of his posting described the IBM installation at Bletchley in very complimentary
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terms, recommending that ‘our IBM room follow insofar as is consistent with our
needs and organization a procedure similar to the British IBM setup’ (Kullback
1942).

In wartime, the Signal Corps were using around a million punched cards per day,
more than even the Censusc Bureau, and Kullback emphasized the need for faster
and more flexible machines. Mauchly noted that ‘high-speed computing devices can
obviously be adapted to use as high-speed ciphering devices’, while Kullback hinted
at the open-ended nature of cryptographic work, observing that ‘the interest of the
Signal Corps would best be served by the development of extremely flexible devices
which need not be specialized to the point where they would be considered simply
as ciphering machines’ (Mauchly 1944b).

At a second meeting the following April, Kullback described several ‘sorting
and hunting’ problems; Mauchly classified these as ‘function table’ problems that
would be carried out ‘in the same way that one would hunt reciprocals or other func-
tions using IBM equipment’ (Mauchly 1945c). Another problem involved searching
through a large volume of coded messages to locate small statistical irregularities in
the occurrence of particular textual patterns, and Mauchly observed that ‘it would
be advantageous to store the data in a high-speed memory device before beginning
the frequency counts’.

In October, then, Mauchly appears to have been thinking of developing high-
speed devices to replicate, accelerate, or slightly extend the performance of existing
special-purpose machines. By April, plans for EDVAC had matured significantly,
and this is reflected in the later discussions. He contemplated the use of high-speed
memory in cryptanalysis, and after discussion of another problem Kullback ‘saw no
reason why the same method could not be employed when using a device like the
EDVAC’ (Mauchly 1945c). At the same time, he was discussing the advantages of
more conventional high-speed computation in meteorology with a group of civilian
and military weather forecasters (Mauchly 1945a).

In mid-April, Mauchly noted that at the time of the earlier meetings it had been
‘taken for granted that that sorting and computing problems were best handled by
quite separate and distinct machines’ and that it had taken a particularly demanding
application to force a reappraisal of this view:

the need for reconsideration of this point was evident when Dr. Wilks supplied an example
of a problem in which an enormous amount of sorting was required, and it became evident
that the solution of this problem by an automatic machine process was not possible in a
‘reasonable’ time unless both computing and sorting were done at speed characteristic of
electronic devices.

It is therefore prudent to enquire more closely into sorting problems, and to consider care-
fully the extent to which it is expedient to adapt the EDVAC to handle sorting and collating
problems (a) within its high-speed system, and (b) by simple adaptation of the input and
output devices. (Mauchly 1945b)

Samuel Wilks was a Princeton statistician well-known to the EDVAC group:
along with Goldstine and Cunningham, he attended the proto-cybernetics meeting
organized in January by von Neumann, Norbert Wiener, and Howard Aiken, and in
the division of labour that von Neumann proposed after the meeting he was assigned
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to a group investigating the ‘application of fast, mechanized computing methods to
statistical problems’ (von Neumann 1945f). Mauchly did not record any details of
Wilks’ problem, but the middle of April marks a sea-change in team’s attitude to
sorting. On April 13, von Neumann was in Washington where he was due to deliver
a lecture on the theory of games to Kullback’s Statistical Seminar, when he received
a plea from Goldstine:

We should be very pleased to have you come either on Tuesday or Wednesday, which ever
is more convenient for you. At the present we are thinking about the sorting and printing
problems associated with the Edvac and are anxious to get your opinion and advice on many
points. (Goldstine 1945c)

According to contemporary notes taken by Arthur Burks, the EDVAC group had
two meetings with von Neumann in April, and the second meeting

opened with a discussion of sorters. Mr. Eckert pointed out the advantages of the magnetic
tape, namely that it can stand handling, that it can be erased, and that being in a continuous
loop, its contents cannot get out of order. [. . .] There [was] some discussion of whether or
not several magnetic tape sorters should be made, some of which could be detached from the
machine and used separately for simple sorting problems. This question was left unsettled
since the answer depends upon the speed of the tape and the extent to which the EDVAC
relies on magnetic storage. (Burks 1945)

The topic of sorting evidently seized von Neumann’s attention. At the beginning
of May, as we have seen, he reported to Goldstine that he had been working on
sorting questions and had coded a sorting scheme. He concluded that

the EDVAC, with the logical controls as planned for ‘mathematical problems’, and without
any modifications for ‘sorting’ problems, is definitely faster than the IBM’s on sorting. (von
Neumann 1945e)

An explicit link between sorting and statistical problems was made in a number
of texts. The First Draft, for example, completed by the end of April, referred to
‘sorting problems and certain statistical experiments’ as placing significant demands
on EDVAC’s memory, and in 1948 Goldstine and von Neumann summarized the
connection as follows:

The sorting operations can be combined, and alternated, with properly mathematical oper-
ations. [. . .] This circumstance is likely to be of great importance in statistical problems.
It represents a fundamental departure from the characteristics of existing sorting devices,
which are very limited in their properly mathematical capabilities. (Goldstine and von Neu-
mann 1947-8, vol. 2)

It has been suggested that von Neumann’s comparisons of EDVAC with punched
card machines reflect a recognition of the potential role of electronic computers in
data processing. For example, Charles and Ray Eames annotated a reproduction of
the first page of von Neumann’s meshing routine manuscript with the following
comment:

Von Neumann had no doubts that the new machine would be effective for scientific
computing, so he chose to test its versatility by coding an operation central to business
applications—sorting. (Eames and Eames 1973, 138)
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There seems to be no evidence that business applications were ever considered
as possible uses of EDVAC, however. Mauchly was contemplating new machines
that could sort faster than the IBMs, but it was Wilks’ statistical problem that forced
the issue and led to EDVAC being reconceptualized as a combined computing and
sorting machine. Once that connection had been made, it would no doubt have been
natural for Mauchly to begin to think of EDVAC-type machines as a technology
that could be sold to organizations like the Census Bureau to address their data-
processing needs, a marketing trajectory that was indeed followed by the startup
company he formed with Eckert in 1946 (Norberg 2005, 81).

Sorting and collating were not just test procedures borrowed from the world of
data processing, then, but were intrinsic to many of the applications that EDVAC was
intended to handle. As the new project got under way, Mauchly was simultaneously
surveying intensive users of punched-card machinery in a variety of application
areas, apparently with the intention of developing high-speed sorting devices that
could be used either independently or alongside EDVAC.

The idea that EDVAC itself could be used to carry out sorting and collating seems
to have emerged rather gradually. The reference to ‘systematic sorting problems’
in the notes of the team’s March meetings (Burks 1945) indicates that the topic
had received some attention, but the flurry of activity following Mauchly’s April
memo suggests that it was only at this point that the idea that EDVAC could be
a device which unified the apparently distinct activities of sorting and computing
really seized the imagination of the group. Importantly, this realization was the result
of an extended period of investigation of and reflection on potential uses for the new
machine.

The details of how this unification was achieved are of more than local interest, as
they mark the first step in the evolution of the computer, originally conceived simply
as a scientific instrument, into a general-purpose information processing machine.

2.3 Internal and external sorting

Mauchly’s memo distinguished two ways in which an EDVAC-like machine could
perform sorting. The first was ‘within its high-speed system’, with all the data to be
sorted held in the machine’s high-speed memory and the sort being performed under
the control of coded instructions, while the second involved ‘simple adaptation of
the input and output devices’ which played an integral role in the sorting procedure.
He later distinguished these as ‘the “internal” and “external” memory sorting tech-
niques’ (Mauchly 1946a), terms that are still in use today. Von Neumann’s meshing
and sorting routines are all purely internal processes.

Although von Neumann evidently found the challenge of coding these routines
rewarding and insightful, internal sorting had an obvious limitation, namely the
amount of information that could be held in memory. In the First Draft he hinted
at this issue, estimating that EDVAC’s internal memory would be able to hold the
equivalent of ‘700 fully used cards’ and concluding that
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the device has a non negligible, but certainly not impressive sorting capacity. It is probably
only worth using on sorting problems of more than usual mathematical complexity. (von
Neumann 1945a, 63)

It wasn’t immediately obvious what adaptations should be made to the input
and output devices to provide an alternative to purely internal sorting. At the April
meeting, the focus was first on the external storage medium to be used and Eckert
offered powerful reasons for favouring magnetic tape over punched cards. At the
end of the meeting there was

some discussion of whether or not several magnetic tape sorters should be made, some of
which could be detached from the machine and used separately for simple sorting problems.
(Burks 1945)

This suggests that the group was thinking in terms of special-purpose devices to
perform external sorting rather than having EDVAC’s central control simply make
use of the tape units. Internal sort routines could be considered in isolation from
the details of input and output, but the problem of sorting large data sets was more
complex and, as von Neumann noted in the First Draft, presupposed a more detailed
consideration of EDVAC’s external storage medium and associated input and output
devices than had yet been carried out.

Eckert and Mauchly came back to external sorting in their September report.
They noted that to take advantage of high processing speeds, sorting and collating
should be carried out within the machine whenever possible. However:

This ‘solution’ is in fact quite inadequate for for large sorting jobs, since the memory capac-
ity of the electronic machine is necessarily limited, while the number of cards (representing
the memory) which may be processed by a card sorter is essentially unlimited. The mag-
netic wire or tape is is the corresponding unlimited memory for the electronic machine, and
sorting and collating processes must be devised which will utilize this memory without be-
ing restricted in any way by the limitations of the internal high-speed memory. (Eckert and
Mauchly 1945, 55)

They then considered how the familiar procedures used by punched card sorters
and collators could be translated onto EDVAC. They started off by commenting on
an effect of the change of media:

The essence of sorting and collating is to take information which is arranged in one order
(which may be random) and rearrange it in some other order. When the information is
punched into cards, the information is ‘moved’ from one place to another by moving the
card that carries that information. When paper tapes are used, this method is no longer
feasible, and the information itself must be moved by perforating the same information into
a new tape (Eckert and Mauchly 1945, 55)

Every time the information is reordered, of course, previously punched paper
tapes became useless and to avoid the issue of waste Eckert and Mauchly proposed
the use of erasable and rewritable magnetic media, such as tape or wire.

They then discussed how a device which could sort data into only two categories,
as opposed to the 13-way split that punched-card sorters provided, would still be
able to sort data using a digit-by-digit algorithm. They concluded that four tape
mechanisms would be required to do this efficiently, and went on to show how the
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basic binary collating procedure could also be carried out on such a set-up. As far
as performance went,

any sort of collating, systematic or monotonic, can be carried on at the speed with which
the magnetic wire device can transfer information [. . .] It should be emphasized again that,
when the data to be sorted or collated exist entirely within [the] high-speed memory, then
much higher rates are available. (Eckert and Mauchly 1945, 62-3)

The difference between this analysis and von Neumann’s routines is striking.
While acknowledging the need for an analysis of the interaction between internal
and external memory, in practice von Neumann deferred this as long as possible. As
late as 1948, he and Goldstine wrote that they would postpone consideration of a
more practical sorting scheme until the details of the input and output devices and
the instructions to control them were fixed.

Conversely, Eckert and Mauchly offered little explanation of the code that would
control a sorting procedure using external tape drives, and in passages such as the
following still seemed to be considering special-purpose devices:

The collator must compare the key words from the two inputs and determine which of the
two units of input data is to be recorded next on the output wire. A comparing circuit is
able, within one or two minor cycles, to determine which of two numbers is the larger. This
time is negligible relative to the time required for reading or recording one word on a wire.
(Eckert and Mauchly 1945, 62)

In November, 1945, von Neumann gave an outline of sorting and collating to
members of the newly formed Electronic Computer Project (ECP) at the Institute
for Advanced Study. His account of the relationship between internal and external
sorting suggested that both would be controlled by the central computer, the only
difference being the source of the data to be sorted.

The binary meshing of two monotone sequences into a single monotone sequence can be
done by the comparison operation in the computer. If the lengths of sequences and the
amount of related information exceed the memory capacity of the computer then the tapes
have to be used for storage, so that the limiting speed of the meshing operation is the speed
at which information can be recorded or read on the tapes. [. . .] The memory is equivalent
only to about two stacks of 500 cards each, hence larger operations will certainly require
streaming into the tape and back. (IAS 1945, #3, 9)

2.4 Algorithms for internal sorting

Both Arthur Burks (1998) and Donald Knuth (1973) have credited von Neumann
with inventing the internal sorting algorithm now known as ‘mergesort’. In a draft
for an unpublished book, Burks located the moment of invention at an April 1945
meeting of the EDVACteam.

The input would consist of a series of records, each in turn consisting of a key number and a
series of associated data numbers. The task was to produce an alphabetized series of records.
Johnny sketched the following procedure: begin by treating each record as a unit sequence
of records and compare the keys of the records pairwise to form ordered sequences of two
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records, then form sequences of four records in a similar manner, form sequences of eight
records, . . . , until there is a single ordered sequence of all the records. (Burks 1998)

However, this eureka moment does not appear in the notes that Burks took of the
meeting at the time, and von Neumann’s manuscript gives no details of the sorting
algorithm that would use the meshing routine he had coded. Von Neumann told
Goldstine that he had written a sorting routine, but Burks himself came to believe
that the meshing routine was in fact the only code that von Neumann had written.

In September, Eckert and Mauchly (1945, 54) commented that it was ‘relatively
simple to provide the controls and instruction code’ to perform an internal sort, but
gave no details. However, von Neumann mentioned the mergesort procedure briefly
at the ECP meeting in November:

General sorting can be accomplished by iteration of the meshing process in n log2 n steps,
by meshing n

2 pairs then n
4 pairs with 2 elements each, etc. (IAS 1945, #3, 9)

Mauchly gave a lengthier description of the procedure in April 1946, in a
manuscript that served as the basis for a lecture he gave at the Moore School in July.
He began with a systematic classification of sorting procedures, largely dropped
from the lecture, and identified three ‘methods for random sorting’, by which he
meant those which made no assumptions about the initial ordering of the data to be
sorted. Two of these were based on the digit-by-digit technique used on punched
card sorters, but the third was based on ‘collation’, defined as follows:

By the process of collation, items from two different sequences are interspersed in accor-
dance with some rule. Thus, two monotonic sequences can be blended into one monotonic
sequence. (Mauchly 1946a)

He spelled out the details of the ‘collation method of sorting’ only when he turned
to a description of the relative efficiency of the different techniques.

It is clear that if T/2 items were already arranged in proper order on one tape or in regis-
ters, and the T/2 remaining items were ordered on a second tape (or in registers), then by
[repeatedly comparing two data items and moving one to a new position] a single sequence
could be prepared by collating these two given sequences, so that the desired final order was
attained. But T/2 items could have been prepared from two sequences of T/4 items each,
and so forth.

By this method, then, it is possible to start with a number of very small sequences and
collate these until all the data has been combined into one large sequence. The total number
of operations required [. . .] can be estimated as of the order of T log2 T . (Mauchly 1946a)

Mauchly presented sorting as an adaptation and extension of familiar punched-
card techniques to the new environment of high-speed automatic computing. Von
Neumann’s meshing routine implemented the procedure illustrated in Figure 2.1,
and the added ingredient necessary to arrive at the mergesort algorithm was the
insight that repeated application of this process on longer and longer sequences
could provide a way of sorting a sequence of data. Mauchly did not discuss the
details of how this informally stated procedure would be coded, however.

In the lecture delivered in July, however, Mauchly (1946b) framed his descrip-
tion of mergesort rather differently. He explicitly discussed what ‘efficiency’ might
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mean when applied to algorithms, and described an insertion sort procedure. He
then introduced mergesort as a more efficient alternative to an insertion sort, rather
downplaying its organic connection with the earlier world of mechanical collators.

It is striking that von Neumann and Mauchly explain meshing in as much detail
as its application to sorting, and highlight the use of the ‘comparison operator’ to
discriminate between two data items. The automation of conditional control was a
new and untested technology in 1945, and although the meshing procedure might
appear trivial to us, we should not underestimate its novelty. As Knuth (1973, 384)
suggested, implementing these non-numerical procedures did provide reassurance
that, as von Neumann (1945e) put it, ‘the present principles for the logical controls
are sound’.

It is possible that further archival material will surface to put more flesh on the
bare bones of this story, but while it is certainly plausible that von Neumann coded
the mergesort procedure in the spring of 1945 using the code described in the First
Draft, the only EDVAC code that survives from 1945 appears to be that contained
in the meshing routine manuscript. In 1946, Goldstine and von Neumann produced
versions of the meshing and sorting routines using the IAS machine code, and the
latter seems to be the earliest surviving implementation of mergesort. Both routines
were further modified and published in 1948, in the last of the Planning and Coding
reports.

The following two chapters describe the EDVAC code and von Neumann’s 1945
meshing routine in detail, and the later versions of the meshing and sorting routines
are discussed in Chapter 5.





Chapter 3
EDVAC and its codes

The First Draftis celebrated as the first text to clearly articulate the key principles of
the architecture of the modern computer. However, its foundational role in modern
programming is equally significant. Von Neumann’s proposals, described by Haigh
et al. (2014) as constituting a modern code paradigm, were fundamental to the style
of programming adopted as the new machines became operational.

An integral part of von Neumann’s work was to test his ideas by writing code
to solve actual problems. The manuscript describing the meshing routine contains
the only example of this coding known to survive and provides a unique insight into
the way von Neumann used the EDVAC code and the style of programming that he
envisaged. The manuscript uses a different code from the one presented in the First
Draft, however, a development linked to changes in EDVAC’s hardware design. This
chapter describes the evolution of EDVAC and its code during 1945 and summarizes
the code used to write the meshing routine.

3.1 The Bell Labs relay computer

On 26 January, 1944, BRL hosted a meeting with representatives of Bell Tele-
phone Laboratories, hoping to obtain assistance with a number of computing-related
projects. Bell were developing computing machines employing standard telephone
relays as the basic switching element. These included the Relay Interpolator, which
became operational in late 1943, and a ‘ballistic computer system’ planned for the
US Navy’s ordnance department.

Bell’s George Stibitz (1944) noted after the meeting that BRL were interested in
‘the possibility of using relay computer equipment in connection with the general
ballistic problem’. As an example of a particularly time-consuming problem, Leland
Cunningham had described the preparation of plane-to-plane firing tables requiring
the calculation of between 3,000 and 20,000 trajectories, a task that consumed up to
three months of computation time rather than the two-week timescale that would be
needed to keep up with the rapid development of weapons technology.

19
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BRL thus seemed to be envisaging a machine with the same range of application
as ENIAC. Whether this reflected the anticipated volume of work or a deeper anxiety
about the timely completion of the ENIAC project is not recorded, but Goldstine was
careful to assign the proposed relay machine a subaltern role in relation to ENIAC:

Since the needs of the Ballistic Research Laboratory are so great for reliable and efficient
computing equipment, it was felt desirable to canvass with Drs. Stibitz and Kane the possi-
bility of building relay-type devices for performing numerical calculations which might not
be feasible to carry out on the new electronic machine because of a conflict of priorities in
the Laboratory or because the computations were not quite suited to the characteristics of
this machine. (Goldstine 1944)

Stibitz imagined a machine that was a larger version of the ballistic computer
being built for the Navy, estimating that it would contain about twenty times as much
equipment, and he reported that Bell were prepared to begin an investigation into
the design of a machine that would be suitable for the needs of both services. This
machine became known as the ‘Bell relay computer’ or ‘Model V’, and in the end
two copies were built, one for the National Advisory Committee on Aeronautics and
the other for BRL. Despite Stibitz’s optimism that a machine could be completed by
the end of 1944, however, the BRL machine was not delivered until August 1947,
just as ENIAC was being installed in its permanent home in Aberdeen.

The January meeting discussed some high-level design principles for the new
machine, Stibitz noting that ‘what is required is a system consisting of fundamental
units which will store numbers, multiply, divide, read data, hunt functions and print
the results in usable form’. Bell set to work with some eagerness. Engineer Samuel
Williams produced an outline description of a ‘calculating system’ by February 11
and a more comprehensive report by the end of March. Noting Stibitz’s comment
that a machine developed to solve the immediate requirements of the Army and
Navy would easily be applicable to a more general range of problems, Williams
summarized the new design as follows:

Regardless of the kind of problem to be solved, it appears that equipment capable of re-
ceiving a number from a tape and transferring that number to a register where it may be
held for future use; of transferring numbers from registers to a calculator where the desired
calculation is effected; of holding the result of a calculation within the calculator when the
result is to be used for the next calculation or transferring the result to a register or both;
and of transferring a number from calculators or registers or both to a printer register for
printing; all of these functions being orderly controlled by a tape, will provide the flexibility
required for a universal system. (Williams 1944, 1)

The Bell proposal described a flexible arrangement in which problem-specific
configurations of the fundamental units would be selected and operated by control
circuits known as ‘computers’, and the report included a diagram showing a system
containing three computers, each comprising a number of registers, a calculator,
and a number of special purpose control units. This design differed from Mark I
and ENIAC in completely separating the storage of numbers from their use in cal-
culation, with the consequence that the transfer of numbers between registers and
calculator became a characteristic feature of the machine’s operation.
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At the beginning of August, von Neumann wrote to Los Alamos director Robert
Oppenheimer, reporting on the availability of ‘calculating machines’. He had met
Stibitz and Williams, and his letter included a comprehensive summary of the Bell
proposals. In particular, he noted that:

The operations± are not done as in I.B.M’s, as part of transfers, but in a separate computing
device, the “adder”, just like multiplication, division, or square rooting.

An instruction on the control-tape therefore looks like this: “Take the contents of register
a, also the contents of register b, add (or subtract, or multiply, etc.), and put the result into
register c.” At the same time it must be specified, whether the content of a (or b) must be
held or cleared after this step. (von Neumann 1944)

In fact, rather than a single control tape, the machine had multiple tapes. Williams
proposed to divide the programming information for a problem between a ‘routine
tape’ and a ‘problem tape’ which would contain problem-specific information such
as numerical parameters. In contrast, routine tapes would control the operations to
be carried out, but make no reference to specific numerical information. Williams
characterized this by saying that a ‘routine tape contains the algebraic formulas re-
quired for solving the problem’ and was ‘not specific to any given problem but may
be used for problems of the same nature. These tapes may be filed and properly cat-
alogued so that the operator may obtain the tapes required for the particular problem
from such a file’ (Williams 1944, 2-4).

3.2 The first EDVAC

At the most general level, the First Draft described EDVAC as a collection of five
functionally distinct units that von Neumann termed ‘organs’. The central part of
the machine consisted of the memory M, a dedicated unit A to carry out all the
arithmetic operations, and a central control unit C. Input and output organs I and
O connected the central units of the machine with an external recording medium
R.1 These units and the communicative relationships between them clearly echo
the structure that Williams had outlined for the Bell machine.

The two proposals differed significantly in their approach to storage, however.
The Bell machine used distinct media for different kinds of information: special-
purpose registers built out of relays held the numbers being calculated, but tabulated
numerical information was stored on paper tape, and for commonly used functions
‘permanent tables [. . .] built into relays or crossbar switches’ (Williams 1944, 2)
were proposed as an alternative. The machine’s instructions were also stored on
paper tape.

The First Draft subsumed these different media in a more abstract and uniform
model of memory. Von Neumann’s classification of the material that EDVAC would
have to remember largely reproduced that of the Bell machine: numerical results
would have to be stored, as would the instructions governing particular problems,

1 In the First Draft, C and A were denoted by the abbreviations CC and CA.
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and he also noted that in many cases it would be necessary or convenient to store
tabulated function values. But function was no longer to determine structure:

While it appeared, that various parts of this memory have to perform functions which dif-
fer somewhat in their nature and considerably in their purpose, it is nevertheless tempting
to treat the entire memory as one organ, and to have its parts even as interchangeable as
possible for the various functions enumerated above. (von Neumann 1945a, 6)

The unification of memory had a knock-on effect on control. The Bell machine
had multiple control units: each tape reader had a control circuit, and in addition
there was to be a ‘progress control’ circuit to exercise control over the problem
and routine tape control circuits. In EDVAC, where the multiple sources of control
information had been replaced by a single memory, these circuits were replaced by
a single control organ C responsible for sequencing the machine’s operations.

In the First Draft, the basic unit of memory was characterized as ‘the ability
to retain the value of one binary digit’ (von Neumann 1945a, 57). This capability
was to be provided by long tubes full of mercury known as delay lines. Units, or
bits as they were later dubbed, were represented by acoustic pulses travelling down
the length of a line. Electronic circuitry at the end of the tube detected the pulses
and, under the control of C, transmitted them to the arithmetic unit if necessary,
recirculating either the original pulses or new data back into the other end of the
tube for continued storage.

Von Neumann estimated that 32 units would enable numbers to be stored to a
sufficient degree of precision, and a group of 32 units was called a minor cycle. As
well as its physical meaning, this term was used to denote the length of time taken
for 32 pulses to emerge from the end of a delay line. A reasonable capacity for a
delay line seemed to be 32 minor cycles, and this grouping—a total of 1,024 binary
digits—was termed a major cycle. The curious and rather Ptolomaic terminology
of cycles was presumably chosen to evoke the repeated circulation of the pulses
through the delay lines.

The organization of EDVAC’s memory and its relationship to the control organ
C is depicted in Figure 3.1. For identification purposes, numbers were assigned to
the major and minor cycles. If major cycles are indexed by x and the minor cycles
within a major cycle by y, each minor cycle in M can be identified by a pair of
numbers yx.2

Finding a suitable term to describe the coordinates of a minor cycle was rather
problematic, perhaps because the position denoted by the y coordinate varies as
a minor cycle moves through the delay line x, making familiar spatial metaphors
rather misleading. In February, von Neumann (1945d) described x and y as ‘house
numbers’, but immediately crossed the phrase out and replaced it with the more
neutral ‘filing numbers’. Neither term appeared in the First Draft, however, and nor
did the now-familiar terminology of memory addresses.

2 In the First Draft, major and minor cycles were represented by µ and ρ , and µρ was often
confusingly typed as ‘up’. Following (von Neumann 1945e), I use x, y, and the compound form
yx throughout. The typewritten ‘w’ used to represent an unspecified operation symbol has been
replaced by the ω used by von Neumann in handwritten manuscripts.
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Fig. 3.1 The control and memory of the first EDVAC. M contains 256 delay lines, or major cycles,
each divided into 32 minor cycles. The physical location of a minor cycle would change as the
pulses travelled through the delay line. The diagram shows the situation after 31 (or 63, 95, · · · )
minor cycles have elapsed. C is ‘connected to’ the minor cycle 7,1, but will have to wait 8 minor
cycles for the code word to appear at the end of delay line 1.

The arithmetic organ A contained a small amount of special-purpose memory,
namely three 32-bit delay lines CAI , CAJ and CAO holding the two operands and
result of an arithmetic operation, respectively. The control organ C could stored
the coordinates yx of a minor cycle and, in the words of the First Draft, ‘connect
itself’ to this minor cycle. It could only physically be connected to the major cycle
x, however, and in general would have to wait for the minor cycle yx to become
available.

After defining the structure of EDVAC’s memory, von Neumann turned to the
provision of a ‘complete classification of [its] contents’. This would, he wrote, ‘put
us into the position to formulate the code which effects the logical control of C and
hence of the entire device’ (von Neumann 1945a, 91).

This use of the word ‘code’ most likely derives ultimately from telegraphy, where
the letters making up the messages to be transmitted were encoded as patterns of
perforations punched in paper tape. Various standards were in use, such as the well-
known Baudot code. Williams’ proposal for the Bell machine described the tape
control units as ‘translating the tape code into the computer code’, and included
a chart showing a ‘5 unit teletypewriter code’ (Williams 1944, appendix I), and
similar terminology was used on the Harvard/IBM automatic calculator project. This
machine, known as Mark I, read instructions from paper tape and the process of
translating a human-readable version of these instructions into the machine-readable
tape form was referred to as ‘coding’. Von Neumann worked with Mark I in 1944
and was no doubt familiar with this usage.



24 3 EDVAC and its codes

Type First Draft Revised Code Description

0 Nξ † Nξ Storage for the number ξ .
Interpreted by C as the order to send ξ to CAI .
† Not executed following a ω → f order.

Arithmetic orders

1 ωh ωh Perform the operation ω and hold the result in CAO.
2 ω →A

ωh→A
ω →A
[ωh→A]

Perform the operation ω and send the result to CAI .

Combined arithmetic/substitution orders

3 ω → f
ωh→ f

ω → f
[ωh→ f]

Perform the operation ω and transmit the result to the
minor cycle following the current position of C.

3′ ω → f ′

[ωh→ f ′]
Same as type 3, but C skips the minor cycle following
its current position.

4 ω → yx
ωh→ yx

ω → yx
[ωh→ yx]

Perform the operation ω and transmit the result to the
minor cycle yx.

Extraction order

5 A← yx A← yx ‡ Transmit the number ( ‡ or the yx fields of an order) in
minor cycle yx to CAI .

Transfer of control order (unconditional jump)

6 C← yx C← yx Connect C to minor cycle yx.

Table 3.1 A summary of the code described in the First Draft and the revisions to it proposed
by von Neumann (1945e). In orders of types 1–4, ω is +, −, ×, ÷, i, j, s, db, or bd, and CAO is
cleared after transfer unless ωh (‘hold’) is specified. (Von Neumann did not explicitly state that
the ωh variants of types 2–4 were included in the revised code.) Sending a number to CAI has the
side-effect of replacing the contents of CAJ with the original contents of CAI .

Table 3.1 summarizes von Neumann’s first EDVAC code. In the First Draft he
represented each minor cycle by a ‘short symbol, to be used in verbal or written
discussions of the code [. . .] and when setting up problems for the device’ (von
Neumann 1945a, 99), and used the word ‘code’ somewhat ambiguously to refer to
the different types of minor cycle inM as well as to their detailed encoding:

It is therefore our immediate task to provide a list of the orders which control the device,
i.e. to describe the code to be used in the device, and to define the mathematical and logical
meaning and the operational significance of its code words. (von Neumann 1945a, 85)

It is worth emphasizing that von Neumann treats numbers and orders alike as
symbols that need to be encoded before they can be stored, and his codes encompass
both types of data. They were distinguished by setting the least significant bit in a
code word to 0 if the word contained a number and 1 if it contained an order. This
does not imply a semantic difference between the two types of word, however: if C
found a minor cycle containing a coded number when it was expecting an order, it
would interpret the minor cycle as an instruction to move that number to A.
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The orders in the code offer an interpretation of EDVAC’s purpose as a scientific
calculator. To give a simple example, if the numbers a and b were stored in the minor
cycles (12,3) and (13,3), the following orders would compute a+ b and store the
result in the minor cycle (0,5), while also holding it in CAO for further use.

n) A← (13,3) CAI) Nb
n+1) A← (12,3) CAI) Na

CAJ) Nb value transferred from CAI

n+2) +h→ (0,5) CAO) Na+b
(0,5)) Na+b

This example illustrates the way von Neumann laid out the code of the meshing
routine. Orders are written on the left of the vertical line, the first column identifying
the minor cycle in which the order in the second column is placed. In this example,
the three instructions are placed in consecutive but arbitrarily located minor cycles.
The annotations to the right of the vertical line list the minor cycles whose contents
are changed by each order; the new value is described using the appropriate short
symbol. The final column contains informal comments.

Orders of types 4 and 5 gave EDVAC the capabilities of the Bell machine that
von Neumann had described to Oppenheimer, including the ability to clear or hold
the result of an operation. Orders of types 1 and 2 were presumably included so that
intermediate results could be reused without being moved toM and back again. By
default, orders would be read from successive minor cycles, mimicking the effect
of reading orders from a paper tape. The jump instruction was provided in order to
break away from this sequence when required. The way in which this code supported
conditional branching is discussed below. A number could be moved between minor
cycles inM by routing it throughA, using the ‘i’ operation to move the contents of
CAI directly to CAO. Input and output orders were not described.

The distinction between numbers and orders was significant to the working of
the code.A could only hold numbers, butM held a mixture of numbers and orders,
and the effect of transferring a number from CAO toM depended on whether the
minor cycle receiving the number itself contained a number or an order, as a short
comment on an unnumbered page at the end of the First Draft explained :

Remark: Orders ω (or ω h)→ yx (or f) transfer a standard number ξ ′ from A into a minor
cycle. If this minor cycle is of the type Nξ (i.e. i0 = 0), then it should clear its 31 digits
representing ξ ′, and accept the 31 digits of ξ . If it is a minor cycle ending in yx (i.e. i0 =
1, order ω → yx or ω h→ yx or A← yx or C← yx), then it should clear only its 13 digits
representing yx, and accept the last 13 digits of ξ ! 3

Shortly after writing the First Draft, von Neumann began to refer to the operation
carried out when a code word was moved from one place to another as substitution.
In logic, substitution is the operation of rewriting a formula by replacing some of
the variables it contains with other terms. The short symbols in Table 3.1 contain a

3 This quotation has been edited slightly to be consistent with the notation used in this chapter. The
apparent confusion between ξ ′ and ξ is in the original text.
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mixture of constant and variable symbols. The variables available for substitution
were ξ , x and y, and von Neumann’s remark spells out that it is precisely these parts
of a code word that are replaced when a number is transferred to a minor cycle.

Substitution in EDVAC’s code was not purely symbolic, however, but a physical
operation taking place inM as a program ran. The layout of the coded number and
order words was as follows:

0 ξ ±
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Code for order type and operation y x 0

If a number w was transferred from CAO to a minor cycle containing a number, the
31 bits of w containing the digits and the sign of the number would replace the field
ξ in the minor cycle; if on the other hand the minor cycle contained an order, bits
18–30 of w would replace the fields y and x, leaving the remainder of the minor
cycle unchanged. This is presumably why the first bit of each code word encoded
the distinction between numbers and orders: without this, there would be no way of
distinguishing the two types of word inM and performing the correct substitutions.

These rules determine how memory would be used by a program: once a program
was loaded, M would effectively be partitioned between minor cycles containing
numbers and those containing orders. The code provided no way of changing the
contents of a minor cycle from a number to an order or vice versa, and no way of
changing an order to one of a different type.

To modern eyes, a striking feature of the code is the omission of an order to
perform a conditional branch. Von Neumann wrote that the ability to select one of
two numbers depending on the sign of a previously calculated result, was ‘quite
adequate to mediate the choice between any two given alternative courses of action’
(von Neumann 1945a, 54). The ‘s’ operation, which selected either the number in
CAI or CAJ depending on the sign of the number in CAO, provided this capability
and when used in conjunction with substitution could support conditional branching.
For example, the following code, modelled on code from the meshing routine, has
the same effect as the pseudocode instruction if x = y then goto α1 else goto α2:

n) A← (i′, j′) CAI) N y Assume y stored in minor cycle (i′, j′).
n+1) A← (i, j) CAI) N x Assume x stored in minor cycle (i, j).

CAJ) N y
n+2) −h CAO) N x− y The value to be tested.
n+3) Nα2 CAI) Nα2

n+4) Nα1 CAI) Nα1

CAJ) Nα2

n+5) s→ f n+6) C ← α1
α2 for x− y =

< 0, i.e. x =
< y.

CAO) N0
n+6) C ← . . . Unconditional jump to α1 or α2.
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The sign of x− y can be used as a proxy for the truth value of the test x = y;
the first three orders compute this value and hold it in CAO. The next two orders,
of type 0, copy the addresses α1 and α2 into CAI and CAJ and the ‘s’ operator then
selects one of these addresses to be substituted into the x and y fields of the following
minor cycle, which contains an incomplete unconditional jump order with ellipses
replacing those parts of the order that will be substituted before it is executed. This
example also illustrates the ‘stacking’ convention von Neumann adopted to show
alternative outcomes.

The First Draft did not specify what would happen if an order A← yx of type 5
attempted to transfer a code word containing an order to CAI . In his May letter to
Goldstine, von Neumann specified that in this case the yx fields would be extracted
from the code word and held in CAI as a number. The letter also suggested some
other changes to the code, summarized in Table 3.1. Von Neumann did not explain
the reasons for these changes, but he did report that he had coded a sort routine and
it is tempting to suppose that the need for the modifications became apparent during
the coding process. In particular, the ability to extract the yx fields from an order and
modify them would be useful when moving a sequence of minor cycles from one
place inM to another, as his sort problem required. However, changes to EDVAC’s
memory structure meant that by the time the meshing routine manuscript came to
be written, this operation was coded in a very different way.

3.3 The second EDVAC

The First Draft code made no allowances for the temporal properties of delay-line
storage. Each minor cycle was assigned a fixed index yx, but in reality code words
moved through the delay lines continuously and were only available for processing
when they reached the end of a line. The code ignored this detail, with the result
that a naively written program would spend a lot of time waiting for the desired
minor cycles to appear. On average, an arbitrary memory access would incur a time
penalty of half the transit time of the delay line.

One way of addressing this problem would be to use short delay lines holding
only one word, but the economics of storage meant that it was not feasible to build
a sufficiently large memory solely out of short delay lines. However, as Eckert and
Mauchly noted:

A compromise is certainly possible, wherein both long tanks and short tanks are used. The
long tanks can then provide most of the desired capacity, and short tanks can be used in
such a way as to reduce the average waiting time. (Eckert and Mauchly 1945, 48)

The new terminology was defined as follows:

A delay line memory unit will be called a tank. Each pulse pattern representing a number
or an order will be called a word. [. . .] A tank designed for the storage of many words will
be called a long tank, and one which is designed to store only one word will be called a
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Fig. 3.2 The second EDVAC architecture as described by von Neumann, with 64 short delay lines
and 256 long delay lines holding 32 words each. The diagram shows the position of the words in
the delay lines at any time t where t mod 32 = 31, i.e. t = 31, 63, 95, · · · . Each line is accessed
through a gate; in the illustration above, C is connected to long tank 1 through gate G1 and is about
to read word W63.

short tank. [. . .] The time from the beginning of one word to the beginning of the next will
be called a minor cycle.4 (Eckert and Mauchly 1945, 46)

Rather like registers in later computer designs, short tanks would allow selected
data to be immediately accessible and could be used to reduce the time a program
would spend waiting for numbers and orders to emerge from long tanks. However,
the use of both long and short tanks meant that both the machine’s code and the
design of programs using it would become more complex. Von Neumann set to
work, and in August reported to Haskell Curry that ‘I have thought lately a good deal
about the use of short delay organs—of one minor cycle length—and I think I know
how to organize them’ (von Neumann 1945c). He documented some of the results of
this thinking, namely the memory model illustrated in Figure 3.2 and an associated
code, in the text reproduced in Appendix A. The meshing program is written in a
slightly modified and extended version of this code, summarized in Table 3.2. These
documents give a vivid impression of von Neumann’s work evaluating and revising
his theoretical proposals in the light of experience gained from writing code for
real-life problems.

4 Eckert and Mauchly credited von Neumann with introducing the terms word and minor cycle.
The First Draft refers to code words, and the term word was formally defined by von Neumann in
the text reproduced in Appendix A.
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Type Short symbol Description

0 0 Empty word. C advances to the next word.
1 Nξ The number ξ . C advances to the next word.

Arithmetic order

2 z1 ω z2 σ receives the result of the operation z1 ω z2.

Substitution orders

3 σ → z σ is substituted into W z.
4 z1 → z2 W z1 is substituted into W z2.
5 z → x | r W z, · · · ,W z+ r are substituted into Wx, · · · ,W (x+ r).
6 z → | r W z, · · · ,W z+ r are substituted into the next r+1 words.
7 x → z | r Wx, · · · ,W (x+ r) are substituted into W z, · · · ,W z+ r.
8 → z | r The next r+1 words are substituted into W z, · · · ,W z+ r.

Replace orders (added in the second version of the code)

9 x b→ z | r Wx, · · · ,W (x+ r) replace W z, · · · ,W z+ r.
10 b→ z | r The next r+1 words replace W z, · · · ,W z+ r.

Transfer of control orders (unconditional jumps)

11 x → C C connects to long tank x.
12 z → C C connects to short tank z.

Table 3.2 A summary of the version of EDVAC’s code used in the meshing routine. In orders of
types 5–10, the suffix | r can be omitted if r = 0. ‘The next r+ 1 words’ are those following the
order being executed.

The complexity introduced by the short tanks is reflected in the code, much of
which consists of orders to move data from one place to another, including moving
multiple words in one operation. The short tank words z = 0,1, · · · , 63 inherit the
numbering of the short tanks holding them. The long tank words are numbered
x = 0,1, · · · , 8191 and von Neumann’s manuscript explains how the control organ
C can work out which long tank it should connect to to access a given word, and
how long to wait before the word emerges. The coding of the arithmetic operations
differs from the earlier code: operands are taken from two short tanks specified in the
arithmetic order, and the result is made available in a special short tank σ . Despite
these differences, however, the capabilities and style of the code are similar to those
of the First Draft code.

Von Neumann now explicitly used the term substitution to describe the semantics
of orders of types 3 to 8, which move a word w′ to a location holding a word w′′.
As in the earlier code, the interesting case is the partial substitution that takes place
when a number word is moved to a minor cycle containing an order; in all other
cases von Neumann specified that ‘w′′ is replaced by w′ in its entirety’.
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In this code, most order words contained three variables: a 5-bit field holding the
value of r, a 6-bit field holding a short tank number z, and a 14-bit field holding a
long tank number x. Number and order words were formatted as follows:

0 ξ ±
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Order code r z x 0

Orders of types 2 and 4 contained two short tank numbers, and must have had a
different layout from the other orders.

The effect of a partial substitution of a number word into a minor cycle depended
on the contents of the receiving minor cycle. Von Neumann specified that for words
of types 2, 3, and 4, no substitution would take place. For words of all other types,
the applicable ξ , r, z, and x fields would be replaced by the corresponding fields of
the substituting number word.

Substitution in this code is more powerful than in the First Draft: transferring an
order will overwrite whatever is in the target location, making it possible for number
words be overwritten by orders. However, once a word holds an order it can never
be overwritten by a number, as any attempt to transfer a number to the word will
invoke the substitution mechanism, leaving the original order in place with modified
variable fields.

This arrangement is too inflexible to allow effective use of the short tanks. In
the meshing routine, von Neumann used these to hold a rather ad hoc mixture of
numbers and orders. In a larger program, and in particular one that had multiple
subroutines, short tanks would be reused in unpredictable ways. In particular, it
would be impracticable if a tank that held an order in one routine could not be
reused to hold a number in another.

In the meshing routine, von Neumann got round this problem by using two new
orders. These appear without explanation on a one-page code summary saved with
the document reproduced in Appendix A, and Eckert and Mauchly’s account of the
code describes them as ‘replace’ orders. They are denoted by b→, as opposed to the
→ used for substitution orders. The replace orders simply overwrite the contents of
one word with another, without regard to the contents of those words. They are only
defined to move data to short tanks, suggesting that they were in fact introduced to
address the problem described in the previous paragraph. In the code of the meshing
routine, the replace orders are only used in the initial sequence of instructions that
sets up numbers and template instructions in the short tanks.

Like its predecessor, the second EDVAC code only had unconditional jumps and
conditional branches were coded by computing the target address and substituting
it into an unconditional jump order. The implementation of this idea is a little more
complicated than in the earlier code. The memory location holding the template
unconditional jump instruction needs to be accessed by two consecutive instructions
that substitute the target address into it and then transfer control to it to execute the
jump. If it was stored in a long tank, this double access would incur a substantial
time penalty. In the meshing routine, therefore, von Neumann placed template jump
instructions in short tanks.
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Consider, for example, the two-way conditional branch if x = y then goto A else
goto B. Assume that the values in the short tanks x and y are X and Y , and that the
alternative destination addresses A and B are held in the short tanks a and b. The
following code, adapted from section 5(i) of von Neumann’s manuscript, will carry
out the required conditional branch.

n) b→ 11 11) . . .→C
n+1) . . .→C
n+2) x − y σ ) N X−Y compute the number to be tested

n+3) a s b σ ) N A
B if X−Y =

< 0, i.e. if X =
< Y

n+4) σ → 11 11) A
B→C if X =

< Y
n+5) 11→C

11) A→C in the case X = Y
A) . . .

The orders for the jump are stored in long tank words n to n+ 5. These remain
unchanged, while the order that will actually carry out the jump is stored in a short
tank, tank 11 in this example. The template jump instruction has to be copied into
this short tank before the target address can be substituted into it. In the code above,
the order in word n copies word n + 1 to short tank 11. To ensure that this has
the required effect regardless of the existing contents of 11, von Neumann used a
replace order rather than a substitution. This replaces the contents of short tank 11
with the order . . .→C whose address field is unspecified (presumably coded as 0).
Von Neumann drew a dashed box round the word n+ 1 to show that it represents
data rather than an order to be immediately executed.

Order n+2 computes the numerical test required to differentiate the alternatives,
and order n+ 3 uses the ‘s’ operation to select one of the two addresses A or B
depending on the sign of the result of this test. At this point, σ holds either A or
B, and order n+4 substitutes this address into the appropriate field of the template
jump order held in 11. Order n+ 5 transfers control to short tank 11 which in turn
immediately transfers control to the order at A, as required. Horizontal lines indicate
breaks in the default sequential execution of orders.

This example can usefully be understood as a design pattern (Gamma et al.
1995), an easily reusable solution to a frequently occurring problem. The problem is
the provision of conditional branching in a code with no conditional jump, and the
key element of the solution is the use of substitution to set up an unconditional jump
instruction to the calculated target address of the conditional transfer. The solution
proposed by von Neumann to this problem could be summarized as follows:

n) b→ s s) . . .→C
n+1) . . .→C

. . .) . . . σ ) A k orders to compute the target address A
n+ k+2) σ → s s) A→C Copy A to s
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n+ k+3) s→C Jump to s
s) A→C Jump to A
A) . . . Program continues

Interestingly, this pattern is in some ways more flexible than the if statement: von
Neumann uses it in section 5(g) of the meshing routine manuscript to code a four-
way conditional branch with considerable economy and without having recourse to
the analogue of nested if statements.

A similar technique is used in a second ‘design pattern’ in von Neumann’s code,
to carry out indirect addressing. Suppose that short tank 1 holds the location number
a of a minor cycle in a long tank, and that the number A in a must be transferred to
short tank s. The following code, again adapted from von Neumann’s manuscript,
sets up the order to perform the required transfer in short tank z.

n) b→ z | 1 Set up two instructions at z
n+1) . . . b→ s z) . . . b→ s
n+2) n+5→C z+1) n+5→C
n+3) 1→ z z) a b→ s Partial substitution into the order in z
n+4) z→C

z) a b→ s s) A
z+1) n+5→C
n+5) . . . Program continues

3.4 Substitution

As a way of familiarizing his abstract computing machines, Turing (1936) described
how their structure and functionality resembled the activity of a human carrying
out a pen-and-paper calculation, and a similar analogy can help us understand how
von Neumann thought of computation. Imagine the minor cycles in the memory
of the EDVAC of the First Draft as an array of boxes outlined on a large sheet
of graph paper. When a program is loaded, some of these boxes are filled with
coded words. Parts of these words—the single bit that distinguishes between orders
and numbers, and the operation codes of the orders—are written in ink, but the
remaining bits represent numbers and are written in pencil. The part of C is played
by a human equipped with a pencil and an eraser. When in the course of computation
a code word is transferred to a minor cycle, C erases the pencilled contents of the
corresponding box and replaces them by the equivalent bits of the new code word.

This image was complicated in the second iteration of the EDVAC design by the
need to allow whole words to be replaced or overwritten in certain circumstances,
but its basic force remains. For von Neumann, EDVAC’s control was a machine that
rewrote code words, and the commonest and typical cases of this rewriting were
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understand to be an application of the familiar logical operation of substitution.
Memory is a syntactic space of symbols that represent numbers and orders, and
computation is the process of incrementally changing the contents of that space.

The ability to modify orders as well as numbers, even in partial and constrained
ways, gives modern computers much of their power and versatility, and the vital
importance of substitution as a programming technique was soon recognized. The
calculations that drove the automation of computing, notably the numerical solution
of total differential equations, were iterative processes that repeated sequences of
operations many times on a small amount of data. Eckert and Mauchly (1945, 28,
39) noted that the cost of preparing a problem ‘in a mathematical form and logi-
cal symbolism appropriate to the machine’ was ‘immensely sensitive to the way in
which repetitive and iterative processes are ordered’. Machines such as ENIAC and
Mark I had developed techniques of varying degrees of sophistication for repeating
sequences of operations, and the EDVAC code provided the same capability.

But EDVAC was designed to address the far more challenging task of solving
partial differential equations where the iterated operations had to be carried out,
not on a small fixed set of variables, but on differing components of a large array
of intermediate values manipulated by the program. (One of the key reasons for
EDVAC’s large memory was to store this array of data.) One way to avoid having to
write these orders out repeatedly would be to vary, on each iteration, the part of the
order that referred to a specific variable. As Eckert and Mauchly put it:

Essentially, the machine must be made to perform ‘substitutions’. For instance, the same
sequence of arithmetic processes must be carried out over and over again, but each time
on a new set of numbers. To repeat such arithmetic orders each time they are to be used
would be wasteful of memory capacity as well as wasteful of coding time, and is obviously
unnecessary. (Eckert and Mauchly 1945, 39).

But substitution also had some rather more specific applications. One that loomed
large in 1945, perhaps surprisingly to modern eyes, was the use of function tables. It
was taken for granted by computer designers that automatic machines would require
some analogue of the printed volumes of mathematical tables that human computers
consulted to look up function values. For example, the Harvard and Bell machines
read tabulated functions from tapes through which specialized units would ‘hunt’ to
find a desired value.

In the First Draft, von Neumann assumed that even EDVAC would have to store
tabular data (another reason for the large size of the machine’s internal memory), and
when he was explaining the principles of the EDVAC design to the team assembled
at the beginning of the IAS Electronic Computer Project he used this application to
motivate the notion of substitution.

One more operation has to be provided for, the operation of substitution. Consider, for ex-
ample, the incorporation of something like a 100 position log table in the memory, with a
routine for biquadratic interpolation. Then a number whose logarithm is required is pro-
duced in the machine. This corresponds to an entry point in the table which will be entered
by adding the entry number to the house number which corresponds to the location of the
beginning of the log table, then substituting the result in a word order. This means that pro-
vision must be made for transferring a specific 12 digit portion of a 30 digit number into a
house number portion of a logical order word. (IAS 1945, #2, 5)
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This description brings to mind ENIAC’s function tables, units which allowed
function values to be set up on switches and accessed in random-access fashion.
Rather than hunting through a tape, a two-digit argument was transferred to special
registers in a function table and used to access the corresponding value directly. This
is precisely the use of a calculated numerical value as an ‘entry number’ in a table,
albeit one implemented by a special-purpose device instead of being identified by a
‘house number’ in a multi-purpose memory.

The utility of substitution in the implementation of subroutines was also quickly
recognized. Eckert and Mauchly (1945, 39) observed that substitution would allow
an interpolation routine to return ‘to different parts of the problem orders after every
use’, and the Preliminary Discussion of the IAS machine discussed a mechanism
by which ‘classes of problems’ could be coded by separating the definition of the
operations to be carried out from the provision, through substitution, of the numbers
to be operated on.

As an example, consider a general code for n-th order integration of m total differential
equations for p steps of independent variable t, formulated in advance. Whenever a problem
requiring this rule is coded for the computer the general integration sequence can be inserted
into the statement of the problem along with coded instructions for telling the sequence
where it will be located in memory [. . .]. Whenever this sequence is to be used by the
computer, it will automatically substitute the correct values of m, n, p, and ∆ t [. . .] into the
general sequence. A library of such general sequences will be built up [. . .]. When such a
scheme is used, only the unique features of a problem need be coded. (Burks et al. 1946,
46)

The ability of a program to modify its own code is sometimes seen as a natural
consequence of the decision to store orders in the same device as numbers. Even
if this is so, the specific way in which it was understood by the EDVAC team as a
form of substitution clearly draws upon existing practices in logic, and perhaps also
on practical experience in automating function tables. The resulting mechanism had
many applications in coding, but more general forms of substitution also appeared in
other contexts in von Neumann’s work on programming, as the following chapters
will describe.



Chapter 4
The 1945 meshing routine

In early 1945, sequences of coded instructions controlled the operation of machines
such as Bell’s Relay Interpolator and the Harvard Mark I but their use was limited
to the solution of familiar mathematical problems. Von Neumann’s application of
EDVAC’s code to sorting represented a new departure. Although some processes
were automated by punched card machines, sorting a deck of cards still required
considerable human intervention, such as combining the sub-decks produced by a
sorter into a single deck for the next stage in the process. An internal sorting routine
for EDVAC would have to be entirely automatic, however. Somehow, the mixture of
mechanical and manual operations involved in sorting a deck of punched cards had
to be brought into EDVAC and expressed as a sequence of simple instructions.

Von Neumann took a methodical approach to this problem, making use of current
ideas about program development. An ENIAC report had proposed splitting the task
of developing a set-up for a new problem into three stages (Moore School 1943):
the problem was first defined mathematically by specifying the necessary sequences
of elementary operations, the second stage involved working out how to set up these
operations on ENIAC, and the third stage comprised the actual plugging and switch-
ing required to configure the machine and run the program. This approach assumed
that the problem was given in mathematical terms, typically as a set of differential
equations and boundary conditions. A similar step-wise approach had been codified
by the Harvard group.

Von Neumann’s account of the development of the meshing routine followed
a similar trajectory. His manuscript is divided into twelve numbered sections that
move from a mathematical definition of sorting, through a systematic development
of the instructions needed, to a detailed consideration of how those instructions
would be physically arranged in EDVAC’s memory prior to execution. The actual
coding of the instructions into their final binary form is omitted, and the manuscript
ends with some reflections on the use of the code as a subroutine and estimates of its
running time. The sections are untitled, but their contents are summarized in Table
4.1.

35
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Section Contents

1 Defines sorting and meshing mathematically.
2 States the purpose of the manuscript.
3 Defines the top-level structure of the meshing routine.
4 Comments on the top-level structure.
5 Defines the code sequences.
6 Allocates data to short tanks.
7 Defines the initialization sequence.
8 Summarizes the complete list of instructions.
9 Enumerates the final list of instructions, starting at e.
10 Lists the substitutions required for variables p, a and e.
11 Explains how to load and run the routine and use it as a subroutine.
12 Estimates the time taken by the routine.

Table 4.1 The contents of von Neumann’s manuscript.

4.1 Defining the problem

Writing to Goldstine in May, von Neumann described the sorting problem he had
coded for the EDVAC of the First Draft as follows:

I considered a sorting problem which consists of this: Given n groups of k+1 numbers each:
(xi,y′i,y

′′
i , · · · , y(k)i ), i= 1, · · · , n. Rearrange them into a new order (xi∗ ,y′i∗ ,y

′′
i∗ , · · · , y(k)i∗ ), the

1∗,2∗, · · · , n∗ being such a permutation of the 1,2, · · · , n, that x1∗ 5 x2∗ 5 · · · 5 xn∗ . (von
Neumann 1945e)

In the manuscript this was expanded into the definition of two distinct operations,
meshing and sorting, and the relationship between them. The groups of numbers
being sorted were now called complexes.

A p+1-complex: X (p) = (x0;x1, · · · , xp) consists of the main number: x0, and the satellites:
x1, · · · , xp. Throughout what follows p = 1,2, · · · will be fixed. A complex X (p) precedes a
complex Y (p) : X (p) 6 Y (p), if their main numbers are in this order: x0 5 y0.

These definitions can be read as a mathematical model of a punched card. A
typical IBM card had 80 columns, each holding one digit. Depending on the needs
of an application, these columns would be grouped into fields holding data such as
employee number, hours worked, and total pay in a payroll application. A typical
sorting application might be to arrange a card deck in ascending order of employee
number: in von Neumann’s terminology, this would be the main number and the
hours worked and total pay fields would be the satellites.

Armed with these definitions, von Neumann defined sorting as the operation of
finding a ‘monotone permutation’ of a sequence of complexes, while meshing was
defined as the operation of sorting the composite of two monotone sequences. This
makes meshing subordinate to sorting, suggesting that two sorted card decks could
be meshed by putting one on top of the other and then sorting the resulting larger
deck. Von Neumann then stated the goal of the manuscript:
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We wish to formulate code instructions for sorting and for meshing, and to see how much
control-capacity they tie up and how much time they require.

This makes it clear that coding was not just a theoretical exercise, and that von
Neumann also intended to explore the physical parameters of EDVAC’s design.
Coding the sorting problem would allow him to estimate how much memory would
be required and also how fast the routine would run, and in both the May letter and
section 12 of the manuscript he attempted to quantify these properties.

At this point, however, the manuscript takes an unexpected turn. Even though he
had defined meshing in terms of sorting, von Neumann wrote ‘it is convenient to
consider meshing first and sorting afterwards’, and the remainder of the manuscript
described a ‘natural procedure’ for meshing which did not require the ability to sort,
namely the mechanical process illustrated in Figure 2.1. The notion of ‘convenience’
that motivated this switch was later spelled out as follows:

We consider first Problem 14 [meshing], which is the simpler one, and whose solution can
conveniently be used in solving Problem 15 [sorting]. (Goldstine and von Neumann, 1947-
8, vol. 2.)

There is a significant transformation, in other words, between the mathematical
and algorithmic representations of the problem. Although he had defined meshing in
terms of sorting, von Neumann reversed this dependency in the coding and planned
to use the meshing routine in the implementation of sorting. This is rather at odds
with the procedures outlined in the ENIAC and Mark I reports, which assumed that
the order of operations identified in the mathematical analysis of the problem would
be reflected in the structure of the code.

4.2 An algorithm for meshing

Section 3 of the manuscript defines the top-level structure of the meshing routine.
The ‘natural procedure’ for meshing two sorted sequences illustrated in Figure 2.1
is to examine the top card in each input deck, take the one with the smaller key field
and add it to the output deck, and repeat this procedure until all the cards in the input
decks have been transferred to the output deck.

Von Neumann modelled decks of punched cards as sequences of complexes. The
input decks X = X0, · · · , Xn−1 and Y = Y0, · · · , Ym−1 of lengths n and m are meshed
to form an output sequence Z = Z0, · · · , Zn+m−1 of length n+m. He treated the
repetitive aspect of the procedure as a kind of induction in which a variable l counts
how many elements of Z have been formed at the end of each step. If n′ elements of
X and m′ elements of Y have been transferred to the output deck at the end of a step,
the variables are related by the constraint l = n′+m′.

Thus the progress of the procedure is tracked by the values of the three variables
n′, m′ and l, which also serve as indices into the sequences X , Y and Z. The inductive
step is defined by a case analysis that states how these variables should be updated
and defines the value of the next element of Z:
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(α) n′ < n, m′ < m :

Determine whether x0
n′ 5 or > y0

m′ .

(α1) x0
n′ 5 y0

m′ : Z(p)
l = X (p)

n′ ,
replace l, m′, n′ by l +1, m′, n′+1.

(α2) x0
n′ > y0

m′ : Z(p)
l = Y (p)

m′ ,
replace l, m′, n′ by l +1, m′+1, n′.

(β ) n′ < n, m′ = m :

Same as (α1).

(γ) n′ = n, m′ < m :

Same as (α2).

(δ ) n′ = n, m′ = m :

The process is completed.

In case (α) there are cards left on both input decks. We therefore look at the main
numbers x0

n′ and y0
m′ of the top cards of X and Y . In case (α1) the next card to be

placed on Z comes from X and in case (α2) it comes from Y . In case (β ) deck Y is
exhausted, and so the next card must come from deck X . Von Neumann treats this as
equivalent to (α1), and the converse situation in (γ) is treated as equivalent to (α2).
In case (δ ) both input decks are exhausted, and so the meshing is complete.

Von Neumann did not explain the relationship between this case analysis and the
preceding mathematical definitions, and nor did he argue, formally or informally,
that this procedure will lead to the formation of a monotone sequence Z. The level
of presentation is that of a rather explicit and detailed mathematical paper. Von
Neumann presumably assumed that he had stated things in as much detail as was
required to make the correctness of his argument apparent to the reader in much the
same way as a conventional mathematical paper would.

Section 4 of the manuscript gives some explanatory details and comments on the
case analysis, including the following brief argument for program termination. At
the start of the program l = 0 and at the end of the program l = n+m. Cases (α),
(β ) and (γ) all increment the value of l, while case (δ ) terminates the program. The
program therefore terminates, von Neumann says, after n+m+1 ‘steps’.

4.3 Sequence programming

The case analysis provided the structure around which von Neumann developed the
code of the meshing routine. His strategy was to give a ‘set of instructions’ for each
of the five cases (α1), (α2), (β ), (γ), and (δ ). These were to be coordinated by two
further sets of instructions to ‘effect [the] 4-way decision between (α)–(δ )’ and the
‘2-way decision between (α1), (α2)’. An eighth set of instructions set up the initial
conditions for the program to run.

These eight sequences of instructions, summarized in Table 4.2, are the building
blocks of von Neumann’s code. They were linked together in a higher-level structure
involving loops and branches. As discussed in Section 5.2, this vision of program
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Name Section Instructions Purpose

0 7 10 – 230 Initialization.
1 5(g) 11 – 101 The four-way branch between α , β , γ , and δ .
α 5(i) 1α – 4α The two-way branch between α1 and α2.
α1 5(l) 1α1 – 13α1 Case α1 of the case analysis.
α2 5(l) 1α2 – 13α2 Case α2 of the case analysis.
β 5(j) 1β – 2β Case β of the case analysis.
γ 5(j) 1γ – 2γ Case γ of the case analysis.
δ 5(j) 1δ Case δ of the case analysis.

Table 4.2 The code sequences of the meshing program.

structure was later expressed graphically in diagrams in which the basic sequences
were represented by boxes linked together in a directed graph expressing how and
when the sequences would be executed.

A similar two-level approach had been built into ENIAC’s hardware. Straight-
forward sequences of operations were set up by configuring and connecting the so-
called ‘program controls’ on ENIAC’s independent processing units. For a complex
problem, many different sequences would be set up, of which some might need to be
carried out repeatedly, while others might only be executed in certain circumstances.
The task of scheduling the execution of the basic sequences was called ‘sequence
programming’ and was one of the responsibilities of a specialized unit, the master
programmer (Moore School 1944, IV-40).

The master programmer could be set up to initiate a number of sequences one
after the other, with each sequence being repeated as many times as necessary. It
was also possible to set up nested loops, where a sequence of possibly repeated
sequences was itself repeatedly invoked. By the end of 1944, a technique had been
devised to transfer numeric information, such as the sign of a number, to the master
programmer, giving ENIAC the additional capability to switch from one sequence
to another, depending on results obtained in the course of the calculation.1

This two-level model of program structure was also used on Mark I. On this
machine, the basic sequences were expressed as coded instructions on paper tape
instead of being physically set up on program controls, and sequence programming
was expressed in completely different ways. Simple loops were created by gluing
the ends of a tape together, literally making a loop, and the machine’s human opera-
tors were given detailed operating instructions for each program telling them when
to switch tapes or terminate a computation. In effect, ENIAC automated some of the
manual tasks associated with the use of Mark I, but did not change its underlying
model of program structure.

Von Neumann’s use of the case analysis and its subsequent transformation into
sequences of orders can be understood as a translation of the sequence programming

1 The full story of ENIAC programming is rather more complicated than this, but this captures the
basic model that had evolved by the end of 1944. See (Haigh et al. 2016) for fuller details.
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approach into the new environment of EDVAC programming. His analysis of the
problem drew a sharp distinction between the basic sequences of operations and
the structure, expressed in the case analysis, that determined when they would be
invoked. The sequences (α1), (α2), (β ), (γ), and (δ ) are ‘programmed’ by the case
analysis and the implicit main loop that causes it to be repeated until the input decks
are exhausted.

What is novel about von Neumann’s approach is that, thanks to the properties of
the EDVAC code, the sequence programming could also be expressed as sequences
of instructions written in the very same code as the basic sequences themselves. As
well as the five basic sequences, von Neumann described sequences to control the
conditional branching between (α), (β ), (γ), and (δ ) and between (α1) and (α2). The
effect is that the two levels of control visible in the earlier machines collapse into
one. While Mark I had tape control mechanisms and human operators and ENIAC
had linked program controls and the master programmer, EDVAC had only a single
control mechanism that interpreted coded instructions. Despite this technological
innovation, however, it is striking that the logical organization of von Neumann’s
routine is so evocative of the techniques used on the earlier machines.

4.4 Coding with variables

Once the basic sequences required for the meshing routine had been identified, von
Neumann’s next task was to devise a list of instructions for each sequence. These
were presented in section 5 of the manuscript using the symbolic form of the code,
extended in a very natural way to make use of variables in the instructions.

As explained in Chapter 3, the code defined the possible contents of the minor
cycles in EDVAC’s memory, and the symbolic form of the code simply provided a
convenient shorthand for representing the code words in M. For example, the bit
pattern

1001110000101100000010111011110

might, depending on the coding used for order types, encode the order 751→ 24 | 1,
of type 7, while the bit pattern

00000000000000000000000000000010

encodes the number N1(−30), the suffix indicating multiplication by 2−30. As the
binary point was assumed to lie before the most significant bit of a number word,
only numbers in the range −1 5 x < 1 could be stored. Location numbers and other
integers were held in the least significant bits, however, meaning that an integer n
was stored as the value n×2−30 (the rightmost bit held the sign of the number).2

2 Von Neumann (1945e) stipulated that numbers should be written with their most significant bits
on the right, to reflect the ‘chronological order’ in which they emerged from the delay lines ready
for sequential processing by A. He did not mention this point in the description of the second
EDVAC code, and for simplicity it is ignored here.
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Strictly speaking, then, the code can only represent constants, the actual values
of the location numbers and numeric data appearing in a program. However, when
a program is being developed it is neither feasible nor desirable to allocate fixed
memory locations to instructions or data. When coding the instruction sequences,
therefore, von Neumann implicitly extended the symbolic form of EDVAC’s code
to allow the use of variables in orders.

These variables were of two kinds, corresponding to the distinction between the
two kinds of numbers appearing in the code: numbers having some significance to
the mathematical statement of the problem on the one hand, and location numbers
on the other. The mathematical variables were of two types. Some, described by von
Neumann as ‘the general data of the problem’, were basically parameters: the length
p of the complexes, the location numbers of the long tank words b, c and d where
the sequences X , Y and Z began, and the lengths n and m of the sequences X and Y .
The second group of mathematical variables represented numbers generated or used
in the course of the computation: the number of positions n′ and m′ so far examined
in the sequences X and Y (from which l = n′+m′ could be obtained), and the main
numbers x0

n′ and y0
m′ of the two complexes currently being compared.

As well as the mathematical variables, von Neumann defined symbolic names for
location numbers; for brevity, I will refer to these as ‘address variables’. The address
variables were written as long or short tank addresses with a suffix identifying a
group of variables that were defined together; typical examples are 1α , 1δ , 10, or 5α .
When reading the manuscript, therefore, it is necessary to bear in mind that while
11, say, is a constant referring to short tank 11, 111 is an address variable, the 11th

short tank defined in instruction sequence 1. Von Neumann also introduced special
address variables e and a denoting the starting location of the meshing routine in
memory and the location to which control should be transferred once the routine
was complete.

To illustrate the use made of these variables, consider the sequence that makes
the initial choice between the four branches of the case analysis. Von Neumann
observed that this sequence needed ten specific pieces of information. Six of these
were identified by the mathematical variables n, m, n′, m′, x0

n′ and y0
m′ , and four

address variables 1α , 1β , 1γ , and 1δ were defined to represent the first (long tank)
words of the instruction sequences that control could be transferred to.

These ten numbers, along with a template jump instruction . . .→ C, were to be
held in short tanks so that they could be efficiently accessed when needed. These
short tanks were identified by the address variables 11 – 111, and von Neumann
defined their contents by writing, for example,

11) Nn′(−30) and 51) Nn(−30),

meaning that the integer values of n′ and n were stored in short tanks identified by
the address variables 11 and 51.

Address variables were used for the fields within an order as well as the location
where the order is stored. For example, the first line of coding for this sequence,
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11) 11−51 σ ) Nn′−n(−30),

states that the order 11−51 is stored in a long tank location identified by the address
variable 11, and that the result n′− n, obtained by subtracting the number in short
tank 51 from that in short tank 11, is stored in the special register σ .

While this strategy enabled von Neumann to develop each part of the program
largely independently of the others, the resulting sequences of instructions were not
formally independent. The variables representing the locations of the first order in
each sequence occurred in other sequences, as the target address for a jump instruc-
tion at the end of a preceding sequence. Furthermore, the variables representing the
location of shared data occurred in more than one sequence.

4.5 Allocating the short tanks

Once the basic order sequences had been written in the extended code, the rest of
the development process consisted largely of substituting numbers for the variables,
leaving code that could be translated into binary form. Section 6 of the manuscript
begins this process by dealing with the short tank address variables. The program
uses p+ 25 short tanks in total; von Neumann rationalized the use of these and
assigned actual short tank numbers to the address variables as shown in Table 4.4.

The short tanks hold a mixture of numeric constants, program variables, and
template orders. The use of tanks 21, 22, and 23 to move complexes from X or Y
to Z is slightly intricate. The first five orders in sequences α1 and α2 substitute the
address fields in 21 and 22 with the current positions in the sequences X or Y and Z,
replace 23 with a jump order that returns control to the sixth order in the sequence,
and then execute an unconditional jump to 21. The orders to move the complex
are then executed, and the order in 23 returns control to the order, in α1 or α2 as
appropriate, that follows the jump. In effect, these three tanks contain a miniature,
if rather primitive, subroutine.

While tanks 1 to 6 hold the parameters of the meshing routine, tanks 7 to 22 are
‘local variables’ that need to be initialized before the routine begins, and in section 7
of the manuscript, von Neumann defined an additional code sequence to do this. The
initialization of 9 to 22 is straightforward, as these tanks contain numeric constants
or code templates that can simply be copied from the initialization sequence into the
appropriate tanks, but the situation with 7 and 8 is a bit more complex. The initial
values x0

0 and y0
0 of these tanks are the main numbers of the first complexes in the

sequences X and Y . They are therefore found in the first words of those sequences,
i.e. at locations b and c. Transferring the contents of word b to tank 7 and word c to
tank 8 therefore involves indirect addressing and von Neumann coded this using the
technique discussed in section 3.3.

Table 4.5 lists all eight program sequences with the short tank address variables
replaced by the actual short tank numbers allocated in Table 4.4.
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Short tank Contents Initial value Description

1 51 n n Length of sequence X
2 61 m m Length of sequence Y
3 13 b+n′(p+1) b Current position in X
4 23 c+n′(p+1) c Current position in Y
5 33 d +n′(p+1) d Current position in Z
6 43 p+1 p+1 Length of complexes

7 31 x0
n′ x0

0 Main number of complex n′

8 41 y0
m′ y0

0 Main number of complex m′

9 11 n′ 0 Number of current complex in X
10 21 m′ 0 Number of current complex in Y

11 71 1α Start location of sequence α

12 81 1β Start location of sequence β

13 91 1γ Start location of sequence γ

14 101 1δ Start location of sequence δ

15 111 . . .→ C Template instruction for jumps
16 12 1α1 Start location of sequence α1

17 22 1α2 Start location of sequence α2

18 32 0 Constant value
19 42 −1 Constant value
20 45 1 Constant value

21 15 . . .→ 24 | p+2 Template instructions to move a complex
22 25 24→ . . . | p+1 between short and long tanks
23 35 Holds a ‘return statement’

24 14

· · · · · · Short tanks holding the complex being moved
p+25 (p+2)4

Table 4.4 The use of EDVAC’s short tanks, identified by tank number and address variable, in
the meshing program. Von Neumann overlooked the tanks 121 and 131 used as temporary storage
space in the instruction sequence 11−101 and these were not allocated definite tank numbers.

4.6 Making a single code sequence

After coding the eight sequences, von Neumann considered how to assemble them
into a complete program. To minimize the time spent waiting for instructions to
emerge from the long tanks, he arranged the sequences so that, as far as possible,
the logical flow of control from one to another was reflected in the physical order of
the instructions in memory, coming up with the arrangement shown in Table 4.5.

The next step towards variable-free code involves replacing the long tank address
variables by location numbers, thus fixing the location of the routine in memory.
However, von Neumann noted that ‘it is preferable to have these instructions in
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10) b→ 9 | 2 180) N0 2γ ) 2ααα → C 13α1 ) 11→ C
20) . . . b→ 7 190) N−1 1α ) 8−7 1α2 ) 4→ 21
30) . . . b→ 8 200) N1(−30) 2α ) 16 s 17 2α2 ) 5→ 22
40) 80→ C 210) . . .→ 24 | ppp+2 3α ) σ → 15 3α2 ) b→ 23
50) 3→ 9 220) 24→ . . . | ppp+1 4α ) 15→ C 4α2 ) 6ααα222 → C
60) 4→ 10 230) 11→ C 1α1 ) 3→ 21 5α2 ) 21→ C
70) 9→ C 11) 9−1 2α1 ) 5→ 22

21) 13 s 11 3α1 ) b→ 23
31) σ → 121 4α1 ) 6ααα111 → C
41) 9−1 5α1 ) 21→ C
51) 14 s 12 6α2 ) 10 +20

80) b→ 9 | 13 61) σ → 131 7α2 ) σ → 10
90) N0 71) 10−2 8α2 ) (ppp+25)→ 8

100) N0 81) 131 s 121 9α2 ) 4 +6
110) N111ααα (−30) 91) σ → 15 6α1 ) 9 +20 10α2 ) σ → 4
120) N111βββ (−30) 101) 15→ C 7α1 ) σ → 9 11α2 ) 5 +6
130) N111γγγ (−30) 8α1 ) (ppp+25)→ 7 12α2 ) σ → 5
140) N111δδδ (−30) 9α1 ) 3 +6 13α2 ) 11→ C
150) . . .→ C 1β ) 18−18 10α1 ) σ → 3 1δ ) aaa→ C
160) N111ααα111 (−30) 2β ) 2ααα → C 11α1 ) 5 +6
170) N111ααα222 (−30) 1γ ) 19−18 12α1 ) σ → 5

Table 4.5 The meshing program of section 8 of von Neumann’s manuscript. Short tank addresses
have been assigned (apart from the overlooked 121 and 131) and a single sequence of 68 orders is
formed by concatenating the 8 basic sequences; gaps have been left in the tabulation to facilitate
comparison with Table 4.6. Von Neumann’s slip in the position of word 200 has been corrected
(see Knuth 1970, 257) and the remaining variables in the code are highlighted.

such a form that they can begin anywhere, in that their first (long tank) word can be
chosen freely’, thus making it possible to place the code anywhere in memory. To
provide this flexibility von Neumann introduced a new address variable e denoting
the location of the first instruction in the program.

At four points in the code C switches to the short tanks to read a few orders. In
an attempt to ensure that the next instruction is immediately available when control
returns to the long tanks, von Neumann inserted blank words into the sequence
so that the following instructions would be available exactly when required.3 This
increased the total length of the instruction sequence to 82 words, and the variety of
long tank address variables in Table 4.5 are replaced by a single sequence of address
variables e, · · · , e+81. The resulting code is shown in Table 4.6.

3 Knuth (1970, 258) pointed out that von Neumann’s reasoning here was fallacious. For example,
the jumps in orders 5α1 and 5α2 invoke orders transferring sequences of words between long and
short tanks. These take an unpredictable time to execute because they make what Knuth described
as ‘essentially random references to long tanks’, meaning that von Neumann’s strategy of leaving
four blank words is over-simplistic.
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e) b→ 9 | 2 e+21) N0 e+42) eee+44→ C e+63) eee+27→ C
e+1) . . . b→ 7 e+22) N−1 e+43) 8−7 e+64) 4→ 21
e+2) . . . b→ 8 e+23) N1(−30) e+44) 16 s 17 e+65) 5→ 22
e+3) eee+11→ C e+24) . . .→ 24 | ppp+2 e+45) σ → 15 e+66) b→ 23
e+4) 3→ 9 e+25) 24→ . . . | ppp+1 e+46) 15→ C e+67) eee+73→ C
e+5) 4→ 10 e+26) eee+27→ C e+47) 3→ 21 e+68) 21→ C
e+6) 9→ C e+27) 9−1 e+48) 5→ 22 e+69)
e+7) e+28) 13 s 11 e+49) b→ 23 e+70)
e+8) e+29) σ → 121 e+50) eee+56→ C e+71)
e+9) e+30) 9−1 e+51) 21→ C e+72)

e+10) e+31) 14 s 12 e+52) e+73) 10 +20
e+11) b→ 9 | 13 e+32) σ → 131 e+53) e+74) σ → 10
e+12) N0 e+33) 10−2 e+54) e+75) ppp+25→ 8
e+13) N0 e+34) 131 s 121 e+55) e+76) 4 +6
e+14) N eee+43(−30) e+35) σ → 15 e+56) 9 +20 e+77) σ → 4
e+15) N eee+39(−30) e+36) 15→ C e+57) σ → 9 e+78) 5 +6
e+16) N eee+41(−30) e+37) e+58) ppp+25→ 7 e+79) σ → 5
e+17) N eee+81(−30) e+38) e+59) 3 +6 e+80) eee+27→ C
e+18) . . .→ C e+39) 18−18 e+60) σ → 3 e+81) aaa→ C
e+19) N eee+47(−30) e+40) eee+44→ C e+61) 5 +6
e+20) N eee+64(−30) e+41) 19−18 e+62) σ → 5

Table 4.6 The meshing routine as developed in section 10 of von Neumann’s manuscript, starting
at long tank location e. It still contains occurrences of the variables p, a, and e (highlighted).

4.7 Loading and calling the meshing routine

The code in Table 4.6 still contains the variables p, e and a, and the location of
the routine in memory is given relative to the variable e. Before the routine can
be executed, the variables must be removed, leaving code that can be converted to
binary form and placed in memory. Von Neumann’s treatment of this issue in the
manuscript is rather terse, however.

Once the routine was loaded into memory, some substitutions would be needed to
prepare it for use. As shown in Table 4.4, the short tanks 1 to 6 hold the parameters
of the routine and they would have to be substituted with the actual parameters
before calling the routine; similarly, the variable a in long tank e+ 81 would have
to be substituted by the required return address. In addition to these seven words,
however, von Neumann stated that the six words in locations e+ 14, · · · , e+ 17,
e+ 19 and e+ 20 containing e, and the two words in locations e+ 23 and e+ 24
containing p, would require substitution.

Von Neumann named this group of substitutions S15, and observed that they
would not all necessarily have to be carried out at the same time. The substitutions
for e would only have to be carried out once, when the routine’s location in memory
was fixed, but substituting the parameters in the short tanks and the return location
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a would typically have to be done each time the routine was called. In the code, the
nine long tank words appearing in S15 were to be replaced by ‘blanks’, giving rise
to a sequence of words called G82.

Von Neumann wrote that G82 could be placed in the long tanks, but replacing
the nine long tank words dealt with by S15 by blanks does not result in variable-free
code. There are ten other words in Table 4.6 containing variables, and the manuscript
does not explain what should be done with them.

The eight orders in locations e+3, e+26, e+40, e+42, e+50, e+63, e+67
and e+80 contain the variable e. These orders are all jumps to locations within the
routine. In the order e+ 11→ C in location e+ 3, for example, 11 represents the
offset within the routine of the target location of the jump. As discussed in Section
6.3, Goldstine and von Neumann later described how the code of a routine would
be automatically adjusted by a preparatory routine before the S15 substitutions were
applied. Once the routine was placed in memory and the value of e known, the
preparatory routine would convert offsets like 11 to the correct address, e+ 11. It
is likely that von Neumann had some similar mechanism in mind as he wrote the
meshing manuscript, and hence that the variable e in these eight orders should be
replaced by 0 when forming G82.

The two orders in locations e+58 and e+75 contain the variable p, representing
the length of the complexes being meshed, and would not have been dealt with by
the preparatory routine. Like the orders in e+23 and e+24, they would need to be
altered if the value of p changed, and it seems a simple oversight on von Neumann’s
part that these two words were not included in the substitutions of S15.

Loading G82 into memory amounts to choosing a value for the variable e. Table
4.7 shows the sequence G82 in the case where e is assigned the value 100. Aside from
a couple of oversights, applying the S15 substitutions to this code would produce a
complete and executable routine.

It would be possible to run the meshing routine as a stand-alone program, for
testing purposes. This could be done by writing orders which carried out the S15
substitutions and then transferred control to e. In general, however, the meshing
routine would form part of a larger program: in particular, von Neumann planned to
use it as an integral component of the sorting routine.

Von Neumann described this more general case in section 11 of the manuscript,
explaining that the orders effecting S15 could be part of a ‘main routine’ of a program
that used the meshing routine, which would itself be a ‘sub routine’. A subroutine
could be called many times in a main routine, but before the second and subsequent
calls only those parts of S15 that differed would need to be repeated. If the meshing
routine was used as a subroutine in a mergesort program, for example, p and e would
remain constant throughout and the orders executed before invoking the meshing
routine would have only to set up the short tanks 1 to 5, and perhaps the return
address a in location 181.
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100) b→ 9 | 2 121) N0 142) 44→ C 163) 27→ C
101) . . . b→ 7 122) N−1 143) 8−7 164) 4→ 21
102) . . . b→ 8 123) N1(−30) 144) 16 s 17 165) 5→ 22
103) 11→ C 124) 0 145) σ → 15 166) b→ 23
104) 3→ 9 125) 0 146) 15→ C 167) 73→ C
105) 4→ 10 126) 27→ C 147) 3→ 21 168) 21→ C
106) 9→ C 127) 9−1 148) 5→ 22 169)
107) 128) 13 s 11 149) b→ 23 170)
108) 129) σ → 121 150) 56→ C 171)
109) 130) 9−1 151) 21→ C 172)
110) 131) 14 s 12 152) 173) 10 +20
111) b→ 9 | 13 132) σ → 131 153) 174) σ → 10
112) N0 133) 10−2 154) 175) p+25→ 8
113) N0 134) 131 s 121 155) 176) 4 +6
114) 0 135) σ → 15 156) 9 +20 177) σ → 4
115) 0 136) 15→ C 157) σ → 9 178) 5 +6
116) 0 137) 158) p+25→ 7 179) σ → 5
117) 0 138) 159) 3 +6 180) 27→ C
118) . . .→ C 139) 18−18 160) σ → 3 181) 0
119) 0 140) 44→ C 161) 5 +6
120) 0 141) 19−18 162) σ → 5

Table 4.7 The sequence of words G82 formed by assigning a value (here 100) to e and thus fixing
the position of the routine in memory. In principle, this is the variable-free code whose binary
equivalent would be placed in the long tanks, though as well as the short tank variables 121 and 131
von Neumann appears to have overlooked the variable p in orders 158 and 175. Before running the
code, a preparatory routine would adjust the targets of the jump instructions, and the substitutions
S15 would initialize the nine blank words and the six short tanks holding the routine’s parameters.

4.8 Process overview

Von Neumann’s development of the meshing routine can best be understood as the
series of transformations between different symbolic representations of the program
summarized in Table 4.8. Conventional mathematical notation was used to define
the problem and the criteria for an acceptable solution, and then a case analysis, also
familiar from informal mathematics, described the overall structure of the program.
This articulated a framework that described how the basic sequences of instructions
would be linked using loops and conditional branches. The orders were first written
in an extended version of EDVAC’s code allowing the use of variables of various
types. In a rather involved process, these were then reduced to the variable-free
form ready for translation into binary code. This last stage was not described in the
manuscript, but von Neumann (1945e) had earlier described a special-purpose key
punch that would ease the process of transforming code symbols into paper tape
perforations ready for loading intoM.
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Step Transformation Resulting form of program

1 (sect. 1) Give a mathematical formulation of
the problem.

The mathematical definitions of
sorting and meshing.

2 (sect. 3) Identify the basic sequences and their
interaction.

The case analysis.

3 (sect. 5) Write extended code for each basic
sequence.

68 coded instructions and short
tanks 11 to 45.

4.1 (sect. 6) Replace short tank address variables
with actual tank numbers.

The 68 instructions of Table 4.5
and the short tanks 1 to p+25.

4.2 (sect. 9) Replace long tank address variables
with values dependent on e.

The 82 code words of Table 4.6
and the short tanks 1 to p+25.

4.3 (sect. 11) Replace the variables p, a and e with
blanks.

The code of Table 4.7 (G82) and
the short tanks 1 to p+25.

4.4 (sect. 11) Adjust the offset location numbers in
G82 and perform the S15 substitutions.

Initialized code, to be invoked by
an instruction e→ C.

Table 4.8 A summary of the development of the meshing routine.

The first transformations were not rigorously defined. Von Neumann seems to
have assumed that it was obvious that the procedure expressed by the case analysis
would in fact mesh two sequences in accordance with the mathematical definition.
Similarly, no argument is given to demonstrate that the code sequences produced to
implement the various parts of the analysis do what they are supposed to do.

The transformation to variable-free code is rather different, however. It proceeds
in a number of steps, at each of which a certain class of variables in the code is
substituted by constant values. In step 4.1, the allocation of short tanks is decided
upon and the short tank variables in the instructions are rewritten. In step 4.2, a new
variable e is introduced to represent the address of the first instruction, and long
tank variables are replaced by expressions of the form e+ i. Step 4.3 removed the
remaining variables to leave code that, once translated into binary form, could be
loaded into EDVAC’s memory. The transformations to this code summarized in step
4.4 would then be carried out by the machine itself.

The development process exemplified in the manuscript formed the basis for the
more complex process defined in the Planning and Coding reports, as described in
the following chapter.



Chapter 5
Planning and coding

In the open-source community, a project is said to fork when a group of developers
takes the project’s codebase and starts independent work on it, often against a back-
ground of technical disagreement or personal acrimony. Something like a fork took
place in the EDVAC project in late 1945 when von Neumann persuaded his home
institution, the Institute for Advanced Study (IAS) in Princeton, to support a project
to build an electronic computer. He soon severed his ties with the Moore School and
enticed Herman Goldstine to the IAS as his lieutenant on the new project. Eckert
and Mauchly also left the Moore School to form a start-up company and begin work
on commercial computer development. Meanwhile, the EDVAC project continued
at the Moore School with a restructured project team.

Although the IAS machine is often characterized in terms of its difference from
EDVAC, at the first meetings of the new project team in November von Neumann
gave a thorough overview of current thinking on the EDVAC project, covering both
hardware and coding and including a brief discussion of the sorting application. In
many ways, EDVAC can be thought of as a first draft of the IAS machine.

Over the next few years, Goldstine and von Neumann produced a series of more
formal project reports. First was a Preliminary Discussion of the Logical Design of
an Electronic Computing Instrument, written in collaboration with Arthur Burks,
and this was followed by a three-volume treatise on the Planning and Coding of
Problems for an Electronic Computing Instrument, issued in 1947 and 1948. The
earlier report documented the high-level design of the machine and its code, and
the Planning and Coding reports went on to outline a methodology for program
development and included a compendium of typical programming examples. These
reports are often taken to mark the beginning of the systematic study of computer
programming.

Von Neumann’s 1945 treatment of the meshing problem informed the Planning
and Coding reports in a number of ways. It exemplified the development process that
the later reports would describe more formally, and meshing and sorting problems
featured as one of the more complex examples of coding. Even the discussion of
subroutines in the final report was prefigured in von Neumann’s earlier comments
about the reuse of the meshing routine.

49
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5.1 The IAS machine and its code

Once the Electronic Computer Project (ECP) was given the go-ahead, a series of
meetings was quickly arranged between von Neumann and key representatives of
the project partners, the IAS, Princeton University, and RCA, the Radio Corporation
of America. The minutes of the first meeting, on 12 November, noted that ENIAC
and EDVAC would be studied ‘for the education of the group’ (IAS 1945, #1), and
the meetings involved substantial presentations on this material by von Neumann.
The minutes therefore provide a valuable record of how thinking about EDVAC had
evolved since the summer.

As in the First Draft, von Neumann noted that ‘the storage tube and acoustic
tank seem to be the obvious candidates for inclusion as memory devices’ (IAS 1945,
#1, 6), and the discussions proceeded on the basis of a memory consisting of long
and short tanks and the assumption that ‘completely random reading is not in fact
possible, i.e. that the procedure is split up into switching and waiting for the right
number to come up’ (IAS 1945, #2, 1).

In the second meeting, on 19 November, von Neumann outlined a code ‘simply to
prove that it is possible to do the job’, describing the operations it contained as being
‘sufficient for complete programming (neglecting magnetic tapes)’ (IAS 1945, #2,
5). Despite its rather provisional nature, this code is of interest as it represents a
transitional phase between the EDVAC code used for the meshing routine and the
code for the IAS machine described in the Preliminary Discussion the following
year.

Number and order words were still distinguished by the value of their first bit,
but their format had changed significantly:

0 ± ξ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Order code x y X

All order words had three address fields: x and y were 6-digit short tank numbers,
while X could hold either a short tank number or a (suitably disambiguated) location
number for a long tank word, split between a 7-digit tank number and five digits
identifying a minor cycle. To distinguish ‘the “real” numbers of the computer’ from
those that merely denoted memory locations, von Neumann reverted to a metaphor
that he had considered earlier, only to discard:

we have 12 digits for the location of any given word, 7 digits for the tank or ‘street’ number
and 5 digits for the location of the word in the tank, i.e. the ‘house number’ proper. (IAS
1945, #2, 3)

The code, summarized in Table 5.1, is markedly simpler than the second EDVAC
code. Substitution is described as a ‘partial’ operation and the transfer operation
as ‘total’. Four orders provided for partial and total substitution or replacement in
either direction between long and short tank words. The code also appears to be
the first to include a conditional jump instruction, perhaps made possible by the
three-address format of the order words:
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Type Short symbol Description

1 Nξ The number ξ .

Arithmetic order

2 x ω y → X Carry out the operation x ω y and dispose of the result in X .

Transfer orders (total substitutions)

3 x → X Replace the contents of X with those of x.
4 X → x Replace the contents of x with those of X .

Substitution orders

5 x → X partial Substitute the address fields of X with values from x.
6 X → x partial Substitute the address fields of x with values from X .

Transfer of control orders (unconditional and conditional jumps)

7 C → X C connects to long tank X .
8 C → X if x = y C connects to long tank X if N(x)= N(y).

Table 5.1 The code outlined by von Neumann at the ECP meeting on 19 November, 1945 (IAS
1945, #2). The discussion did not fully resolve the question of when and where to store the results
of arithmetic operations. N(x) denotes the number in tank x.

It is desirable, however, to be able to transfer the control on order. Denote this order by
C→ X . In addition you want the ability to exercise an option depending on the outcome of
a particular computation, for example if the number in one short tank is greater than or equal
to the number in another short tank (denoted by x = y). If we always code as C→ X if x = y
then we can get unconditional transfer by putting all 0’s in for x and y, or we might have a
special order for unconditional transfer. (IAS 1945, #2, 4-5)

By the beginning of 1946, however, plans for the new machine’s memory had
changed dramatically. RCA had begun development of a new type of storage tube,
the Selectron, which would remove the variable waiting time associated with delay
line storage, and allow any item of data to be retrieved in a determined time period.
The architecture of the IAS machine, as described in the Preliminary Discussion of
June, 1946, included a memory built from 40 Selectrons. Words consisted of 40 bits,
with one bit stored at the corresponding position in each Selectron.

With a delay line memory, short tanks had been used as registers to make the
operands and results of arithmetic operations easily available. With the Selectron
storage, the rationale for this distinction evaporated, and the design of the arithmetic
unit changed. It now contained two registers, an accumulator to hold the result of
additions and subtractions, and a register which held the multiplier and part of the
product in multiplications, and the divisor and remainder in divisions.

The code given in the Preliminary Discussion is summarized in Table 5.2. Orders
reverted to the one-address format of the First Draft and, like the registers in the
arithmetic unit of the first EDVAC design, the accumulator served as the go-between
in any transfer of data from one location in memory to another. Only 20 bits were
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Order Short Symbol Description

Arithmetic orders

1, 2 x x − Clear accumulator A, and add (subtract) the number stored in
S(x) to (from) A.

3, 4 x M x −M Clear A, and add (subtract) the absolute value of the number
stored in S(x) to (from) A.

5, 6 x h x h− Add (subtract) the number stored in S(x) to (from) A, without
clearing.

7, 8 x hM x h−M Add (subtract) the absolute value of the number stored in S(x)
to (from) A, without clearing.

9 x R Clear register R and add the number stored in S(x) to it.
10 A Clear A and move the number in R to A.
11 x × Clear A and multiply the number in S(x) by the number in R,

storing product in A and R.
12 x ÷ Clear R and divide the number in A by the number in S(x),

leaving quotient in R and remainder in A.
20, 21 L R Multiply (divide) the number in A by 2 (i.e. shift A left (right)).

Transfer of control orders (unconditional and conditional jumps)

13, 14 x C x C′ Transfer control to the left (right) order in S(x).
15, 16 x Cc x Cc′ Transfer control to the left (right) order in S(x) if the number in

A is = 0.

Substitution orders (total and partial)

17 x S Move the number in A to S(x).
18, 19 x Sp x Sp′ Move the appropriate digits of A to the address field of the left

(right) order in S(x).

Table 5.2 The code of the IAS machine described by Burks et al. (1946) and used by Goldstine
and von Neumann (1946). Most orders consist of a single number x followed by an identifying
symbol. S(x) is the Selectron location indexed by x; two orders were stored in each location.

needed to code an instruction, divided between an 8 bit operation code and a 12
bit number specifying a storage location, and to save storage it was proposed to
pack two orders in each word. Pairs of orders were provided where necessary to
distinguish the two halves of a word.

Perhaps the most striking thing about this code, however, is how similar it is
to the code von Neumann had outlined the previous November, despite the radical
change in memory technology. A wide range of arithmetic operations was specified,
presumably to make the coding of typical applications as convenient as possible,
but apart from these the code only contains the partial and total substitutions and
conditional and unconditional jumps of the November code.
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5.2 Programming with diagrams

Von Neumann’s 1945 manuscript contains no visualization of the meshing program.
As he and Goldstine worked on example problems for the Planning and Coding
reports, however, the limitations of a purely textual approach became apparent and,
famously, the first report introduced the flow diagram notation. The rationale for this
was clearly explained in a draft version of the report:1

From our limited experience with the coding of numerical problems we have acquired a
conviction that this programming is best accomplished with the help of some graphical
representation of the problem. We have attempted, in a preliminary way, to standardize upon
a graphical notation for a problem in the hope that this symbolism would be sufficiently
explicit to make quite clear to a relatively unskilled operator the general outline of the
procedure. We further hope that from such a block-diagram the operator will be able with
ease to carry out a complete coding of a problem.

This unfamiliar terminology is suggestive, as ENIAC’s first cadre of operators
later recalled that they had learned to program the machine by examining its block
diagrams. Those imposing blueprints hid the complex electronic design of ENIAC’s
units, representing them as networks of functionally defined components. Similarly,
Goldstine and von Neumann’s block diagrams presented a view of a routine that
hid the details of coding while revealing its large-scale structure more clearly. The
diagrams’ ideography was similar to that of their electronic predecessors:

The ‘route’ travelled by the control is symbolized by lines with arrows on them indicating
the direction of ‘motion’, thus - . In appropriate places along the route we introduce
storage boxes for the retention of ‘static’ data, i.e., of number-words as distinguished from

order-words, thus- - . [. . .] Finally we introduce boxes en route to show the functions

the control is to perform, i.e., to reveal the microscopic orders, thus- - . In this
case the control executes the orders in the box before proceeding further in its itinerary.

A block diagram is a picture of a coded routine in memory: locations holding
numbers are shown as storage boxes and the in-line control boxes correspond to
locations containing orders, while the arrows show how control can move through
memory as the program runs. Figure 5.1 shows the first example diagram in the
draft report, a simple loop to calculate N values of the polynomial x2

n +axn +b and
tabulate the results in memory.

Von Neumann drew an analogy between inductive processes in mathematics and
loops in programs and referred to the variable controlling a loop, n in this example,
as the ‘inductive variable’. The trickiest aspect of representing code graphically was
to find a way of showing how the values of the inductive variable and the other
stored numbers that depended on it changed as a routine executed.

The storage box in Figure 5.1 lists the memory locations used by the program
and their contents. The variables a, b, N, and n represent the numerical data of the
problem, and memory locations are identified by the address variables 0′,1′,2′, · · · .
1 Goldstine and von Neumann (1946). All unattributed quotations in the following sections are
from the text of the draft report.



54 5 Planning and coding

ii r- -

111
0′ −
1′ 5′+2(N−1)
2′ 5′+2n (5′)
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< 0

�

- ei

Fig. 5.1 Block diagram of a routine to tabulate values of x2
n + axn + b. After Goldstine and von

Neumann (1946).

The contents of memory are defined by constant or variable expressions. Location 0′

is working storage and locations 8′,10′, · · · , 6′+2N will hold the calculated values
of the polynomial.

The storage box is attached to the flow line inside the loop body and documents
the values stored at the moment control passes that point. Values depending on n
will differ on each iteration. At the beginning of each iteration of the loop, location
2′, for example, will hold the value 5′+ 2n. This expression represents an address:
for n = 1,2, · · · , N it will take the values 7′,9′, · · · , 5′+ 2N, the addresses of the
locations holding the values of xn. The (5′) in line 2′ in the storage box is an initial
value; this implies that the initial value of n is 0, something that is not otherwise
stated.

Storage boxes are all alike, but control boxes differ according to the kind of
operation they portray. The three control boxes in Figure 5.1 correspond to the major
steps in the loop: incrementing the value of n, calculating the next value of the
polynomial, and testing whether or not the induction, or iteration, is complete. It is
striking that although the progress of the iteration is determined by the values of N
and n, these numbers are not actually stored. Goldstine and von Neumann wrote that
‘we find it more convenient to store 5′+ 2N, 5′+ 2n’, implying that the code will
control the loop by manipulating location numbers rather than, as the control boxes
suggest, storing and modifying the value of n.

A box containing a formula

merely indicates that a group of microscopic orders are to produce a given arithmetic result,

thus n2 +3n+1 is an abbreviation for a set of orders that will produce the polynomial
n2 +3n+1.

Microscopic orders ‘explain how a particular expression is calculated’, and were
contrasted with macroscopic orders which ‘govern the overall characteristics of the
program’, such as its looping and termination properties. These operation boxes thus
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performed an essential function of any block diagram by blackboxing some of the
low-level details of the program.

Conditional transfer orders were represented by ‘alternative boxes’ with different
output arrows to be followed in the two cases where the expression in the box was
= 0 or < 0. As with the operation boxes, the expression in an alternative box was
treated as an abbreviation for the microscopic orders required to calculate it, and the
sign of the result was used to choose between the two possible paths.

The third type of control box in Figure 5.1, called a ‘substitution box’, was

used for those orders that can alter numbers of other orders [and] symbolized as a rectangle

with an instruction such as n+ 1⇒ n inside of it, i.e., n+1⇒ n . This box is used to
mean that any order containing a memory-location number which depends on n and any
number-word which depends on n are to be altered by replacing n by n+1.

A substitution box appearing in a loop typically represented a change in the value of
the variable controlling the loop and like the other control boxes, the expression in
the box denoted the microscopic orders required to bring this change about. These
orders might be more complicated than simply incrementing the number in a given
memory location: in this example, the induction variable n only appears within the
expression 5′+ 2n, and the microscopic orders would have to change the contents
of location 2′ consistently with the value of n increasing by 1.

Finally, the block-diagram notation included ‘the symbols i and e to denote the
initiating and ending program signals’. Symbols in circles were connectors used to
link non-contiguous parts of a large diagram.

After presenting the block diagram, Goldstine and von Neumann went on to show
how it could be used, as promised, to carry out the coding of the problem ‘with
ease’. Table 5.3 shows sequences of orders corresponding to the three control boxes
in the block diagram of Figure 5.1. As in the meshing routine manuscript, initial
coding was carried out in an extended code and the code laid out in a similar format.
Address variables 2.1 to 4.4 denote the locations of the orders are stored and appear
in substitution and transfer orders. The symbol e represents the end of the routine
and would typically be replaced by an unconditional jump to the first instruction of
the next part of a complete program.

The coding of the substitution box is slightly confusing. For reasons unexplained
in the text, the diagram shows the substitution n⇒ n− 1 instead of the expected
n+ 1⇒ n. Order 2.1 loads the value of location 2′ into the accumulator, but the
stated result of this order is to load the value 5′+ 2(n− 1) into the accumulator
rather than the 5′+2n that the storage box records as the value of 2′; it appears that
the variable n appearing in the storage box has been substituted by the expression
n− 1. Order 2.2 adds 2 to the accumulator and the resulting value 5′+ 2n is then
stored in location 2′, re-establishing consistency with the storage box. The partial
substitutions in orders 2.4, 2.5, 2.6 and 2.8 update the orders whose address field
depends on the value of n, namely 3.1, 3.2, 3.4 and 3.8. The code corresponding
to the substitution box therefore carries out all the changes necessary to make the
stored numbers consistent with the incremented value of the induction variable n.

As in the meshing routine manuscript, the next step was to assign the order and
number words to specific locations in memory and replace the variables in the coded
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Memory Control Result of Order
Position Order A R, S, C

2.1 2′ 5′+2(n−1)
2.2 4′ h 5′+2n
2.3 2′ S 2′ : 5′+2n
2.4 3.1 Sp 3.1 : (5′+2n) R
2.5 3.2 Sp 3.2 : (5′+2n)×
2.6 3.4 Sp 3.4 : (5′+2n) R
2.7 3′ h 6′+2n
2.8 3.8 Sp 3.8 : (6′+2n) S

3.1 5′+2n R R : xn
3.2 5′+2n × x2

n
3.3 0′ S 0′ : x2

n
3.4 5′+2n R R : xn
3.5 5′ × axn
3.6 0′ h x2

n +axn
3.7 6′ h x2

n +axn +b
3.8 6′+2n S 6′+2n : x2

n +axn +b

4.1 2′ − −(5′+2n)
4.2 1′ h 2N−2−2n
4.3 2.1 Cc N−n−1 = 0
4.4 e

Table 5.3 Sequences of orders corresponding to the substitution, operation and alternative boxes
in Figure 5.1. The effect of an order on the contents of the accumulator is shown in column A
and the changed contents of memory locations and the register in column R, S, C, along with
the condition under which the conditional transfer takes place. After Goldstine and von Neumann
(1946).

instructions of Table 5.3 with the actual addresses. However, the design of the IAS
machine added a complication at this point:

Accordingly, we proceed to the last phase of our programming: the assignment of actual
positions in the memory. Recalling that there are two orders per word, we make the assign-
ment as follows: There are in all 20 orders, which will occupy positions 1 through 10 in
the memory; the static storage will then be assigned positions 11 through (17+2N) in the
memory. We now systematically renumber all our preceding work and thus arrive at our
final set of machine orders.

In addition, the induction variable n was assigned its initial value of 0. This allo-
cation of orders and static storage locations to fixed positions in memory gives the
version of the program shown in Table 5.4.

The details of this example demonstrate how the general approach to coding
adopted by von Neumann for the meshing routine was carried over to the IAS
project. A number of basic sequences were identified and coded in an extended
code including address variables. Values were then substituted for these variables to
give a version of the code that could easily be translated into binary form. With only
minor modifications, this is the approach that was followed in the examples in the
published version of the Planning and Coding reports.
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Address Orders Address Contents

1 13 : 15 h 11
2 13 S : 5 Sp 12 14+2N
3 5 Sp′ : 6 Sp′ 13 16
4 14 h : 8 Sp′ 14 1
5 16 R : 16 × 15 2
6 11 S : 16 R 16 a
7 16 × : 11 h 17 b
8 17 h : 17 S 18 x1
9 13 − : 12 h · · ·

10 1 Cc : e 16+2N xN
17+2N

Table 5.4 The final version of the code for the polynomial program. Order and number words have
been assigned to definite memory locations, and the only variable remaining is e. After Goldstine
and von Neumann (1946).

The major innovation in the draft report is the introduction of the block diagram
notation. The diagram of Figure 5.1 replaces the manuscript’s case analysis as a
way of summarizing the relationships between the basic sequences, defining which
sequence followed which and when each sequence would be invoked. Goldstine
and von Neumann clearly found the graphical notation clearer and more expressive
than the conventions of informal mathematics, perhaps particularly when it came
to defining iterative processes. Furthermore, by distinguishing operation, alternative
and substitution boxes, the notation introduced a three-fold categorization of the
types of basic sequence that allowed program structure to be modelled at a more
abstract level than that of individual orders.

Another change from the manuscript is the treatment of the starting address of
the program. In the manuscript, von Neumann originally left this as a variable e
(confusingly now used for the exit point of a routine), but coded routines in the draft
report are assigned a fixed starting address. We will see in the next chapter how this
was reconciled with the need, also identified in the manuscript, to allow routines to
easily appear at different places in memory.

5.3 The meshing routine

Two sections of the draft Planning and Coding report, in Goldstine’s handwriting,
develop code for meshing and sorting routines. The two operations are defined in
almost the same words as the opening section of von Neumann’s manuscript, but
the report gives a block diagram for the meshing problem instead of von Neumann’s
case analysis. The code is also rather different; in part this is the inevitable effect of
migrating the problem to a different machine, but there are two significant changes
which led to modifications to the block diagram notation and its use.
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Fig. 5.2 The case analysis at the start of the meshing program depicted as a cascade of alternative
boxes. Adapted from Goldstine and von Neumann (1946); the mathematical notation is that of the
1945 manuscript, and small Greek letters have been added to cross-reference the order sequences
in the earlier program with the control paths in the block diagram.

The first change had to do with the way the conditional branching at the start of
the program was expressed. In the manuscript, von Neumann had used the technique
described in section 3.3, substituting the starting location of an instruction sequence
into an unconditional transfer order. In contrast, the later version of the program
used conditional transfer orders. Four conditional branches were required, and the
block diagram in the draft report depicts these as the cascade of alternative boxes
shown in Figure 5.2.

Von Neumann seems to have noticed a redundancy here: boxes 2 and 3 carry out
the same test and so the corresponding code will be repeated in the final program on
both control paths leading from box 1. In the meshing program this is insignificant,
but he discussed the general case in a letter to Goldstine (von Neumann 1946):

It can happen that a conditional transfer is wanted, but in such a manner that it should
become effective only after certain other calculations have taken place. Denote these calcu-
lations by a block -x c xx- , the case I have in mind is then, that you wish to make the
test, as to which of the two branches of the conditional transfer is to be used, before c (at x),
but that you wish to carry out the bifurcation after c (at xx). One way to do this is to code c
twice:

Scheme A: - f
= 0

< 0

-
-

c

c

-

- , but this may be wasteful. Another method is to

code c only once, to let an unconditional transfer
�� ��to
����α follow c, and to substitute α from

the conditional transfer before c:

Scheme B: - f
= 0

< 0

-
-

α1 → α

α2 → α

Q
�
q- c -
�� ��to
����α α1i

-α2i-
[. . .]

If c is sufficiently involved, then Scheme B may be preferable to Scheme A. Even for a
4-way alternative: f = or < 0, g = or < 0 (which we have e.g. in the meshing problem),
one should be familiar with both approaches:

Scheme A: - f
= 0

< 0

����*
g = 0

< 0

HHHHj g = 0

< 0

-
-

-
-

, and
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Scheme B: - f
= 0

< 0

����*
α1 → α

β1 → β ZZZZ~

HHHHj α2 → α

β2 → β
����>
q- g = 0

< 0

- iα
- iβ
iα1 -iα2 -iβ1 -iβ2 -

This new notation, the implicit transfer of control from a terminal containing a
symbol (e.g. α) to one of a set of matching terminals containing that same symbol
subscripted (e.g. α1), became known as a variable remote connection. The boxes
containing formulas such as α1 → α represent partial substitutions modifying the
addresses in the transfer orders; in the notation of the draft report these should be
written α1 ⇒ α , etc. Even von Neumann was confused by the symbolism, and he
wrote under the first Scheme B diagram, ‘Am I using the proper kind of arrow?’.

Goldstine added a summary of von Neumann’s proposal to the draft report, along
with an illustration of how to apply scheme B to boxes 1, 2 and 3 of Figure 5.2, but
both the draft and the published Planning and Coding reports exclusively used the
more flexible scheme A to express complex conditional branching.

As well as being a useful modelling notation, variable remote connections made
the block diagram notation more complete, in the sense of being able to depict more
of the capabilities of the code. Partial substitutions into arithmetic orders were ad-
equately represented by substitution boxes, but partial substitutions into transfer
orders will in general change the topology of the block diagram, in effect moving
the pointy end of an arrow to another box. They therefore cannot be modelled by
diagrams containing only fixed connections between boxes.

A second change to the block diagram notation arose indirectly from the nature
of the IAS machine’s storage. The meshing routine moves complexes, contiguous
groups of p+1 words, from one place to another in memory. In a delay line memory,
it was difficult to arrange for the complexes to be efficiently moved on a word-
by-word basis, and the version of the EDVAC code used in the 1945 manuscript
included instructions to move sequences of words in one operation.

With the Selectron storage this constraint no longer held, and the code for the IAS
machine only provided for moving one word at a time. This meant that the meshing
routine now had to include an inner loop to move the p+1 words in a complex. In
the sequence of examples in the draft report, this was the first program with a nested
loop, or a ‘double induction’ as von Neumann called it, and this raised an issue with
the use of storage boxes.

Block diagrams were originally drawn with a single storage box summarizing
the memory locations used by the program, as the example in Figure 5.1 illustrates.
A formula described the contents of each location, and their initial values could also
be shown. With only one box, however, it was not possible to show the relationship
between the control flow through the diagram and the changing values in memory.
Von Neumann described an alternative scheme, with reference to the diagram in
figure 5.1, as follows:

An alternative procedure would be this: Attach the storage box in its initial form, i.e. with
a 5′ opposite the memory location number 2′, outside the n-induction loop, i.e. between gi
and the first- . Attach at the storage box’s present location, i.e. within the n-induction



60 5 Planning and coding

loop, a small storage box which indicates only the change that takes place during the induc-
tion: 2′ : 5′+2n . At present the simpler notation of the text will be used, however there are
more complicated situations (e.g. multiple inductions) where only a notation of the above
type is unambiguous. (Goldstine and von Neumann 1946)

Under this new scheme, a storage box at the beginning of a block diagram showed
the initial values held in memory locations, and small boxes were attached to the
flow lines of the diagram at points, particularly inside loops, where the stored values
changed. Goldstine and von Neumann then redrew the existing block diagrams to
include smaller distributed storage boxes that more clearly showed the changes in
memory that took place as the process evolved. After redrawing the block diagram
for the meshing routine, Goldstine commented:

It should be noted [. . .] how one shows the changes effected in the various positions of main
storage [box] by means of small details from it inserted into the appropriate places in the
various induction loops. (Goldstine and von Neumann 1946)

This notational change did not affect the control boxes in the block diagram,
however, but only the way the changes they brought about were described. The
coding of the meshing routine from the original block diagram, following the same
process as for the simpler polynomial example, was unchanged by the update to the
diagram.

5.4 The sorting routine

The draft Planning and Coding report contains the first full treatment we have of a
sorting routine using the mergesort procedure, explained as follows:

we consider the problem of sorting a sequence of complexes (xl ; u1
l , · · · , uP

l ) (l = 0,1,
· · · , L− 1), i.e., of obtaining a monotone permutation of the given sequence. It will be
shown below that this can always be achieved by repeated meshings. We start by meshing
the 1-sequences (x2r; u2r) and (x2r+1; u2r+1) (r = 0,1,2, · · ·) and obtain a number of 2-
sequences—and possibly one 1-sequence. We then mesh these sequences, obtaining a set
of four-sequences, etc. (Goldstine and von Neumann 1946)

The sorting routine was designed as a ‘double induction on two indices n and r,
which specify the length and number of monotone sequences to be meshed’. n con-
trols the outer loop: each time this loop is entered, the length of the subsequences
being meshed is doubled, so as n takes on the values 0,1,2, · · · , the sequences be-
ing meshed are of length 2n = 1,2,4, · · · . In the nth iteration, all the subsequences
of length 5 2n have been sorted, and the routine meshes pairs of these into sorted
subsequences of length 5 2n+1. r controls the inner loop, counting how many pairs
of subsequences have been meshed. At each iteration of the inner loop, there are
three possibilities: two subsequences of length 2n can be meshed and the inner
loop repeated; if there is only one subsequence of length 2n remaining, it can be
meshed with any remaining complexes; otherwise, any remaining complexes are
simply added to the end of the sequence.
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The block diagram for the sorting routine was revised twice as Goldstine and
von Neumann took into account the modifications to the notation described in the
previous section. The first diagram used the original form of the notation with a
single large storage box and the first revision introduced small boxes distributed
round the diagram to show the changes in stored values more clearly.

As von Neumann had proposed in his 1945 manuscript, the sort routine called
the meshing routine as a subroutine, to ‘utilize our preceding work on meshing’ as
the draft report put it, and represented it in the block diagram by the special box
- ∗ M - . In the first two versions of the diagram, the box representing the
meshing routine was drawn twice and linked directly to the following code, in effect
following scheme A from von Neumann’s letter. The final version of the diagram
followed scheme B: the box was only drawn once and the different branches of
the sort routine merged just before it. Variable remote connections specified where
control would pass to once meshing was complete.

This change reflects some uncertainty about the semantics of the asterisked
boxes, which Goldstine and von Neumann had originally described as being like
footnotes. Boxes in block diagrams represented blocks of words in memory: if the
subroutine box appeared twice, this would mean that its code would appear twice in
the finished program, or that it would be an ‘open’ subroutine, to use terminology
that emerged a few years later. In fact, the meshing routine was used as a ‘closed’
subroutine whose code was separate from that of the sort routine and called from
different places in it, a situation more accurately reflected by the final version of the
diagram.

A further notational issue was how to represent the initialization of the subrou-
tine’s parameters when it was called. Goldstine and von Neumann dealt with this
rather ingeniously by including the meshing routine’s initial storage box in the block
diagram of the sort routine. This box defined the storage used by the subroutine and
by means of suitable substitutions, the sort routine diagram could indicate how that
storage was initialized before the meshing routine was called.

When they began to consider the sort routine, Goldstine and von Neumann had
already fully coded the meshing routine and assigned it to storage locations 1–31.
The block diagram and the code of the sort routine used these location numbers to
cross-reference to the meshing routine. This was not a viable long-term strategy,
however: as von Neumann had pointed out, subroutines would have to be ‘mobile’
to be useful, and a technique that required actual location numbers to be included
in a block diagram that used a subroutine was clearly inadequate. The solution they
proposed to the mobility problem is discussed in Section 6.3; in the draft report, the
final stage of the coding of the sort routine was, perhaps tellingly, ‘left to the reader
as an exercise’.
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5.5 Planning and coding

As the draft report was transformed into the three volumes of the final Planning and
Coding report, many changes were made and much new material added. The first
chapter recast the block diagrams of the draft as flow diagrams and situated them
within an explicit step-by-step process for program development that codified von
Neumann’s earlier practice outlined in Table 4.8.

Goldstine and von Neumann enumerated four major stages in the process, each
containing a number of specific steps; these are summarized in Table 5.5. Despite the
introduction of flow diagrams, the overall shape and purpose of this process is very
similar to the earlier approach. In both, after a stage of mathematical analysis the
program is written in an extended symbolic code containing variables of different
kinds. These variables are then systematically removed, leaving variable-free code
which can be mechanically transformed into its binary form.2

The report began with some general comments about coding. Emphasizing the
fact that a running program could modify its own instructions, Goldstine and von
Neumann pointed out that in general the coded sequence of instructions in memory
would change as program execution progressed. It was therefore important to un-
derstand not only the static properties of the code expressed in the initial sequence
of symbols, but also its dynamic, temporal behaviour:

in planning a coded sequence the thing that one should keep primarily in mind is not
the original (initial) appearance of that sequence, but rather its functioning and continued
changing while the process that it controls goes through its course. [. . .] the basic feature of
the functioning of the code in conjunction with the evolution of the process it controls, is to
be seen in the course which the control C takes through the coded sequence, paralleling the
evolution of that process. We therefore propose to begin the planning of a coded sequence
by laying out a schematic of the course of C through that sequence, i.e. through the required
region of the selectron memory. This schematic is the flow diagram of C. (Goldstine and
von Neumann 1947-8, vol. 1, 4)

Goldstine and von Neumann did not explain why they changed their terminology
from block to flow diagram, but perhaps they felt that the strong associations of
the earlier term with electronic design would be misleading. Using the metaphor of
flow to describe computational processes depicted as directed graphs already had
some currency. As well as Cunningham’s diagrams of the punched card workflow
surrounding ENIAC, mentioned earlier, BRL mathematicians Haskell Curry and
Willa Wyatt had described a depiction of the topology of a complex ENIAC set-up
as a ‘flow chart’ (Curry and Wyatt 1946).

Like block diagrams, flow diagrams showed the paths C can take through the
code of a routine laid out in memory, but there was now a greater emphasis placed
on the changes taking place as the process unfolded. The equivalence between types

2 Von Neumann does not appear to have considered automating this final transformation. His May
1945 letter to Goldstine described a typewriter-like key-punch device with keys labelled with the
symbols of the EDVAC code. When a key was pressed, the machine would make the corresponding
perforations in some tape (von Neumann 1945e).
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Step Transformation Resulting form of program

1 A mathematical stage of preparation

1.1 Give a mathematical formulation of the
problem.

Equations and conditions.

1.2 Replace the equations and conditions with
‘arithmetical and explicit procedures’.

A step-by-step process, usually
employing approximations and
multiple inductions.

1.3 Estimate the numerical precision of the
process defined in step 1.2.

2 The dynamic or macroscopic stage of coding

2.1 Allocate storage areas.
2.2 Identify basic sequences of instructions

needed and their connections.
Flow diagram with storage tables.

3 The static or microscopic stage of coding

3.1 Write instructions for each operation and
alternative box and variable remote con-
nection in the flow diagram.

The preliminary enumeration of
the code: sequences containing
storage positions and variables.

4 Assign all storage positions and all orders their final numbers

4.1 Assign numbers to storage positions.
4.2 Linearize operation sequences, adding un-

conditional jumps where necessary.
4.3 Assign orders to words, pairing where

possible. Assign final numbers and L/R
marking to orders.

4.4 Replace the address variable in each order
with its final value.

The final enumeration of the
code, containing variables i and e
for entry and exit addresses.

4.3 Replace i and e with their actual values. Variable-free binary code.

Table 5.5 The methodology of the Planning and Coding reports. The descriptions of the four main
stages are taken verbatim from Goldstine and von Neumann, (1947-8, vol. 1).

of boxes and orders was maintained. Operation boxes denoted simple sequences of
arithmetical operations and transfers of numbers, and:

The alternative boxes which we introduced correspond to the conditional transfer orders
xCc, xCc′. I.e., the intention that they express will be effected in the actual code by such an
order. (Goldstine and von Neumann 1947-8, vol. 1, 7)

The most significant innovation in the flow diagram notation was to do with
the way substitution was handled. To begin with, an explicit distinction between
storage and variables was introduced. The memory locations used by a program to
store numbers were classified as fixed or variable storage. Both terms were relative
to the problem being coded: the Selectrons provided no read-only storage. Storage
was distinguished from variables, which were introduced as follows:

A mathematical-logical procedure of any but the lowest degree of complexity cannot fail to
require variables for its description. (Goldstine and von Neumann 1947-8, vol. 1, 10)
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Variables were also classified into two kinds. Some were basically parameters,
given values at the beginning of the problem and never changed. Borrowing a term
from formal logic, Goldstine and von Neumann referred to these as free variables.
Bound variables, in contrast, were those which only existed within the problem,
assumed a sequence of different values as a computation progressed, and couldn’t
meaningfully be given values from outside a routine. A typical example of a bound
variable is the ‘induction variable’ that counted the iterations of a loop.

Storage locations, then, represented the physical locations updated by a running
program. Variables, on the other hand, were symbols used only in the mathematical
description of the problem. It began to seem like something of a category mistake to
think of a program instruction changing the value of a variable. In the flow diagram
notation, this change in perspective was reflected in a technical change in the status
of substitution boxes. They no longer corresponded to the code that carried out the
substitutions, but only to a change in the way the computation was described.

A substitution box never requires that any specific calculation be made, it indicates only
what the value of certain bound variables will be from then on. Thus if it contains ‘ f → i’,
then it expresses that the value of the bound variable i will be f in the immediately following
constancy interval, as well as in all subsequent constancy intervals, which can be reached
from there without crossing another substitution box with a ‘g→ i’ in it. The expression
f is to be formed with all bound variables in it having those values which they possessed
in the constancy interval immediately preceding the box, at the stage in the course of C
immediately preceding the one at which the box was actually reached. (This is particularly
significant for i itself, if it occurs in f .) (Goldstine and von Neumann 1947-8, vol. 1, 17)

To illustrate the effect of this change, consider the basic case of a loop which
is traversed N times under the control of an induction variable n. Figure 5.3 shows
how such a loop would be represented in the two notations. As in many of Goldstine
and von Neumann’s examples, the value stored is not n, but some more general
expression f (n) depending on it, perhaps the address of the nth element of an array.
Following the notational conventions for the two types of diagram, the location at
which this value is stored is denoted by the symbols 1′ and A.1, respectively.

The crux to understanding a loop is the transformation carried out by the boxes
labelled 1 in Figure 5.3. These boxes stand for the instructions that compute and
store f (n+ 1) in place of the existing value f (n). Box 1 in the block diagram in-
crements the induction variable and all values that depend on it: after this code has
completed, therefore, the new value stored at 1′ can only be consistently described
as f (n), misleadingly suggesting that no change in storage has been effected by box
1. In the flow diagram, however, box 1 is an operation box which does not affect the
value of the variable n, and the following storage box clearly indicates the updated
value of f .

However, this increased expressivity comes at a cost. Following the loop after
box 1 in the flow diagram, we re-encounter the storage box which states that the
value stored in A.1 is f (n): this is inconsistent with the new value f (n+1) that has
just been calculated. To make the diagram consistent, We need to state explicitly
that the value of the bound variable n has increased. This is recorded in the in-line
substitution box containing the expression n+ 1→ n. Unlike the substitution box
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Fig. 5.3 The control of a simple loop expressed as a block diagram (top) and flow diagram (bot-
tom). The block diagram is adapted from Figure 5.1, and loops with the same structure as the flow
diagram appear in (Goldstine and von Neumann 1947-8, vol. 1). Control passes through each loop
N times, and the inductive variable is n. An expression dependent on n, represented by the function
f (n), is computed and stored, not n itself.

in the block diagram, this does not correspond to any program instructions, and is
distinguished from other control boxes by being marked with #. As Goldstine and
von Neumann (1947-8, vol. 1, 11) expressed it, ‘we prefer to treat these variable
value changes merely as changes in notation which do not entail any actual change
in the relevant storage items’.

To use a term introduced by von Neumann (1947), a substitution box reconciles
the storage boxes on either side of it. If the result of applying the substitution to the
expression in the storage box following the substitution box is the expression in the
preceding storage box, the diagram is consistent. This technique also applies nicely
to the initialization at the beginning of the loop: the substitution 1→ n reconciles
the first two storage boxes in the flow diagram, whereas the initial value n = 0 in the
block diagram is only stated implicitly.

A flurry of correspondence between Goldstine and von Neumann in February
and March 1947 resulted in the introduction of one more piece of notation, the
assertion box, to the flow diagrams. The issue was how to record the overall effect
of a loop after it had terminated. When the loop in the flow diagram of Figure 5.3
terminates, the induction variable n has the value N and storage location A.1 holds
the value f (N), as recorded in the final storage box. The function of the assertion
box containing the expression n = N is to reconcile this with the preceding storage
box, just before the alternative box, which showed that A.1 stored the value f (n).

Like a substitution box, an assertion box describes properties of variables rather
than storage and is marked with # to indicate that it:

never requires that any specific calculations be made, it indicates only that certain relations
are automatically fulfilled whenever C gets to the region which it occupies (Goldstine and
von Neumann 1947-8, vol. 1, 17)
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Flow diagrams can therefore be read on two levels. If the references to storage
locations are treated simply as labels for values, a diagram can be read as a purely
mathematical description of a computational process. If, on the other hand, the boxes
marked # are ignored, the diagram functions, like the earlier block diagrams, as a
picture of a program in memory that serves as a guide when coding the routine.

Historian Nathan Ensmenger (2016) has described flow diagrams as they were
used in the computing industry as boundary objects, mediating between different
groups of participants in the business of software production. In Goldstine and
von Neumann’s method, they exist rather on the boundary between planning and
coding, or between mathematics and computing, mediating between the computer-
independent work carried out in stage 1 and the machine-specific coding of stage 3.
Furthermore, this boundary is inscribed in the very heart of the notation itself, in the
distinction drawn between storage and variables and the use made of it.

5.6 The final versions of the sorting routines

Versions of the meshing and sorting routines appeared in the second of the Planning
and Coding reports, in 1948, where they were described as having a ‘combinatorial’
rather than an ‘analytical’ character and as providing a test for the ‘efficiency of the
non-arithmetical parts of the machine’ (Goldstine and von Neumann 1947-8, vol. 2,
49).

There was a subtle change to the wording of the mathematical definitions of the
two operations. In the manuscript and the draft report, the operation of meshing two
sequences had been defined as that of sorting the concatenation of the sequences.
In the final report, however, meshing was described as the operation of finding a
monotone permutation of the sum, or concatenation, of two sequences and sorting,
as before, as that of finding a monotone permutation of a sequence. This change
in wording made no material difference, but did at least remove the misleading
suggestion that the meshing routine would be defined in terms of the sorting routine.
On the contrary, the meshing problem was described as the simpler of the two, and
one ‘whose solution can conveniently be used’ in solving the sorting problem.

Meshing was described as an ‘inductive process’ and was defined in detail by
means of an elaborated and rather more formal version of the case analysis that von
Neumann had presented in his 1945 manuscript. However the different cases were
reordered to bring out the equivalence between the order in which the decisions were
made and the structure illustrated in Figure 5.2. The flow diagram for the meshing
routine preserved the structure of the block diagram from the draft report, and added
a lot of detail in storage boxes to fully document the course of the meshing process.
The code was presented as being derived from the flow diagram in essentially the
same was as in the simple polynomial example described in Section 5.2.

Similarly, after a relatively informal description of the idea underlying the merge-
sort algorithm, the sorting routine was formalized as an inductive process. The flow
diagram, however, had a rather different structure from the earlier block diagram,
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Fig. 5.4 Calling the meshing routine from the sorting routine. After (Goldstine and von Neumann,
1947-8, vol. 2, 61).

reflecting a continuing uncertainty on Goldstine and von Neumann’s part about how
to model the use of the meshing routine as a subroutine.

Goldstine and von Neumann wrote that

the subsidiary sequence [of the meshing routine] will occur in the interior of the main se-
quence [of the sorting routine] (Goldstine and von Neumann 1947-8, vol. 2, 59)

This wording seems to suggest that they planned to use the the meshing routine as an
open subroutine and form a single sequence of instructions to carry out mergesort.
In the code the produced, however, the meshing routine formed a closed subroutine
occupying storage locations 0–41. The sorting routine occupied words 42–86, and
substituted parameters values in the storage area used by the meshing routine before
transferring control to location 0 to call the routine.

The meshing routine was only called once by the sorting routine, and as in the
earlier diagrams it was represented in the flow diagram of the sorting routine as a
single box. The relevant section of the flow diagram is shown in Figure 5.4. The
meshing routine is represented by the box labelled IX: the asterisked form of the
box is not used, and the number range 0–29 refers specifically to the order words in
the subroutine. This notation therefore respects the basic semantics of the diagrams
where boxes represented blocks of memory. The number words, or storage area,
used by the meshing routine, in locations 30–41, were not shown on the diagram of
the sorting routine, but were assumed to be available. A note on the diagram stated
that ‘Numbers 0–41 refer to 0–41 in 11.3’, i.e. the preceding section of the report
that had described the meshing routine.

The mergesort procedure called the meshing routine on three conceptually sep-
arate occasions. As in the final version of the diagram in the draft report, the flow
diagram was structured to show the subroutine only once, with the three control
paths merging just before the subroutine box. Rather than using variable remote
connections, however, the diagram was significantly restructured to use a cascade
of alternative boxes after control returned from the meshing routine to split the con-
trol flow back into three separate parts. The first of these alternative boxes is shown
in Figure 5.4.

As far as the representation of subroutines is concerned, then, the flow diagram
notation presented in the final Planning and Coding reports seems to take a step
back from the draft report. There is no notation that is specifically adapted to de-
note or describe properties of a typical subroutine call and return process. The box
representing the order words of the meshing subroutine seems to be nothing more
than an abbreviation for a subdiagram: while this might well introduce the possibil-
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ity of hierarchically structuring diagrams as a way of reducing complexity, it does
not reflect the semantics of subroutines. In fact, by strongly suggesting that what is
in fact a closed subroutine is implemented as an open subroutine, it seems rather to
obfuscate those semantics. The issue of Goldstine and von Neumann’s treatment of
subroutines is considered in more detail in the following chapter.

After presenting the coded version of the mergesort routine, derived from the
flow diagram in the standard way, Goldstine and von Neumann concluded by dis-
cussing operations more generally and comparing the performance of their programs
with that of IBM punched card equipment.

There is no evidence that Goldstine or von Neumann continued work on meshing
and sorting problems after the publication of the Planning and Coding reports. It is
outside the scope of this book to trace the legacy of the reports and the code they
contained, but an illustration of their fate is provided by the Los Alamos MANIAC
computer, which became operational in 1952. MANIAC’s design was based closely
on that of the IAS machine, and its programmers’ manual incorporated an adapted
version of the Planning and Coding reports and included a version of the mergesort
routine.

The problem had evolved significantly. It was simplified to sort sequences of
numbers rather than complexes, and the length of the sequence to be sorted was
assumed to be a power of 2. It was no longer coded as an internal sort, but was
designed to process data held on the magnetic drum forming MANIAC’s ‘outer’
memory. These assumptions simplified the program’s structure: there was no sub-
routine to carry out meshing and it was described by a single flow diagram that
contained ‘three induction loops’ corresponding to the subprocesses of meshing,
sorting, and transferring data between the drum and the internal memory (Jackson
and Metropolis 1954).



Chapter 6
Subroutines

The use of subroutines was an ever-present theme in von Neumann’s programming
work. In 1945 he specifically commented on the use of the meshing routine as a
subroutine in a sorting program, the topic was extensively discussed in the 1946
Planning and Coding draft, and the final published volume of the report presented a
scheme for partially automating the process of combining routines into a complete
program.

The idea of organizing computations hierarchically so that previously obtained
results and routines that had already been coded could be reused in new contexts
was familiar and widespread. Manual computation relied on printed volumes of
tabulated functions, and mathematicians used well-known interpolation routines to
compute values that lay between between those provided in a table. These volumes
allowed the prior work of the computers who had drawn up the tables to be easily
reused, and their use had the curious side-effect of distributing computation widely
across space and time.

The designers of the first automatic computers adopted a variety of strategies
for reuse: for example, the Harvard Mark I had special-purpose interpolation units
which read tabular data from tapes and computed the intermediate values required
by a program; in contrast, ENIAC had hardware units on which tabulated functions
could be set up and programmers were expected to design their own interpolation
routines to be called into action when required.

The challenge facing EDVAC’s designers, then, was not that of coming up with
a brand-new scheme to enable reuse but rather of adapting a suite of familiar and
widely used practices to the demands of the new machine. As discussed earlier,
von Neumann assumed that tabular data would be stored in memory and had used
the example of table look-up to motivate the use of substitution in EDVAC’s code.
Adapting the idea of reusable instruction sequences to the new style of programming
would, however, throw up an unexpected challenge.

69
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6.1 Master and subsidiary routines

Von Neumann structured the meshing routine so that the fixed parts of the routine
were separated from those that would vary from one occasion of use to another,
clearly distinguishing the code of the meshing procedure itself from the substitutions
used to initialize it for a particular meshing operation.

G82 [. . .] is a fixed routine. With a suitable choice of S15 it will, therefore, cause any desired
meshing process to take place. Thus G82 can be stored permanently outside the machine,
and it may be fed into the machine as a ‘sub routine’, as a part of the instructions of any
more extensive problem, which contains one or more meshing operations. Then S15 must
be part of the ‘main routine’ of that problem, it may be effected there in several parts if
desired. If, in particular, the problem contains several meshing operations, only those parts
of S15 need be repeated, in which those operations differ. (von Neumann 1945i)

While this may be one of the earliest recorded uses of the term ‘subroutine’, the
strategy of organizing a computation hierarchically so that a main or master routine
would delegate common operations to subsidiary routines was by no means new, as
Goldstine and von Neumann well knew.

The desirability of establishing fixed routines for such processes which are common to
many problems (e.g. interpolation routines, the square-rooting or the cube-rooting routines
in machines without built-in square-rooters or cube-rooters, etc.), as distinguished from
routines unique to a specific problem (e.g. the statement of the specific equation of the
problem), has of course been known for a long time. Various existing machines contain
varying features designed to achieve such ends: Made-up plug-boards which can be stored
and inserted as units when called for, various ‘master’ and ‘subsidiary’ control tapes which
can be combined with a certain freedom, etc. (Goldstine and von Neumann 1946)

The use of ‘subsidiary routines’ was discussed at a meeting in September, 1945,
between the EDVAC team and representatives of BRL’s Ballistic Computations
Committee. After the meeting, Haskell Curry wrote to Goldstine with a suggestion:

In regard to our conference in Princeton a week ago, Dr. Dederick has pointed out that his
point in regard to subsidiary routines was rather squelched in the discussion. [. . .] when
[EDVAC’s] input mechanism is designed, it will be highly desirable to have a library of
subsidiary routines recorded on tapes [. . .] which can be called in by the master routine of
the particular problem. The situation is analogous to the problem and routine tapes on the
BTL machine. There the master tape is called the problem tape. It is necessarily different
for each problem fed to the machine but there is a provision whereby the problem tape calls
in certain routine tapes [. . .] I think Dr. Dederick’s point is that it would be desirable to have
some such feature as this on the EDVAC. (Curry 1945)

Goldstine replied with a very palpable squelch of Curry’s own observation:

The analogy you state between the EDVAC and the BTL machine is, I think, not com-
pletely valid because the latter has practically no registers for storing program information,
whereas the EDVAC will contain a large number of units capable of remembering program
instructions. In fact, all the programming information for a given program will be handled
inside the EDVAC and the magnetic tapes will be used only as a means for bringing those
instructions into the machine before the actual program is started. (Goldstine 1945b)

He then went on to outline how ‘routine tapes’ would be adapted to EDVAC:



6.2 General program sequences 71

In the chain of events in the main program sequence, there will be inserted at the proper
place the instructions to transfer the control [to] a given tank wherein is contained the in-
structions for carrying out the required sub-routine, together with the instructions which
will send the control back to the main program upon completion of the sub-routine. Evi-
dently one would collect in his library tapes for handling standard types of problems such
as interpolations or integrations.

When the operator is preparing a tape for a new problem, he will punch the tape with all the
instructions except the sub-routine instructions which are already contained in the library.
He will merely insert into his programming instructions the number of the tank or tanks in
which the sub-routines are to appear, and then, by means of a reperforator he would attach
to his tape the sub-routine from his library tape. (Goldstine 1945b)

At the point of use, it was not hard to adapt the familiar technique of organizing
computations hierarchically to EDVAC’s demands: the sequences of instructions
making up the main and subsidiary routines would be stored at different locations
within memory instead of being placed on separate physical devices, and the code
needed to initialize parameters and transfer control between main and subsidiary
routines was quite straightforward.

The new machine design raised a tricky logistical problem, however, as there
was no guarantee that a subroutine would appear at the same place in memory each
time it was used. In fact, exactly the opposite was true, and von Neumann (1945i)
described this ‘mobility within the long tanks’ as an ‘absolute necessity’ in any
practical scheme for using subroutines. The problem arises because the code of a
subroutine makes explicit reference to memory locations within the subroutine, such
as local storage locations and the targets of jump instructions. These references can
only be coded once the actual position of the subroutine in memory is known.

This requirement for mobility, or relocatability, meant that a library subroutine
could not be used like a routine tape on the Bell machine, which could simply be
copied and mounted on the appropriate tape reader. Because of its unified memory
space, the code of EDVAC’s library subroutines would, paradoxically, have to be
different each time they were used as part of a larger program.

The necessary changes were not arbitrary, of course, but depended solely on the
address of the first memory location occupied by the subroutine. Von Neumann had
introduced the variable e to stand for this address in the meshing routine; as table
4.6 shows, 14 of the routine’s instructions depended on e, and before it was called
those instructions would have to be changed to be consistent with the actual value
of e. In the draft Planning and Coding report Goldstine and von Neumann proposed
a way of automating this task, but not before devoting quite a lot of attention to the
more general question of how to develop programs using subroutines.

6.2 General program sequences

The treatment of subroutines in the draft and the final versions of the Planning and
Coding reports is strikingly different. The second half of the draft report was devoted
to the topic of ‘general program sequences’. As von Neumann explained:
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Such general routines will be stored in a library of tapes, and the equipment for preparing
tapes will be arranged so that they can be easily recopied on a new program tape. The
coding of a specific problem will then involve only the statement of the unique features of
the problem along with a list of the ‘fixed’ subsidiary routines used, and an explanation of
the modifications which have to be applied to them. (Goldstine and von Neumann 1946)

The same point of view is present in the published reports, but the presentation
of example programs in the draft report foregrounds the identification and use of
subroutines in programming much more than in the final texts.

After the introductory example of polynomial tabulation, described in chapter 5,
Goldstine and von Neumann coded a routine for Lagrangean interpolation using a
formula that contained two very similar subexpressions to form repeated products.
They began the development by coding a general-purpose subroutine which would
be called twice to evaluate the two different products:

We first, for simplicity describe a routine for forming the product

∏
n6=m

(y−an).

(Goldstine and von Neumann 1946)

Rather than coding a specific routine for, say, quadratic interpolation, Goldstine
and von Neumann designed the main routine to perform interpolation of any order
N. The completed subroutine consisted of N +8 number words and 28 instructions
placed in 14 order words, a total of N +22 words starting at memory location r. As
well as N and r, the variables y, m, and ai (i = 0, · · · , N−1) from the mathematical
definition of the product would have to be assigned values before the subroutine was
called.

In the code, y, m and ai only appeared in expressions denoting the contents of the
number words, the subroutine’s local storage. Each time the subroutine was called,
the initial values of these variables would be substituted into the appropriate places
by a routine such as S15. The situation was different with N and r, however: these
variables appeared in the coded instructions, and would be fixed for any program
that used the subroutine. They would have to be substituted as the subroutine was
copied into memory as part of a complete program.1

The initial coding of the interpolation routine using this subroutine did not take
into account the fixed-point nature of the machine. All the numerical quantities used
in a computation had to fall in the range−1 5 x < 1, and considerable care had to be
taken to ensure that intermediate values stayed in range and that a suitable level of
numerical precision was maintained. Rather than simply rewriting the main routine
to carry out a correctly scaled calculation, however, Goldstine and von Neumann
coded two example subroutines to correctly evaluate formulas of the forms c+b/a
and a+b. The first of these subroutines was then used in the interpolation routine:

1 A subroutine in which the order of interpolation N was also a run-time parameter would have
required a different amount of numerical storage each time it was called, introducing complications
that Goldstine and von Neumann apparently chose not to entertain.
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the original naive calculation was replaced by new instructions that called the first
of the new subroutines, placed in 21 words assumed to begin at location u.

This relatively simple example therefore illustrated two ways in which candidate
subroutines could be identified in the course of developing a program. At the start
of the process, a useful problem-specific routine was identified on the basis of the
mathematical definition of the problem and coded in advance of the main routine.
Once the initial coding had been completed, the benefits of developing some more
generally useful subroutines were identified, and once they were coded the main
program was ‘refactored’ to make use of one of the new routines.

The second half of the draft report considered the issue of ‘general program
sequences’ in more detail, promising ‘a very far-going systematisation of “fixed”
subsidiary routines, and very flexible methods to modify and adjust such routines
to the specific problems in which they are used’. Subroutines for integration were
developed, and then combined with the earlier interpolation routine in a complete
program for a hydrodynamical application. Finally, Goldstine and von Neumann
turned to the practical issues of how these subroutines could be used.

The most significant issue had to do with the changes required to the code of
a library subroutine after its location in memory was fixed. Also, some subroutines
have parameters that have a fixed value throughout a given program, like the variable
N in the interpolation routine. These values can conveniently be set at the time the
subroutine is loaded into memory while other parameters will have to be initialized
when the subroutine is called, as will its return address.

It would of course be possible to make these changes manually when assembling
a complete program tape. However, Goldstine and von Neumann recognized that
this would negate much of the benefit of having a subroutine library and that it
would simplify operational procedures if the code on a subroutine tape could simply
be copied onto an input tape. They therefore designed what they at first called a
‘substitution sequence’, itself intended as a library routine, to automate the process
of modifying the subroutine’s code.

6.3 Preparatory routines

The previous section described two subroutines that were coded in the course of
developing an interpolation routine. In the text of the draft Planning and Coding
report, the starting addresses of these subroutines were represented by the variables
r and u. Variables did not occur in the binary version of the code, however, and so
before these subroutines could be written on paper tape or magnetic wire and stored
in the library, r and u had to be replaced by definite values. Assigning the value
0 to r, say, would mean that the product subroutine was coded as if it was to be
placed in locations from 0 to N +28, and the internal references in the code would
be restricted to this range.

When a complete program tape was assembled and loaded, the subroutine would
usually be placed in a memory at a different location, 237 say. To make its code
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consistent with this location, each internal memory reference would have to be in-
cremented by, in this case, 237. The substitution sequence was intended to automate
this task: provided with the necessary data, such as the length and position of a pro-
gram’s subroutines, it would adjust the code to make it consistent with a particular
occasion of use. As well as dealing with issues of relocatability, the substitution
sequence could also initialize parameters that would be constant throughout an ap-
plication, such as the order of interpolation N assumed in a particular problem.

In the final Planning and Coding report, the substitution sequence was retitled the
‘preparatory routine’, and described in two stages: the first routine adjusted the code
of a single subroutine, and the second routine applied the first to all the subroutines
in a program. The functionality of the preparatory routine was essentially the same
as that of the substitution sequence in the draft routine, however.

The preparatory routine only automated part of the process of assembling a pro-
gram, however, and at the end of the report Goldstine and von Neumann described
how it would fit into the complete workflow. This process depended on details of
the machine’s input and output facilities that had not yet been considered, and be-
fore describing the assembly process, they outlined their assumptions in a rather
programmatic way.

Coded routines, both library subroutines and main routines, would be stored on
magnetic wire and fed into the machine under manual control. Operators would
specify the starting location in memory to which the code on the tape should be
transferred, and the number of words to be read from the wire. In a footnote, Gold-
stine and von Neumann suggested that this would also be the basic capability of the
machine’s eventual input order.

In principle, operators would be able to enter individual words into memory by
putting the code on a very short tape. Recognizing the inefficiency of this, Goldstine
and von Neumannalso suggested that operators would be able to manually enter
small numbers of words. The locations to be updated would be specified manually,
and the coded words would then be ‘“fed” directly into the machine by typing them
with an appropriate “typewriter”’ (Goldstine and von Neumann, 1947-8, vol. 3, 20).

Given these input capabilities, the process of assembling a complete program
would have involved the following steps.

1. The main routine and the library subroutines were all stored on their own pieces
of wire. The starting locations of the routines would be calculated manually and
set by the operators as each routine was fed into the machine.

2. The preparatory routine was also stored on its own wire and would be fed into the
machine at the ‘end of memory’, where it would not interfere with the program
routines.

3. The data required by the preparatory routine, such as the starting address of each
routine and the value and location of certain parameters, would be typed into
memory directly.

4. The ‘machine is set going, with the control set manually at the beginning of the
preparatory routine’ (Goldstine and von Neumann, 1947-8, vol. 3, 21). When this
routine finished, the code of all the library subroutines would have been adjusted
to be consistent with their actual positions in memory.
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5. Some further changes still needed to be made manually. Among these were the
adjustments required to enable when one subroutine to call another, which could
not be carried out until the final positions of all the subroutines were known.
Goldstine and von Neumann didn’t specify what these adjustments were, but in
any call of a subroutine by another, the starting location of the subroutine being
called, its parameters, and the address to which it should return control would all
have needed manual adjustment.

6. Finally, the main routine could be set going.

This procedure would have involved a lot of work for the machine’s operators,
who would have to plan the format of the input tape in detail and calculate the
starting addresses of the subroutines as well as entering a substantial amount of
data by hand. In the draft report, Goldstine and von Neumann commented that the
process ‘involves filling out only a few dozen sets of data and is thus trivial in
character’ but they later considered the trade-off between manual and automatic
procedures in slightly more detail, concluding that:

References to another subroutine [. . .] are likely to be rare and irregularly distributed. They
are therefore less well suited for automatic treatment, by a special preparatory routine, than
to ad hoc, manual treatment, by direct typing into the machine. (Goldstine and von Neu-
mann, 1947-8, vol. 3, 23)

One point that Goldstine and von Neumann appear not to have considered is
that all this work would be required every time a program was loaded. Citing an
example where a simple manual set-up error on the differential analyzer had led to
errors in the computation of a firing table, Curry commented on the proposal to use
a typewriter to insert individual words into memory as follows:

Such an arrangement is very desirable for trouble-shooting and computations of a tentative
sort, but for final computations of major importance it would seem preferable to proceed
entirely from a program or programs recorded in permanent form, not subject to erasure,
such that the computation can be repeated automatically [. . .] on the basis of the record.
(Curry 1950, 4)

Goldstine and von Neumann’s approach to the automation of program assembly
can seem to be, in Martin Campbell-Kelly’s words, a ‘surprisingly pedestrian piece
of work’. Contrasting it with the techniques developed for the EDSAC, Campbell-
Kelly suggested that:

The absence of input-output instructions [in the code of the Planning and Coding reports]
constrained the degree to which they could automate the programming process – indeed,
perhaps even to think about automation. (Campbell-Kelly 2011, 26)

It is unlikely that this can be the whole story. Although they had not coded any
input or output routines, Goldstine and von Neumann had a clear idea of what the
relevant orders would do and the input order they described is essentially the same
as the one provided in the EDSAC code.

The EDSAC counterpart of the preparatory routine was the ‘Initial Orders’, two
versions of which were developed by David Wheeler in 1948-9. Whereas Goldstine
and von Neumann had assumed that code would be loaded into memory manually,
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the only way that code could be read into EDSAC’s memory was under the control
of a running program. The Initial Orders were this program, and they were set up
on uniselectors and loaded manually before a program could be read from tape.

Crucially, programs were punched onto EDSAC’s tapes not in binary form but in
the equivalent of von Neumann’s short symbols. An instruction to add the contents
of memory location 52 to the accumulator, for example, would be punched as the
three symbols A52 in a standard teletype encoding. The Initial Orders had the job of
translating this into binary form before loading the encoded instructions in memory,
a process that involved a decimal to binary conversion, among other things.

In 1949, Wheeler devised a second version of the Initial Orders that would deal
with the assembly of a complete program out of a collection of subroutines. A single
input tape would be prepared, containing the main routine and reperforated copies
of the subroutine tapes. The code used on this tape augmented the short symbols of
EDSAC’s code in two ways. A number of variables were defined to indicate to the
Initial Orders where, for example, an address in a subroutine needed to be modified
to take into account the subroutine’s actual location in memory. In addition to this,
several control codes were defined that acted solely as directives controlling the
behaviour of the Initial Orders and were not translated into binary EDSAC code.

The final version of the Initial Orders was therefore a sophisticated routine that
generated binary code from an input tape language that was an extension of the
symbolic representation of EDSAC’s code. Once the input tape had been punched,
the process of loading and running the program was completely automatic.

The fundamental difference between the two approaches is that Goldstine and
von Neumann assumed that binary code would be stored externally and loaded into
memory, but the EDSAC team assumed that symbolic code would be stored, and
the binary code generated and loaded when required. EDSAC’s binary code was not
stored, but was generated by the Initial Orders and existed only as transient pulses
in EDSAC’s delay lines as a program was running. When the load process was
extended to incorporate the use of subroutines, both groups simply extended their
initial approach. Goldstine and von Neumann assumed that all routines would be
given in binary form, which would therefore require in situ modification, whereas
Wheeler generalized the existing linguistic capabilities of the Initial Orders.

6.4 Diagramming subroutines

As illustrated in Chapter 5 in connection with the meshing and sorting routines, the
representation of subroutines in block or flow diagrams turned out to be surprisingly
problematic. In the draft Planning and Coding report, Goldstine and von Neumann
had introduced a special kind of control box to help simplify complicated diagrams:

If either such a group [of orders] is highly complicated or has already been programmed and
is in the computer library, we indicate the box as ∗ ··· and then give a more detailed
statement of the box outside the main diagram as if it were a footnote. (Goldstine and von
Neumann 1946)
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The block diagram of the interpolation routine described above used this notation
twice to indicate the points at which the subroutine to calculate products was called.
No attempt was made to illustrate the process of subroutine call and return: the
asterisked boxes were simply placed inline in the interpolation diagram at the points
where a product was to be calculated.

This new notation did introduce some hierarchical structure to the block diagram
notation. It would be possible to simplify a complex diagram by using an asterisked
box to represent a separately drawn ‘subdiagram’. As the quotation above indicates,
however, this device was not introduced specifically to represent subroutines, and in
fact it failed in several ways to accurately model the semantics of subroutines.

Firstly, the notation took no account of storage. An asterisked box represents only
the order words of a subroutine; when its local storage was not simply ignored, the
subroutine’s storage box was included in the diagram of the calling routine. This had
the advantage of making it possible to show how the main routine would initialize
the subroutine’s parameters before calling it, but also introduced scope for confusion
and ambiguity.

Secondly, each box in a diagram is supposed to correspond to a particular block
of memory locations. Multiple instances of a subroutine box on a diagram therefore
suggest that there will be two copies of the subroutine code in the final program.
In other words, such diagrams suggest that the subroutine is an ‘open’ subroutine
where the subroutine code is physically copied into the main routine, rather than
the ‘closed’ subroutines that Goldstine and von Neumann exclusively used in their
coding, where the subroutine code appears only once and is separated from the main
routine, with control being transferred to and from it when necessary.

A closed subroutine could be represented by simply moving its block diagram
out of the diagram of the main routine, but this raised the new problem of how to
represent the transfer of control when a subroutine is called. Multiple calls could be
represented by simply drawing an arrow leading to the input arrow of the subroutine.
It is trickier, however, to show how the subroutine may return control to the different
places in the main routine from where it was called. A solution to this problem was
found by using the variable remote connections described in Section 5.3. At the
point where a subroutine was called, the main routine assigned a specific value – α1,
say – to a label α and then transferred control to the subroutine box. The subroutine
box itself transferred control to a connector α , from where control would transfer
to the connector labelled α1, as shown in Figure 6.1. This technique was used in the
version of the sort routine presented in the draft Planning and Coding report, which
called the meshing subroutine at two different places.

The variant shown in the lower half of Figure 6.1 was used in a real applica-
tion in the flow diagram for the Monte Carlo program run on ENIAC in early 1948
(Haigh et al. 2016). This program included a subroutine to calculate pseudo-random
numbers which was called at two separate points in the main routine. Connectors ρ

linked the points where the subroutine was called to the input of the subroutine box.
The random number routine was a single series of instructions and the asterisked
form of the operation box was not used. A descendent of this subroutine was illus-
trated using exactly the same notational conventions in the programming manual for
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α1 to α -

α2 to α -

- ∗ Subroutine - iα
iα1 - · · ·

iα2 - · · ·

ω1 to ω - iρ iω1 - ···

ω2 to ω - iρ iω2 - ···

iρ
?

Subroutine

?iω
Fig. 6.1 Two ways of representing subroutine call and return using remote connectors. The upper
diagram is adapted from (Goldstine and von Neumann 1946) and the lower diagram from the
ENIAC Monte Carlo flow diagram of December, 1947 (Haigh et al. 2016).

the MANIAC, the clone of the IAS machine that was built at Los Alamos (Jackson
and Metropolis 1954, 240-5).

By late 1947, then, when the Monte Carlo flow diagram was drawn, a practical
and semantically plausible technique for graphically depicting the use of closed
subroutines had been developed and was being used in practice. It is somewhat
surprising, then, that this technique was not adopted for the flow diagram notation or
the example routines described in the published version of the Planning and Coding
reports. The description of the flow diagram notation in the first report does not
mention the asterisked boxes of the block diagrams, and provides no other way of
introducing hierarchical structure to simplify complex diagrams. Despite promising
to ‘proceed from typical parts, which occur usually as parts of larger problems,
to increasingly completely formulated self-contained problem’ (Goldstine and von
Neumann, 1947-8, vol. 1, 195), there are only a few occasions in the three reports
where one coded routine is used as a subroutine in another example.

As illustrated in Section 5.6, on these occasions the subroutine was represented
by an inline box that referred to the numbers of the memory locations assigned to
the subroutine when it was being coded. These numbers could appear in the flow
diagram of the calling routine to show the initialization of the subroutine’s param-
eters. This seems a poor notational choice: as the location numbers would usually
be changed when the subroutine was allocated its final position in a complete rou-
tine, the references to these numbers in the main routine would become inconsistent.
Goldstine and von Neumann did not discuss, and may not even have noticed, this
issue.

The end result is that the flow diagram notation presented in the Planning and
Coding reports provided no adequate way to represent closed subroutines, despite
the fact that Goldstine and von Neumann recognized the use of such routines as a
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crucial part of a practical coding technique. This uncertainty is reflected in the text
of the reports: in the final Planning and Coding report, they wrote that a subroutine
is a coded sequence ‘which is formed with the purpose of possible substitution into
other routines’ (Goldstine and von Neumann, 1947-8, vol. 3, 2). The flow diagrams
they drew certainly suggest such a substitution, but the relationship between the
corresponding coded sequences is one of composition rather than substitution.

6.5 Second-class citizens

In two ways, then, the published Planning and Coding reports take a step back
from fully integrating subroutines into the business of programming. As described
above, in the draft report the identification of subroutines occurred as a natural part
of the planning part of the process, and the addition of variable remote connections
to the block diagram notation provided a way of modelling the transfers of control
involved in subroutine call and return. And yet, neither of these topics are discussed
in the final version.

The omission of subroutines from the exhaustively presented methodology of
Table 5.5 is even more striking than the notational issue. The examples in the draft
report demonstrated a fluent and confident use of subroutines: based on the mathe-
matical description of the interpolation routine, a problem-specific subroutine was
identified; once the main routine had been coded some general subroutines for fixed
point arithmetic were developed, and the interpolation code was then refactored to
make use of one of these subroutines. The published method, on the other hand,
gives the impression that program development is a linear and deterministic process
proceeding smoothly from the mathematical description of a problem to its coded
equivalent. There is no trace of the iterative and craftsmanlike engagement with the
practice and materials of coding that is vividly documented in the draft report.

The collision between the methodology and the demands of practical software
production are visible in the ENIAC Monte Carlo application, development of which
got under way shortly after the publication of the first Planning and Coding report
(Haigh et al. 2016). The documentation of this project clearly illustrates the long
series of changes, corrections, enhancements, refactorings and other interventions
that transformed von Neumann’s initial flow diagram into code that actually ran. In
the course of this process, the interaction of mathematicians and computer operators,
among others, created a pidgin version of the complex flow diagram notation that
emphasized the flow of control through the program at the expense of keeping track
of the changing values of the data stored.

But with the exception of the pseudo-random number routine mentioned above,
there were no subroutines in the Monte Carlo program. While there is no doubt that
Goldstine and von Neumann attached great importance to the provision of a library
of useful and easily reusable subroutines, the reader of the reports is left with the
impression that the use of the library exhausts the applicability of subroutines in
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programming.2 Subroutines are not presented on a par with conditional branches
and loops as elementary structures that might be used in program design. They are
instead rather self-contained, and their use is exceptional. A hypothetical example
of a routine that made use of nine subroutines was described as representing ‘a very
high level of complication’, and calls from one subroutine to another were thought
‘likely to be rare’ (Goldstine and von Neumann, 1947-8, vol. 3, 22-3).

In restricting the use of subroutines almost exclusively to the use of a library,
Goldstine and von Neumann replicated a division of labour familiar from manual
computation in the new arena of software development. Historically, mathematical
tables had been produced by groups ranging from the artisanal calculators employed
by the UK’s Nautical Almanac Office to the stratified and disciplined workforces
employed by Gaspard de Prony after the French Revolution and the Mathematical
Tables Project in Depression-era America (Grier 2005), and were used by scientists
and mathematicians hoping to relieve themselves of the tedium of calculation.

A very similar division of labour is visible in some early computer installations.
For example, Douglas Hartree described how EDSAC’s subroutine library ‘relieves
the user of the machine of the greater part of the work of programming calculations
in detail’ (Wilkes et al. 1951, xiii). Those users were, of course, the elite scientists of
Cambridge University: a glossy booklet produced to celebrate the 75th anniversary
of the University’s Computing Laboratory noted that the machine ‘served a large
number of Cambridge scientists including some who went on to win Nobel prizes’
(Ahmed 2013, 35). The developers of EDSAC’s subroutine library were not equally
well-known or rewarded.

This view of subroutines had a long posterity. It was only in the mid-1950s, and in
a context far removed from the traditional scientific uses of the computer, that Allen
Newell and Herbert Simon began to explore the practical consequences of the idea
of organizing complex programs as structures of interacting subroutines (Priestley
2017). In 1967, computer scientist Christopher Strachey commented that procedures
in Algol 60 were ‘second class citizens—they always have to appear in person and
can never be represented by a variable or expression’ (Strachey 2000, 32).3 Perhaps
this discriminatory treatment had its roots in Goldstine and von Neumann’s erasure
of subroutines from the Planning and Coding reports 20 years earlier.

2 The same perspective appears in the very influential description of the EDSAC programming
system in the book by Wilkes et al. (1951).
3 Julian Rohrhuber (2018) has written on the status of functions in a wide range of computational
formalisms, and I am grateful to him for drawing my attention to Strachey’s comment. On the
face of it an odd description to use of a technical concept in an obscure programming language,
the phrase ‘second-class citizens’ had considerable currency in the UK media at the time and was
particularly associated with the treatment of immigrant communities such as the ‘Kenyan Asians’
(Winder 2005).



Chapter 7
Contexts and conclusions

There can be no question about the historical significance of von Neumann’s work
on programming described in this book. And yet in many ways his achievement
represents the translation of existing practices into a new environment rather than
the invention of a completely new way of doing things. If his work was, in the words
of Arthur Burks, ‘revolutionary’, it was a curiously conservative kind of revolution,
more 1688 than 1917.

In part this can be explained by his background. After giving up active work in
logic at the start of the 1930s, von Neumann increasingly came to identify himself
as an applied mathematician. He did not actively engage in the logicians’ effort to
define ‘effective calculability’; in contrast, his interest in computation was largely
instrumental, as reflected in his extensive range of scientific consultancy positions,
a tendency amplified by the demands of his war work. His approach to the design
and use of the EDVAC code was strongly shaped by the detailed knowledge and
experience he had gained of the existing range of automatic computing machinery.

This chapter summarizes and places in a wider context some of the important
historiographical and technical themes that have arisen in earlier chapters.

7.1 The genesis of the general purpose computer

Reflecting on his first sorting program in May 1945, von Neumann commented:

I think, however, that it is legitimate to conclude already on the basis of the now available
evidence, that the EDVAC is very nearly an ‘all purpose’ machine (von Neumann 1945e)

Slippage between ‘all purpose’ and Turing’s description of certain machines as
‘universal’ has lent support to an oft-told story about the invention of the computer.
In George Dyson’s avowedly mythopoeic account, the ‘stored-program computer’
was ‘conceived by Alan Turing and delivered by John von Neumann’, a tale in which
the Institute for Advanced Study features as an unlikely surrogate mother (Dyson
2012, ix).
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Von Neumann used the term frequently in 1945. In January, for example, he
described ENIAC as ‘an absolutely pioneer venture, the first complete, automatic,
all-purpose digital electronic computor’ (von Neumann 1945g), in the First Draft
he mentioned the desire to make EDVAC ‘as nearly as possible all purpose’ (von
Neumann 1945a, 3), and in November he characterized the proposed IAS machine
in almost the same terms as ENIAC, as ‘a fully automatic, digital, all-purpose elec-
tronic computing machine’ (von Neumann 1945h). For von Neumann, the class of
all-purpose machines was not limited to those like EDVAC and the IAS machine
that held numbers and orders in a single large memory, but could include machines
with very different designs, such as ENIAC.

Instead, von Neumann used the term to draw a boundary between automatically
sequenced machines and those, often analogue, which could only deal with specific
problems or forms of equations. In October, IAS director Frank Aydelotte wrote to
von Neumann seeking reassurance that the Institute’s machine would be faster than
the new MIT differential analyzer that had just been announced in the newspapers;
von Neumann replied that:

The electronic device which we are planning would of course surpass it in speed, precision
and flexibility (all-purpose character) [. . .] I would like to repeat that those problems which
offer the most interesting and important uses for future computing machines, and in partic-
ular for the device which we plan, cannot be done at all on any differential analyzer with
practicable characteristics. (von Neumann 1945b).

In von Neumann’s view, these problems were almost exclusively mathematical
and scientific: from the beginning of his association with the EDVAC project he
had described it as a scientific instrument, as he did later with the IAS machine. In
particular, he emphasized the machines’ ability to make the numerical solution of
non-linear partial differential equations feasible for the first time (Priestley 2018).

This all-purpose character had a very specific technical source. As Grace Hopper
and Howard Aiken put it, ‘numerical methods [have reduced] the processes of math-
ematical analysis to a sequence of the five fundamental operations of arithmetic:
addition, subtraction, multiplication, division and reference to previously computed
results’ (Harvard 1946, 10). As many people from Babbage onwards had realized,
a machine that could automatically carry out specified sequences of those opera-
tions could in principle compute anything. After describing the features that would
give the Bell Labs machine the ability to do just that, for example, Samuel Williams
noted that ‘all of these functions being orderly controlled by a tape, will provide the
flexibility required for a universal system’ (Williams 1944, 1).

Von Neumann’s description of EDVAC as ‘all purpose’, then, does not describe
it as a new kind of machine but rather places it in a particular lineage. Following the
team’s realization in April 1945 that computing and sorting could be, and indeed
for practical reasons had to be, combined in a single machine, the discovery that
EDVAC could be applied to sorting was interesting and reassuring but did not lead
von Neumann or anyone else to suppose that a markedly new type of machine had
been invented. A computer did not have to be able to sort to be called ‘all-purpose’,
and the ability to sort did not promote EDVAC to a new category of machine.
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The idea of a ‘lineage’ evokes philosopher of technology Gilbert Simondon’s
(2012) observation that technical objects acquire their individuality not from their
use but from their ‘genesis’, the course of technological evolution leading up to
them. He identified ‘concretization’ as a crucial process in this evolution whereby
the components of an technical object acquire multiple functions in an overlapping
causal field, such as the cooling fins on the cylinder of an engine which combine the
functions of structural support and heat dispersion.

The specificity of the modern computer is founded on an act of concretization
in Simondon’s sense. As the First Draft made clear, EDVAC’s memory combined
capabilities that had been kept distinct in earlier automatically sequenced machines.
By being able to represent both numbers and orders M bound together functions
which had been performed by separate devices in earlier machines. This initiated
a more specific line of technological enquiry that was very prominent in the early
years of computer development, namely the search for a storage medium capable
of economically combining the linear access characteristic of instructions read from
tape with the random access needed to stored numbers.

The unification of memory also opened up new possibilities for programming,
exemplified by von Neumann’s use of substitution in EDVAC’s code. But as with
the developments in hardware, these represented not so much a new beginning as an
evolution of existing practice.

7.2 The history of programming

Historians of computing sometimes give the impression that the development of
programming was dependent on the development of the so-called ‘stored-program
computer’, implying that programming could only happen—indeed, could only be
thought—after the creation of the modern computer. For example, Martin Campbell-
Kelly (2011) has described programming as being ‘invented’ in the period between
1947 and 1951, presenting the story as one of transition from the ‘theory’ stated in
the Planning and Coding reports to the ‘practice’ made possible once machines like
EDSAC were available for use.

Campbell-Kelly’s argument hinges on two observations. The first is that in 1947
plans for the IAS machine’s input and output facilities were still highly fluid and
Goldstine and von Neumann therefore chose to describe only those parts of their
example computations that took place in the computer’s central units. Secondly,
the task of describing computations in such a way that they could be carried out
by machines rather than human computers turned out to be surprisingly difficult.
Without the experiential feedback gained from running complete programs on a
functioning machine, the Planning and Coding reports could only offer a partial
account of the task of programming.

As valid as these points are, this account assumes that the novelty of the EDVAC
proposals makes it reasonable to ignore the substantial practical experience that
had been gained before 1949 of running computations on automatically sequenced
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machines. Large calculations had been performed on Mark I and ENIAC, and the
designers and operators of both machines were well aware of the importance and
the difficulty of introducing data into the machine and having results produced in
a way that would be useful to users. In the course of this experience, the difficulty
of getting the instructions right had been noticed. Reflecting on his experience in
setting up a problem on ENIAC in 1946, Douglas Hartree (1949, 92-3) talked about
the surprising difficulty of programming and the need to take the ‘machine’s-eye
view’ when planning a computation, and no doubt the Mark I programmers had had
similar experiences.

So while the text of the Planning and Coding reports might indeed be described
as theoretical and incomplete, they should be read in the broader context of ongoing
experimental and production coding work on automatically sequenced machines,
including machines which have attracted little attention from historians, such as the
Harvard Mark II and IBM’s Selective Sequence Electronic Calculator (SSEC). Only
if the work carried out on these earlier machines is considered to be something less
than ‘programming’ does it make sense to talk about programming being invented
between the Planning and Coding reports and EDSAC.

The use of the term ‘programming’ in computing originated with the ENIAC
project (Grier 1996). In a natural extension of its everyday use in connection with
such things as concert programmes, it referred to the activity of determining which
sequences of operations would be carried out. The agent doing the programming
could vary: the ‘programming circuits’ of ENIAC’s units controlled the operation
of their arithmetic circuits, while the machine’s multiplier was described as ‘auto-
matically programming’ the accumulators to carry out the sequences of additions
and transfers involved in performing a multiplication. By 1945, usage had expanded
and the human activity of preparing instructions for a machine was also described
as programming; gradually, the instructions rather than the operations became the
machine’s ‘program’.

Of greater significance than these linguistic observations, however, is the fact
that the problem to which programming, in its various senses, is the solution—
controlling the behaviour of automatically sequenced machines—is wider than and
predates the use of machines of EDVAC’s type. The history of programming, in
other words, is not coextensive with the history of programming so-called ‘stored-
program’ machines. While ‘programming’ acquired its modern sense in connection
with those machines, the activity it denotes has a much wider currency. Even if
their own terminology differed, Charles Babbage and Ada Lovelace can reasonably
be described as thinking about the programming of the Analytical Engine, Leslie
Comrie as having programmed the National Accounting Machines, and Richard
Bloch and Grace Hopper as writing programs for Mark I. Von Neumann himself
offers some warrant for this kind of mild anachronism: when writing to Aydelotte,
he introduced the word ‘program’ as a synonym of the older ENIAC term ‘set up’
(von Neumann 1945b).

In this perspective, von Neumann’s work on EDVAC’s logical control represents
a development within the history of programming, and the Planning and Coding
reports can indeed be described as ‘a kind of feasibility study [that] enabled other
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computer groups to press ahead without any nagging doubts concerning the techni-
cal soundness of the stored-program concept’ (Campbell-Kelly 2011, 27). The new
style of programming should not be identified with the new architecture, however.
While von Neumann’s innovations were developed in the context of, and no doubt
inspired by, the plans for EDVAC’s memory, they are independent of any particular
hardware configuration, both in theory and in practice. The first programs written in
the new style to be executed actually ran on the architecturally obsolescent ENIAC
in early 1948, as discussed below.

7.3 Planning

As signalled in the very title of the Planning and Coding reports, von Neumann
split the task of program preparation into two major phases, the first concerned
with understanding the computation that was to be carried out and the second with
expressing that computation in way suitable for machine interpretation. These final
sections offer some concluding reflections on von Neumann’s ideas about planning
and coding, and their legacy.

The methodology articulated in the reports can be understood as an extension
of conventional mathematical practice (Priestley 2018). ENIAC and Mark I project
reports described three-stage processes echoing the division of labour set up by de
Prony at the end of the eighteenth century. Mathematical analysis of the problem
was followed by the preparation of a detailed computing plan which was passed
to a computer, human or mechanical, for execution. The process outlined in Table
5.5 elaborates this simple process with details of the syntactic work necessary to
produce machine-readable code, but its basic structure remains unchanged.

Von Neumann’s aim seems to have been to establish a predictable linear process
for the development of code. As the previous chapter described, some of the more
intuitive and iterative examples of coding found in the draft Planning and Coding
report were removed in the published version in favour of a presentational style
that emphasized the quasi-deductive nature of the work. At the same time, the flow
diagram notation was extended with substitution and assertion boxes so that the
step-by-step progress of the computation could be expressed in mathematical terms.
The goal was completeness and predictability, an attitude well expressed by Wilkes
et al. (1951, 1) who wrote that in a program for a machine, ‘every contingency must
be foreseen’.

There is a tension, however, between the prescriptive nature of this process and
the realities of software construction. A trivial example can be found in the definition
of the meshing operation, which was originally defined in terms of sorting. Von
Neumann found it convenient to reverse this dependency in the code, however, and
in the final Planning and Coding report the mathematical definition of meshing was
adjusted so as to remove its apparent dependency on sorting. A more substantial
example can be found in the use of flow diagrams in the development of the ENIAC
Monte Carlo application (Haigh et al. 2016).
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In the example flow diagrams in the Planning and Coding reports, a strikingly
large proportion of the space taken up by the diagrams on the page is occupied by
storage boxes. As much importance is given to the storage and substitution boxes
that document the effect of the program as to the control boxes that describe the
control flow and operations. When von Neumann came to draw up the initial flow
diagram for the Monte Carlo problem, he followed the official notation closely, but
there is a striking difference in the use of storage boxes. In the examples in the
reports, every change of value of a variable or storage location is documented. In
the Monte Carlo diagram, by contrast, storage boxes are much less prominent and
in many cases simply repeat an assignment of variable to storage location that is
clearly stated in a preceding operation box. The imbalance is even more striking
in the final diagram, produced in December 1947. Of the 90 or so boxes on the
diagram, only around a dozen are storage or substitution boxes, the remainder being
either operation or alternative boxes. This gives a dramatic illustration of how, in
non-pedagogic uses of the notation, the procedural modelling of control flow and
operations was quickly privileged over the declarative description of the effect of
those operations.

Nevertheless, the published form of the notation and methodology was widely
circulated and used for pedagogic purposes, as the examples given by Jackson and
Metropolis (1954) illustrate, and it was only in the mid-1950s that an influential
counter-proposal was first articulated, when several of the participants at the famous
1956 Dartmouth conference on AI took issue with very idea of planning as a suitable
model for programming. As Nathaniel Rochester put it, ‘one ordinarily provides the
machine with a set of rules to cover each contingency which may arise [but] if the
machine had just a little intuition or could make reasonable guesses, the solution of
the problem could be quite direct’ (see Priestley 2017).

7.4 Coding

The EDVAC approach quickly achieved dominance. Following the Moore School
lectures in the summer of 1946, the overwhelming majority of new computer
projects adopted an EDVAC-type design and its associated style of coding, the most
notable exception being the plans for the ACE produced by Alan Turing at the UK’s
National Physical Laboratory.

In a striking example of the autonomy of programming, however, programs were
running in an EDVAC-style code some time before any machines based on the new
architecture had been completed. ENIAC was largely out of action in 1947 as it
was moved out of the Moore School, but almost as soon as it was recommissioned
at BRL it was set up to run programs written in a code that included conditional
branching and, within the limits of its hardware capabilities, address modification,
nicely validating Turing’s observation that ‘computing processes [. . .] can all be
done with one digital computer, suitably programmed’ (Turing 1950, 441-2). This
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code was first used for the Monte Carlo application which ran in March and April,
1948 (Haigh et al. 2016).

This conversion had an unanticipated consequence. In 1946 ENIAC was the only
operational electronic computer, and as well as running a number of conventional
mathematical applications it served as a test-bed and a stimulus for exploring and
thinking about different approaches to computation. The mathematician Derrick
Lehmer was, like Curry, a member of BRL’s Ballistic Computations Committee,
and over a holiday weekend used ENIAC to explore a problem in number theory.
His set-up, as reconstructed by historians Maarten Bullynck and Liesbeth de Mol
(2010), made essential use of ENIAC’s capabilities for parallel computation. As a
result of his detailed engagement with the ENIAC in 1946, Curry himself came to a
novel understanding of the structure of its programs. He later developed his insights
into a general theory of program composition, which he described as ‘sufficiently
different’ from Goldstine and von Neumann’s views on subroutines that ‘it is not
immediately obvious just how the two investigations should be put together’ (Curry
1950).1

But the conversion put an end to all that. Its imposition limited the machine’s
capabilities and from that point on ENIAC ran only one set-up, the implementation
of the conversion code. Large areas of the machine were mothballed, such as the
master programmer which had essentially no role in the post-conversion economy.
Although the conversion significantly decreased ENIAC’s rate of computation, the
ease of programming that it offered must have made it seem an attractive trade-off.
In early Cold War America, the priority was to put ENIAC to work.

Substitution is the leitmotiv of von Neumann’s work on programming. It appears
in many different contexts and with many different meanings including, in roughly
chronological order, the following.

1. The fundamental operation that C carries out when storing a word inM is called
substitution (see Section 3.4).

2. Von Neumann’s top-down approach to coding is to write a routine in an extended
code that includes variables, and then systematically to replace those variables
by actual values. He does not explicitly describe this process as substitution, but
the replacement of variables by constant terms in this way is the classic logical
sense of the term (see Section 4.5).

3. Both the block diagram and flow diagram notations included ‘substitution boxes’
to model some of the changes taking place as a routine executes (see Sections 5.2
and 5.5).

4. The preparatory routine that adjusts the code of a subroutine to be consistent with
its actual position in memory was originally called the ‘substitution sequence’
(see Section 6.3).

5. The relationship between a main routine and a subroutine is described, rather
problematically, as one of substitution (see Section 6.4).

1 De Mol et al. (2015) describe Curry’s proposals in detail, using them as a platform from which
to launch a critique of Goldstine and von Neumann’s work in the Planning and Coding reports.
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Once he had conceived of an operation that would replace only part of an order
word, it is not surprising that von Neumann, with his background in logic, would
have seen in it an analogy with substitution. It is less predictable that he would take
substitution as the fundamental notion to describe all transfers of information to or
withinM. In logic, substitution is a metasyntactic operation providing a means of
transforming one formula into another, however, and such a transformation takes
place in EDVAC’s memory at every step of a computation. In a symbolic model of
computation, substitution provided a unified way of modelling change.

Code—which for Goldstine and von Neumann always included numbers as well
as orders—was not a fixed entity, but just the starting point of a dynamic process
which would modify the contents of memory in various and unpredictable ways,
even constructing new orders for the machine to execute. It was part of a continuum
of symbolic representations of a computational process stretching from traditional
notations of mathematics, through coded symbols ready to be typed directly into
memory, to the binary forms of those symbols held in memory and evolving as
computation progressed. Goldstine and von Neumann’s process described notations
and techniques suitable for recording and verifying the effects of the decisions taken
by programmers and they seem to have found substitution in its broader senses a
natural way to describe many of the transformations involved.

In seeking to define what he thought of as a new type of logical activity, von
Neumann reached for the tools and techniques familiar to him from his experience
as an active logician in the 1920s. Strikingly, at the end of that decade Curry (1929)
had published an analysis of substitution which noted that the ‘complexity of this
process is manifest’. Following earlier work of Moses Schönfinkel, he proposed to
eliminate it in favour of a simpler combinatory mechanism. Like von Neumann,
then, Curry reached for the familiar when faced with the challenge of theorizing
programming, and he accurately described his work of the late 1940s as a ‘program
composition technique’.

A third migrant from logic to computation brought with him different baggage.
Turing encountered logic in the 1930s in the context of recursive function theory
which emphasized the bottom-up composition of a handful of primitive functions
to define more complex operations. This influence of this way of thinking is visible
both in his famous 1936 paper and also in his thoughts on programming, where the
role of subroutines as the building blocks of programs is quite different from the
view described in Chapter 6.

The general purpose computer was a technological development, a response to
specific and localizable practical demands such as those that led to the unification
of sorting and computing described in Chapter 2. The road from logic to practical
computation led across an unfamiliar terrain, and von Neumann was one of several
making the crossing, each breaking their own trail and hopeful of the opportunities
to be found in the land beyond. Even if it is now somewhat out of fashion, the work
he was involved with in the mid-1940s formed and enriched many aspects of the
field of computing, laying a foundation for much of what was to come.



Appendix A
Von Neumann’s second EDVAC code

Abstract This appendix reproduces the text of a manuscript preserved in box 20
of the Herman H. Goldstine papers at the American Philosophical Society in which
von Neumann defines a code for an EDVAC architecture using short delay lines. Von
Neumann mentioned this topic in a letter to Haskell Curry on 20 August, 1945, and
a version of the code is described in Eckert and Mauchly’s EDVAC progress report,
dated 30 September, 1945. This text can therefore be dated with some confidence to
the late summer of 1945. A small number of obvious slips in the manuscript have
been silently corrected.

1. For x, y = 0,1,2, · · · , ξ = 0,1, · · · , 25−1, x determines y, ξ uniquely by virtue
of the relation

x = 25y+ξ .

Define accordingly
y = Qx, ξ = Rx.

2. Time is measured by a variable t = 0,1,2, · · · . Each t stands for the time interval
t, t +1. The length of this unit interval is in conventional units 25τ , where τ is a
pulse-time: τ ∼ 10−6 sec.

3. Words.
A word is a sequence of 25 pulses. Each pulse occupies a pulse-time (τ), hence a
word occupies a time unit of 2. (25τ). The memory consists of

C = 25A+B+1

words, which are enumerated as follows:

1) 25A words Wx, x = 0,1, · · · , 25A−1.
(x is to be taken mod 25A.)

2) B words W z, z = 0,1, · · · , B−1.
(z is to be taken mod B.)

89
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3) 1 word σ .

Actually A∼ 28, B∼ 25 to 26. We assume that

A 5 28, B 5 26.

4. Gates.
The device contains

D = A+B+1

gates, which are enumerated as follows:

1) A gates Gy, y = 0,1, · · · , A−1.
(y is to be taken mod A.)

2) B gates Gz, z = 0,1, · · · , B−1.
(z is to be taken mod B.)

3) 1 gate σ .

We must now discuss the following matters: Access, Control, Operation, Substi-
tution.

5. Access.
At each time t each gate has access to exactly one word. Specifically:

1) At each time t gate Gy has access to word x = 25y+ Rt. (I.e. Qx = y,
Rx = Rt.)

2) Gate Gz has always access to word W z.

3) Gate σ has always access to word σ .

6. This is a list of all possible words, or rather of the written symbols which denote
them:

0) 0 3) z′ → x′ | r 7) z′ ω z′′

1) x′ → C 4) x′ → z′ | r 8) → z′ | r
2) z′ → C 5) z′ → z′′ 9) z′ → | r

6) σ → z′′ 10) Nξ

Here x′ is a 14-binary-digit integer; z′, z′′ are 6-binary-digit integers; r is a 5 digit
binary integer, r = 0 being omissible; ω is one of the symbols enumerated in 8.;
ξ is a 30-binary-digit fraction with sign, −1 5 ξ < 1.

7. Control.
Assume that at time t the control organ C is connected to

{Gy, i.e. to Wx with
Gz, i.e. to W z

}
{

x = 25y+Rt, whence y = Qx, Rt = Rx
}

. Then the following events will

take place:
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W z

}
is the word: Events:

0) 0 C disconnects, and at time t + 1 connects to{
GQ(x+1), i.e. to W (x+1)
Gz+1, i.e. to W z+1

}
.

1) x′ → C C disconnects. Waiting until the first t ′ > t with Rt ′ =
Rx′. Then C connects to GQx′, i.e. to Wx′.

2) z′ → C C disconnects, and at time t + 1 connects to Gz′, i.e. to
W z′.

3) z′ → x′ | r C disconnects. Waiting until the first t ′ > t with
Rt ′ = Rx′. At each time t ′ + s, s = 0,1, · · · , r, for
the duration of that time unit, GQ(x′ + s) connects to
Gz′+ s, i.e. W (x′+ s) to W z′+ s. At that time W z′+ s is
substituted into W (x′+ s). After the s = 0,1, · · · , r have

been exhausted,
{

waiting until the first t ′′ > t ′+ r
time t ′′ = t ′+ r+1 follows.

}
{

with Rt ′′ = R(t +1). (This is t ′′+25 +1 or
}

{
t ′′+26 +1.)

}
Then C connects to

{
GQ(x+1)
Gz+1

}
,

i.e. to
{

W (x+1)
W z+1

}
.

4) x′ → z′ | r Same as 3), except that now W (x′+ s) is substituted for
W z′+ s.

5) z′ → z′′ C disconnects. Gz′ connects with Gz′′, i.e. W z′ with
W z′′. W z′ is substituted into W z′′. Then, at time t + 1,
C is reconnected as in 0).

6) σ → z′′ Same as 5), except that Gz′ and W z′ are replaced by σ

and σ .
7) z′ ω z′′ C disconnects. Gz′, Gz′′, i.e. W z′, W z′′, connect with

the inputs of the arithmetical organ A, the output of
A is σ . Between these three A performs the operation
ω as described in 8. Then Gz′, Gz′′ disconnects. Wait-
ing until the first t ′ = the completion of these opera-

tions
{

for which Rt ′ = R(t +1)
}

. Then C connects to{
GQ(x+1)
Gz+1

}
, i.e. to

{
W (x+1)
W x = 1

}
.
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8) → z′ | r C disconnects. At each time t +1+ s, s = 0,1, · · · , r, for

the duration of that time unit,
{

GQ(x+1+ s)
Gz+1+ s

}
con-

nects to Gz′+ s, i.e.
{

W (x+1+ s)
W z+1+ s

}
to W z′+ s. At that

time
{

W (x+1+ s)
W z+1+ s

}
is substituted into W z′+ s. After

the s = 0,1, · · · , r have been exhausted, time t + 2+ r

follows. Then C connects to
{

GQ(x+2+ r)
Gz+2+ r

}
, i.e. to{

W (x+2+ r)
W x+2+ r

}
.

9) z′ → | r Same as 8), except that now Wz′+ s is substituted into{
W (x+1+ s)
Wz+1+ s

}
.

10) Nξ Same as 0).

8. Operation.
When ω is called in by 7) in 7., W z′, W z′′ must be of the form 10) in 7.: Nξ ′,
Nξ ′′. σ is automatically of the form 10) in 7.:Nξ ∗. Now ω operates as follows:

Symbol Replaces the ξ ∗ in the Nξ ∗

of σ by:

C1) + ξ ′+ξ ′′

C2) − ξ ′−ξ ′′

C3) × ξ ′+ξ ′′

C4) ÷ ξ ′/ξ ′′

C5)
√ √

ξ ′

C6) db The decimal equivalent of ξ ′.
C7) bd The binary equivalent of the

decimal interpretation of ξ ′.

H1) +h ξ ′+ξ ′′+ξ ∗

H2) −h ξ ′−ξ ′′+ξ ∗

H3) ×h ξ ′ξ ′′+ξ ∗

H4) s

{
ξ ′ for ξ ∗ = 0
ξ ′′ for ξ ∗ < 0
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9. Substitution.
When a word w′ is substituted into a word w′′, the following will take place: (The
categories 0) – 10) are those enumerated in 6. and 7.)

A) w′ is a word 0) – 9) (i.e. anything other than a word 10): Nξ ):
w′′ is replaced by w′ in its entirety.

B) w′ is a word 10): Nξ :

Ba) w′′ is a word 0) or 10):
w′′ is replaced by w′ in its entirety.

Bb) w′′ is a word 1):
x′ is replaced by digits 17–30 of ξ .

Bc) w′′ is a word 2):
z′ is replaced by digits 11–16 of ξ .

Bd) w′′ is a word 3) or 4):
x′ is replaced by digits 17–30 of ξ ,
z′ is replaced by digits 11–16 of ξ ,
r is replaced by digits 6–10 of ξ .

Be) w′′ is a word 8) or 9):
z′ is replaced by digits 11–16 of ξ .

Bf) w′′ is a word 5), 6) or 7):
No replacement is made.

Due to Bb) – Be) the 14-, 6-, 5- binary digit integers x′, z′, r appear in the replac-
ing ξ as fractions 2−30x′, 2−16z′, 2−10r. In order to abbreviate, define

/x′ = 2−30x′, −
/z′ = 2−16z′, −−/r = 2−10r.





Appendix B
Von Neumann’s meshing routine manuscript

(1) A p+1-complex: X (p) = (x0 ; x1, · · · , xp) consists of the main number: x0, and
the satellites: x1, · · · , xp. Throughout what follows p = 1,2, · · · will be fixed. A
complex X (p) precedes a complex Y (p): X (p) 6Y (p), if their main numbers are in
this order: x0 5 y0.
An n-sequence of complexes: {X (p)

0 , · · · , X (p)
n−1}.

If 0′, · · · , (n− 1)′ is a permutation of 0, · · · , (n− 1), then the sequence {X (p)
0′ ,

· · · , X (p)
(n−1)′} is a permutation of the sequence {X (p)

0 , · · · , X (p)
n−1}. A sequence

{X (p)
0 , · · · , X (p)

n−1} is monotone if its elements appear in their order of precedence:

X (p)
0 6 X (p)

1 6 · · · 6 X (p)
n−1, i.e. x0

0 5 x0
1 5 · · · 5 x0

n−1.

Every sequence {X (p)
0 , · · · , X (p)

n−1} possesses a monotone permutation: {X (p)
0′ ,

· · · , X (p)
(n−1)′} (at least one). Obtaining this monotone permutation is the opera-

tion of sorting the original sequence.
Given two (separately) monotone sequences {X (p)

0 , · · · , X (p)
n−1} and {Y (p)

0 , · · · ,
Y (p)

m−1}, sorting the composite sequence {X (p)
0 , · · · , X (p)

n−1, Y (p)
0 , · · · , Y (p)

m−1} is the
operation of meshing.

(2) We wish to formulate code instructions for sorting and for meshing, and to see
how much control-capacity they tie up and how much time they require. It is
convenient to consider meshing first and sorting afterwards.

(3) Consider the operation of meshing the two (separately) monotone sequences
{X (p)

0 , · · · , X (p)
n−1} and {Y (p)

0 , · · · , Y (p)
m−1}.

A natural procedure to achieve this is the following one:

Denote the meshed sequence by {Z(p)
0 , · · · , Z(p)

n+m−1}. Assume that the l first

elements Z(p)
0 , · · · , Z(p)

l−1 have already been formed, l = 0,1, · · · , n+m. As-
sume that they consist of the n′ (m′) first elements of the X- (Y -) sequence:

95



96 B Von Neumann’s meshing routine manuscript

X (p)
0 , · · · , X (p)

n′−1 and Y (p)
0 , · · · , Y (p)

m′−1, with n′ = 0,1, · · · , n and m′ = 0,1, · · · ,
m and n′+m′ = l.
Then the procedure is as follows:

(α) n′ < n, m′ < m:
Determine whether x0

n′ 5 or > y0
m′ .

(α1) x0
n′ 5 y0

m′ : Z(p)
l = X (p)

n′ ,
replace l, m′, n′ by l +1, m′, n′+1.

(α2) x0
n′ > y0

m′ : Z(p)
l = Y (p)

m′ ,
replace l, m′, n′ by l +1, m′+1, n′.

(β ) n′ < n, m′ = m:
Same as (α1).

(γ) n′ = n, m′ < m:
Same as (α2).

(δ ) n′ = n, m′ = m:
The process is completed.

(4) In carrying out this process, the following observations apply:

(a) The process consists of steps which are enumerated by the index l = 0,1, · · · ,
n+m. It begins with l = 0, ends with l = n+m, and l increases by 1 at every
step — hence there are n+m+1 steps.

(b) Each step is characterised not only by its l, but also by its n′, m′. Since l =
n′+m′, it is preferable to characterise it by n′, m′ alone, and to obtain l from
the above formula. Thus the process begins with (n′,m′) = (0,0), ends with
(n′,m′) = (n,m), and at every step either n′ or m′ increases by 1 while the
other remains constant.

(c) At the beginning of every step it is necessary to sense which of the 4 cases
(α) – (δ ) of (3) holds. (δ ) terminates the procedure. (β ), (γ) are related to
(α): Indeed (β ), (γ) correspond to (α1), (α2). Hence in the cases (β ), (γ) one
may replace x0

n′ , y0
m′ , (when they are being inspected) by 0, 0 or 0,−1 and then

proceed as in (α).

(d) At the end of (α) (i.e. (α1) or (α2), by (c) equally for (β ) or (γ)) the complex
X (p)

n′ (Y (p)
m′ ) must be placed in the position of the complex Z(p)

l . This amounts

to transfering the elements of X (p)
n′ (Y (p)

m′ ), i.e. since x0
n (y0

m) is already avail-
able, it amounts to transfering x1

n′ , · · · , xp
n′ (y1

m′ , · · · , yp
m′ ). This is an unbroken

sequence of p elements, followed by x0
n′+1 (y0

m′+1). At the next step, x0
n′ (y0

m′ )
will have to be replaced (for the next inspection) by x0

n′+1 (y0
m′+1), hence it is

simplest to transfer at this point a sequence of p+ 1 elements, i.e. x1
n′ , · · · ,

xp
n′ , x0

n′+1 (y1
m′ , · · · , yp

m′ , y0
m′+1).

(e) The arrangement made at the end of (d) implies, that for l 6= 0 the quantities to
be inspected for the step l, i.e. x0

n′ , y0
m′ , are already available at the beginning
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of the step. In the interest of homogeneity it is therefore desirable to have the
same situation at the beginning of the step l = 0, i.e. (n′,m′) = (0,0). Hence
the step l = 0 must be preceded by a preparatory step, say step —, which
makes x0

0, y0
0 available.

(5) The remarks of (4) define the procedure more closely. Specifically:

(f) At the beginning of a step, say step (n′,m′), the following quantities must be
available, i.e. placed into short tanks: n′, m′, x0

n′ , y0
m′ . Denote the short tanks

containing these quantities by 11, 21, 31, 41. Now the first operation must
turn about determining which of the cases (α) – (δ ) holds. This consists in
determining which of n′ – n, m′ – m are = 0 or < 0. Hence n, m, too must
be available, say in the short tanks 51, 61. According to which of the 4 cases
holds, C must be sent to the place where its instructions begin, say the (long
tank) words 1α , 1β , 1γ , 1δ . Their numbers must be available, i.e. in short
tanks, say in the short tanks 71, 81, 91, 101. Finally, the order which will send
C to 1α – 1δ must be in a short tank, say in the short tank 111.

(g) We now formulate a set of instructions to effect this 4-way decision between
(α) – (δ ). We state again the contents of the short tanks already assigned:

11) Nn′(−30) 21) Nm′(−30) 31) N x0
n′ 41) N y0

m′

51) Nn(−30) 61) Nm(−30) 71) N1α (−30) 81) N1β (−30)

91) N1γ (−30) 101) N1δ (−30) 111) . . .→C

Now let the instructions occupy the (long tank) words 11,21, · · · :

11) 11−51 σ ) Nn′−n(−30)

21) 91 s 71 σ ) N 1γ

1α (−30) for n′ =< n

31) σ → 121 121) N 1γ

1α (−30) for n′ =< n
41) 11−51 σ ) Nn′−n(−30)

51) 101 s 81 σ ) N 1δ

1β
(−30) for n′ =< n

61) σ → 131 131) N 1δ

1β
(−30) for n′ =< n

71) 21−61 σ ) Nm′−m(−30)

81) 131 s 121 σ ) N ··· 131) ···
··· 121) ···

for m′ =< m

i.e.

σ ) N 1δ

1γ

1β

1α (−30) for m′=m,n′=n
m′<m,n′=n

m′=m,n′<n
m′<m,n′<n

i.e. for (δ )
(γ)

(β )
(α)

, respectively.

91) σ → 111 111) 1α ,1β ,1γ ,1δ →C for (α), (β ), (γ), (δ ), respectively.
101) 111→C

Now
111) 1α ,1β ,1γ ,1δ →C for (α), (β ), (γ), (δ ), respectively.
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Thus at the end of this phase C is at 1α , 1β , 1γ , 1δ , according to which case
(α), (β ), (γ), (δ ) holds.

(h) We now pass to the case (α). This has 2 subcases (α1) and (α2), according to
whether x0

n′ = or < y0
m′ . According to which of the 2 subcases holds, C must be

sent to the place where its instructions begin, say the (long tank) words 1α1 ,
1α2 . Their numbers must be available, say in the short tanks 12, 22.

(i) We now formulate a set of instructions to effect this 2-way decision between
(α1), (α2). We state again the contents of the short tanks additionally assigned:

12) N1α1 (−30) 22) N1α2 (−30)

Now the instructions follow:

1α ) 41−31 σ ) N y0
m′ − x0

n′

2α ) 12 s 22 σ ) N 1α1
1α2

(−30) for x0
n′

5
> y0

m′

i.e. for (α1)
(α2)

, respectively.

3α ) σ → 111 111) 1α1 ,1α2 →C for (α1), (α2), respectively.
4α ) 111→C

Now
111) 1α1 ,1α2 →C for (α1), (α2), respectively.

Thus at the end of this phase C is at 1α1 , 1α2 , according to which case (α1),
(α2) holds.

(j) Before turning to (α1), (α2), let us dispose of the cases (β ), (γ), (δ ).
According to (c), the cases (β ), (γ) can be handled as follows:
Additional short tanks assigned:

32) N0 42) N −1
The instructions for (β ):

1β ) 32−32 σ ) N0
2β ) 2α →C

and from here on like (α) with 0,0 for x0
n′ ,y

0
m′ .

The instructions for (γ):

1γ ) 42−32 σ ) N −1
2γ ) 2α →C

and from here on like (α) with 0,−1 for x0
n′ ,y

0
m′ .

(For both cases cf. (c).)
Assuming that after the conclusion of the procedure C is to be sent to the (long
tank) word a, the instructions for (δ ) are as follows:

1δ ) a→C
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(k) We now pass to (α1), (α2). It is necessary to state at this point, where the com-
plexes X (p)

0 , · · · , X (p)
n−1 and Y (p)

0 , · · · , Y (p)
m−1 are stored, and where the complexes

Z(p)
0 , · · · , Z(p)

n+m−1 are to be placed. Let the X-complexes form a sequence
which begins at the (long tank) word b, also the Y -complexes a sequence
beginning at c, and the Z-complexes a sequence beginning at d. Since every
complex consists of p+ 1 numbers, therefore X (p)

n′ begins at b+ n′(p+ 1),

Y (p)
m′ begins at c + m′(p + 1), Z(p)

l begins at d + l(p + 1). Hence xu
n′ is at

b+ n′(p+ 1) + u, yu
m′ is at c+m′(p+ 1) + u, zu

l is at d + l(p+ 1) + u. To
conclude: The X complexes occupy the interval from b to b+ n(p+ 1)− 1,
the Y complexes occupy the interval from c to c+m(p+ 1)− 1, the Z com-
plexes occupy the interval from d to d+(n+m)(p+1)−1. At the beginning
of the (α1) or (α2) phase the following further quantities must be available,
i.e. placed into short tanks: b+n′(p+1), c+m′(p+1), d+ l(p+1). It is also
convenient to have p+ 1. Denote the short tanks containing these quantities
by 13, 23, 33, 43. Hence these are the short tanks additionally assigned:

13) Nb+n′(p+1)(−30)
23) N c+m′(p+1)(−30)
33) Nd + l(p+1)(−30)
43) N p+1(−30)

Finally, the transfer of the complex X (p)
n′ (in (α1)) or Y (p)

m′ (in (α2)) to the place

of the complex Z(p)
l must be channeled through the short tanks. According to

(d), the numbers x1
n′ , · · · , xp

n′ ,x
0
n′+1 or the numbers y1

m′ , · · · , yp
m′ ,y

0
m′+1 must be

brought in (from X or Y ) and the numbers x0
n′ ,x

1
n′ , · · · , xp

n′ or y0
m′ ,y

1
m′ , · · · , yp

m′

must be taken out (to Z). Consequently the numbers x0
n′ ,x

1
n′ , · · · , xp

n′ ,x
0
n′+1 or

the numbers y0
m′ ,y

1
m′ , · · · , yp

m′ ,y
0
m′+1 must be routed through the short tanks. It

is clearly best to have them in the form of an unbroken sequence. The length
of this sequence is p+2. Denote the short tanks which are designated to hold
this sequence by 14, 24, · · · , (p+1)4, (p+2)4.
We add: The primary function of (α1) [(α2)] is to move x0

n′ ,x
1
n′ , · · · , xp

n′

[y0
m′ ,y

1
m′ , · · · , yp

m′ ] into the (long tank) words d + l(p+ 1),d + l(p+ 1)+ 1,
· · · , d + l(p+ 1) + p. However, there is also a secondary function: It must
prepare the conditions for step l+1. This means that it must replace the num-
bers n′, x0

n′ , b+ n′(p+ 1), d + l(p+ 1) [m′, y0
m′ , c+m′(p+ 1), d + l(p+ 1)]

in the short tanks 11, 31, 13, 33 [21, 41, 23, 33] by the numbers n′+ 1, x0
n′+1,

b+ (n′ + 1)(p+ 1), d + (l + 1)(p+ 1) [m′ + 1, y0
m′+1, c+ (m′ + 1)(p+ 1),

d +(l +1)(p+1)].
To conclude: There are also two orders, affecting the transfers of X [Y ] into
the short tanks, and of Z out of the short tanks, and these orders are best placed
into short tanks, say 15, 25. They must be followed by an order returning C to
the (α1) or (α2) sequence in long tanks. Hence this third order must be in 35,
and it must depend on (α1) or (α2). I.e. it must be transfered into 35 from the
(α1) or (α2) sequence.
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(l) We now formulate 2 sets of instructions to carry out the tasks of (α1) and (α2),
as formulated in (k).
Additional short tanks assigned:

15) . . .→ 14| p+2 25) 14 → . . . | p+1 35) . . . 45) N1(−30)

The instructions for (α1):

1α1 ) 13→ 15 15) b+n′(p+1)→ 14 | p+2
2α1 ) 33→ 25 25) 14→ d + l(p+1) | p+1
3α1 ) b→35 35) 6α1 →C
4α1 ) 6α1 →C
5α1 ) 15→C
15) b+n′(p+1)→ 14 | p+2

b+n′(p+1) ) N x0
n′ to 14) N x0

n′

b+n′(p+1)+1 ) N x1
n′ to 24) N x1

n′

· · · · · ·
b+n′(p+1)+ p ) N xp

n′ to (p+1)4) N xp
n′

b+(n′+1)(p+1) ) N x0
n′+1 to (p+2)4) N x0

n′+1
25) 14→ d + l(p+1) | p+1

14 ) N x0
n′ to d + l(p+1) ) N x0

n′

24 ) N x1
n′ to d + l(p+1)+1 ) N x1

n′

· · · · · ·
(p+1)4 ) N xp

n′ to d + l(p+1)+ p ) N xp
n′

35) 6α1 →C
6α1 ) 11 +45 σ ) Nn′+1(−30)

7α1 ) σ → 11 11) Nn′+1(−30)

8α1 ) (p+2)4→ 31 31) N x0
n′+1

9α1 ) 13 +43 σ ) Nb+(n′+1)(p+1)(−30)

10α1 ) σ → 13 13) Nb+(n′+1)(p+1)(−30)

11α1 ) 33 +43 σ ) Nd +(l +1)(p+1)(−30)

12α1 ) σ → 33 33) Nd +(l +1)(p+1)(−30)

13α1 ) 11→C To begin step l +1 according to (g).

The instructions for (α2):

1α2 ) 23→ 15 15) c+m′(p+1)→ 14 | p+2
2α2 ) 33 → 25 25) 14 → d + l(p+1) | p+1
3α2 ) b→35 35) 6α2 →C
4α2 ) 6α2 →C
5α2 ) 15 →C
15) c+m′(p+1)→ 14 | p+2
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c+m′(p+1) ) N y0
m′ to 14) N y0

m′

c+m′(p+1)+1 ) N y1
m′ to 24) N y1

m′

· · · · · ·
c+m′(p+1)+ p ) N yp

m′ to (p+1)4) N yp
m′

c+(m′+1)(p+1) ) N y0
m′+1 to (p+2)4) N y0

m′+1
25) 14 → d + l(p+1) | p+1

14 ) N y0
m′ to d + l(p+1) ) N y0

m′

24 ) N y1
m′ to d + l(p+1)+1 ) N y1

m′

· · · · · ·
(p+1)4 ) N yp

m′ to d + l(p+1)+ p ) N yp
m′

35) 6α2 →C
6α2 ) 21 + 45 σ ) Nm′+1(−30)

7α2 ) σ → 21 21) Nm′+1(−30)

8α2 ) (p+2)4 → 41 41) N y0
m′+1

9α2 ) 23 + 43 σ ) N c+(m′+1)(p+1)(−30)

10α2 ) σ → 23 23) N c+(m′+1)(p+1)(−30)

11α2 ) 33 + 43 σ ) Nd +(l +1)(p+1)(−30)

12α2 ) σ → 33 33) Nd +(l +1)(p+1)(−30)

13α2 ) 11→C To begin step l +1 according to (g).

(6) Let us restate, which short tanks are occupied at the beginning of step l, and how.
This is the list:

11) Nn′(−30) 21) Nm′(−30) 31) N x0
n′ 41) N y0

m′

51) Nn(−30) 61) Nm(−30) 71) N1α (−30) 81) N1β (−30)

91) N1γ (−30) 101) N1δ (−30) 111) . . .→C

12) N1α1 (−30) 22) N1α2 (−30)

32) N0 42) N−1

13) Nb+n′(p+1)(−30)

23) N c+m′(p+1)(−30)

33) Nd + l(p+1)(−30)

43) N p+1(−30)

14) . . . 24) . . . · · · (p+1)4) . . . (p+2)4) . . .

15) . . .→ 14 | p+2 25) 14 → . . . | p+1 35) . . . 45) N1(−30)

The first thing to note is, that this requires 11+4+4+(p+2)+4 = p+25 short
tanks. Hence, if the total number of short tanks is 32 [64], this gives the upper
limit 7 [39] for p.
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The second observation is, that these short tanks have the following contents
when the sequence of steps l = 0,1, · · · , n+m begins, i.e. at the beginning of the
step l = 0. This is the list:

11) N0 21) N0 31) N x0
0 41) N y0

0

51) Nn(−30) 61) Nm(−30) 71) N1α (−30) 81) N1β (−30)

91) N1γ (−30) 101) N1δ (−30) 111) . . .→C

12) N1α1 (−30) 22) N1α2 (−30)

32) N0 42) N−1

13) Nb(−30) 23) N c(−30) 33) Nd(−30) 43) N p+1(−30)

14) . . . 24) . . . · · · (p+1)4) . . . (p+2)4) . . .

15) . . .→ 14 | p+2 25) 14 → . . . | p+1 35) . . . 45) N1(−30)

Of these p+25 short tanks the following must form unbroken sequences: 15, 25,
35 because of their rôle in (l) (between 5α1 and 6α1 , and between 5α2 and 6α2 );
14, 24, · · · , (p+1)4, (p+2)4 because of their rôle in (l) (at 15 and 25, in the two
intervals mentioned above).
These are 3+(p+2) = p+5 short tanks. Of these p+3, namely 35 and 14, 24,
· · · , (p+1)4, (p+2)4 require no preliminary substitution; 2, namely 15, 25 have
a fixed content.
The remaining (p+25)− (p+5) = 20 short tanks can be classified as follows:
12, namely 11, 21, 71, 81, 91, 101, 111, 12, 22, 32, 42, 45 have a fixed content; 6,
namely 51, 61, 13, 23, 33, 43 have to be substituted from the general data of the
problem (they contain n, m, b, c, d, p+1); 2, namely 31, 41 have to be substituted
from the sequences X , Y (they contain x0

0, y0
0). It is desirable that all short tanks

with a fixed constant form an unbroken sequence, so that they can be substituted
by one order. I.e. the 14 given here and the 2 given above must form an unbroken
sequence. These 2 last are 15, 25, as noted still earlier, they must be followed by
35. This gives an unbroken sequence of 12+2+1 = 15 short tanks.
Finally, it is desirable to have the 6 short tanks with n, m, b, c, d, p+1 at the be-
ginning, and the 2 with x0

0, y0
0 immediately afterwards. Also, to have the sequence

of indefinite length (p+2) at the end.
This gives the following final assignment of the p+25 short tanks used:

1) · · · 51) Nn(−30) 9) · · · 11) N0
2) · · · 61) Nm(−30) 10) · · · 21) N0
3) · · · 13) Nb(−30) 11) · · · 71) N1α (−30)

4) · · · 23) N c(−30) 12) · · · 81) N1β (−30)

5) · · · 33) Nd(−30) 13) · · · 91) N1γ (−30)

6) · · · 43) N p+1(−30) 14) · · · 101) N1δ (−30)

7) · · · 31) N x0
0 15) · · · 111) . . .→C
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8) · · · 41) N y0
0 16) · · · 12) N1α1 (−30)

17) · · · 22) N1α2 (−30)

18) · · · 32) N0
19) · · · 42) N−1
20) · · · 45) N1(−30)

21) · · · 15) . . .→ 24 | p+2
22) · · · 25) 24→ . . . | p+1
23) · · · 35) . . .
24) · · · 14) . . .
25) · · · 24) . . .

· · ·
p+24) · · · p+14) . . .
p+25) · · · p+24) . . .

(7) We now come to the step — mentioned in (e). We foresaw there that — would
have to substitute x0

0, y0
0 into the proper short tanks (as we saw in (6), into 7, 8).

We see now, however, that — has to take care of the substitution into all short
tanks. More precisely: No substitutions into 23 and 24, 25, · · · , p+24, p+25
are needed. And 1, · · · , 6 should be substituted when the problem is set up as
such. Hence the short tanks left for the step — are 7, 8 and 10, · · · , 22.
We will substitute 7, 8 first and 10, · · · , 22 afterwards. During the first operation
the short tanks 1, · · · , 6 are already occupied as indicated above (by n, m, b, c, d,
p+1), while 9, · · · are still available. Hence we can use 9, · · · while carrying out
the first step, the substitution of 7, 8, and substitute 9, · · · , or more precisely 9,
· · · , 22, in the final form only subsequently, as a second step.
Actually it is desirable to place during the first step, the substitution of 7, 8, some
orders into short tanks. In accordance with what was said above, we use for this
9, · · · .
We will now formulate the instructions which carry out all these substitutions.
Let these instructions occupy the (long tank) words 10,20, · · · :

10) b→ 9 | 2
20) . . . b→ 7 9) . . . b→ 7
30) . . . b→ 8 10) . . . b→ 8
40) 80→C 11) 80→C
50) 3→ 9 9) b b→ 7
60) 4→ 10 10) c b→ 8
70) 9 →C
9) b b→ 7 7) N x0

0

10) c b→ 8 8) N y0
0

11) 80→C
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80) b→ 9 | 13
90) N0 9) N0

100) N0 10) N0
110) N1α (−30) 11) N1α (−30)

120) N1β (−30) 12) N1β (−30)

130) N1γ (−30) 13) N1γ (−30)

140) N1δ (−30) 14) N1δ (−30)

150) . . .→C 15) . . .→C
160) N1α1 (−30) 16) N1α1 (−30)

170) N1α2 (−30) 17) N1α2 (−30)

180) N0 18) N0
190) N−1 19) N−1
200) . . .→ 24 | p+2 20) . . .→ 24 | p+2
210) 24→ . . . | p+1 21) 24→ . . . | p+1
220) N1(−30) 22) N1(−30)

230) 11→C To begin step 0 according to (g).

(8) We now have a complete list of instructions:
First, in short tanks 1, . . . , 6, as described at the end of (6).
Second, in long tanks the words 10, · · · , 230 (cf. (7)); 11, · · · , 101 (cf. (g)); 1α ,
· · · , 4α (cf. (i)); 1β ,2β (cf. (j)); 1γ ,2γ (cf. (j)); 1δ (cf. (j)); 1α1 , · · · , 13α1 (cf. (l));
1α2 , · · · , 13α2 (cf. (l)).
Let us consider the second category of instructions, i.e. the words in long tanks,
more closely. The first thing to note is, that this requires 23+ 10+ 4+ 2+ 2+
1+13+13 = 68 (long tank) words. The second observation is, that according to
(j) 1β ,2β as well as 1γ ,2γ are always followed by 1α , . . . ,4α , and according to
(i) 1α , . . . ,4α are always followed by 1α1 , . . . ,13α1 or 1α2 , . . . ,13α2 . Hence it is
reasonable to make the final assignment of numbers to these (long tank) words
in such a way that these precedences are maintained.
Actually it is best to delay the final assignment of numbers, for reasons which
will appear in (9). We make, however, a secondary assignment of numbers as
follows:

1′, · · · , 23′ to 10, · · · , 230
24′, · · · , 33′ to 11, · · · , 101
34′, 35′ to 1β , 2β

36′, 37′ to 1γ , 2γ

38′, · · · , 41′ to 1α , · · · , 4α

42′, · · · , 54′ to 1α1 , · · · , 13α1
55′, · · · , 67′ to 1α2 , · · · , 13α2
68′ to 1δ
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(9) The assignment of numbers at the end of (8), makes 1α , 1β , 1γ , 1δ , 1α1 , 1α2
equal to 38′, 34′, 36′, 68′, 42′, 55′. These numbers occur in 110, 120, 130, 140,
160, 170, i.e. in 11′, 12′, 13′, 14′, 16′, 17′. Hence the content of these 6 (long tank)
words depends explicitely on the final assignment of (long tank word) numbers
to 1′, . . . ,68′.
If this final assignment were made now, in a rigid form, then the (long tank)
words 11′, . . . ,14′, 16′, 17′ could be formulated accordingly, and the instructions
would be completed. It is, however, preferable to have these instructions in such
a form that they can begin anywhere, i.e. that their first (long tank) word can be
chosen freely.
Let this first (long tank) word be e, i.e. e is 1′. Hence e, . . . ,e+ 67 should cor-
respond to 1′, . . . ,68′. However, it is worth while to deviate from this simple
sequential correspondence for the following reasons:

(A) In 10, · · · , 230 (i.e. 1′, · · · , 23′) the passage of C from 11 to 80 involves a
delay of about one long tank, if 80 follows immediately upon 70: Indeed 70 is
followed by 9, 10, 11. Hence it is better to intercalate 3 words between 70 and
80 to time correctly for 9, 10, 11, plus, say, 1 word for the long tank switching
in 11. I.e., there should be 4 (empty) words between 70 and 80, i.e. 7′ and 8′.

(B) In 1α1 , · · · , 13α1 (i.e. 42′, · · · , 54′) there exists the same situation as in (A) be-
tween 5α1 and 6α1 , where 15, 25, 35 (i.e. 21, 22, 23) are intercalated. In order
to avoid a delay of about one long tank, it is again necessary to intercalate
3+1 = 4 (empty) words between 5α1 and 6α1 , i.e. 46′ and 47′.

(C) In 1α2 , · · · , 13α2 (i.e. 55′, · · · , 67′) between 5α2 and 6α2 the situation is exactly
the same as in (B). Hence it is again advisable to intercalate 4 (empty) words
between 5α2 and 6α2 , i.e. 59′ and 60′.

(D) 101 (i.e. 33′) sends C to 111 (i.e. 15), and this in turn sends C to 1α or 1β or
1γ or 1δ (i.e. 38′ or 34′ or 36′ or 68′). In order to avoid a delay of about one
long tank, it is necessary to intercalate 1 word after 101 to time correctly for
111, plus, say, 1 word for the long tank switching in 111. I.e. there should be
2 (empty) words after 101, i.e. 33′.

Taking these matters into account, the following final assignment of numbers
obtains:

e, · · · , e+6 to 1′, · · · , 7′ to 10, · · · , 70
e+7, · · · , e+10 to empty (cf. (A))
e+11, · · · , e+26 to 8′, · · · , 23′ to 80, · · · , 230
e+27, · · · , e+36 to 24′, · · · , 33′ to 11, · · · , 101
e+37, e+38 to empty (cf. (D))
e+39, e+40 to 34′, 35′ to 1β , 2β

e+41, e+42 to 36′, 37′ to 1γ , 2γ

e+43, · · · , e+46 to 38′, · · · , 41′ to 1α , · · · , 4α

e+47, · · · , e+51 to 42′, · · · , 46′ to 1α1 , · · · , 5α1
e+52, · · · , e+55 to empty (cf. (B))
e+56, · · · , e+63 to 47′, · · · , 54′ to 6α1 , · · · , 13α1
e+64, · · · , e+68 to 55′, · · · , 59′ to 1α2 , · · · , 5α2
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e+69, · · · , e+72 to empty (cf. (C))
e+73, · · · , e+80 to 60′, · · · , 67′ to 6α2 , · · · , 13α2
e+81 to 68′ to 1δ

Hence the (long tank) words 11′, 12′, 13′, 14′, 16′, 17′ become

e+14, e+15, e+16, e+17, e+19, e+20,
and they contain the numbers 38′, 34′, 36′, 68′, 42′, 55′, and these become

e+43, e+39, e+41, e+81, e+47, e+64.
We rewrite these (long tank) words:

e+14) N e+43(−30)
e+15) N e+39(−30)
e+16) N e+41(−30)
e+17) N e+81(−30)
e+19) N e+47(−30)
e+20) N e+64(−30)

(10) Disregarding for the time being the 6 substitutions required to produce the 6 (long
tank) words enumerated at the end of (9), the total system of instructions, at the
present stage, is this:

(I) The 82 (long tank) words e, · · · , e+81 of (9).
(II) The 6 short tanks 1, · · · , 6 of (6).

The quantities which actually determine the problem, as a function of the X , Y ,
are these:

(*) n, m, b, c, d, p, a, e. (For a cf. (1δ ) in (j), for e cf. (9).)

Of these the 6 first, n, m, b, c, d, p, are given in (II), but p occurs again in (I).
The others a, e, occur in (I) only. So we must discuss how the occurrences of

(**) p, a, e

in (I) are to be taken care of.
p occurs in 200, 210 (cf. (7)), i.e. e+23, e+24 (cf. (9)). a occurs in 1δ (cf. (j)),
i.e. e+81 (cf. (9)). The occurrences of e have been summarized at the end of (9).
We rewrite the (long tank) words which contain these additional substitutions:

e+23) . . .→ 24 | p+2
e+24) 24→ . . . | p+1

and
e+81) a→C

(11) The complete system of instructions, as derived in what preceded, can also be
formulated as follows:
The 82 (long tank) words of (I) in (10), namely e, · · · , e+81, contain only fixed
symbols, except for certain occurrences of the 3 variables of (**) in (10), namely
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p, a, e, in the 9 words enumerated at the end of (9) and the end of (10). Assume,
that e, · · · , e+81 are stated, with blanks . . . in place of these 3 variables in the 9
words in question. Call this group of 82 words G82.
Then, after G82 has been placed in the long tanks, in an unbroken sequence be-
ginning at e, the following further steps are necessary:
First, 6 substitutions into short tanks, according to (II) in (10), and 9 substitutions
into long tanks, according to the end of (9) and the end of (10). We restate these
6+9 = 15 substitutions:

1) Nn(−30) e+14) N e+43(−30) e+23) . . .→ 24 | p+2
2) Nm(−30) e+15) N e+39(−30) e+24) 24→ . . . | p+1
3) Nb(−30) e+16) N e+41(−30) e+81) a→C
4) N c(−30) e+17) N e+81(−30)
5) Nd(−30) e+19) N e+47(−30)
6) N p+1(−30) e+20) N e+64(−30)

Denote this group by S15.
After the substitutions S15 have been carried out, C can be sent at any time to
e. This will cause the meshing to take place as desired, and after its completion
send C to a.
The following final remark should be added: G82, as defined above, contains
only fixed symbols, i.e. it is a fixed routine. With a suitable choice of S15 it will,
therefore, cause any desired meshing process to take place. Thus G82 can be
stored permanently outside the machine, and it may be fed into the machine as a
‘sub routine’, as a part of the instructions of any more extensive problem, which
contains one or more meshing operations. Then S15 must be part of the ‘main
routine’ of that problem, it may be effected there in several parts if desired. If, in
particular, the problem contains several meshing operations, only those parts of
S15 need be repeated, in which those operations differ. And since G82 contains
no explicit reference to its own position, i.e. to e, therefore G82 can be placed
anywhere in the long tanks, it is only necessary that the ‘main routine’ take care
of the proper e (by means of its S15). This ‘mobility’ within the long tanks is,
of course, an absolute necessity for ‘sub routines’ which are suited for use in
a flexible general logical scheme of ‘main routines’ and (possibly multiple and
interchangeable) ‘sub routines’.

(12) To conclude, we must estimate the duration of a meshing process according to
the instructions which we derived.
We will not count the time in effecting S15, hence we begin when C reaches e.
We follow the list of words e, · · · , e+81 given in (9):
The process begins with the step — of (7), i.e. 10, · · · , 230, i.e. e, · · · , e+ 26.
Apart from 26 words = 26

32 ms = .81 ms, there are the following delays: 9, 10
each averages 1

2 tank = .5 ms; 11 is 1 word = 1
32 ms = .03 ms. The total is

.81+ .5+ .5+ .03 = 1.84 ms.
Now consider a step l = 0,1, . . . ,n+m. Its make up is as follows: It begins with
11, · · · , 101 of (g), i.e. e+27, · · · , e+38. These are 12 words = 12

32 ms = .38 ms,
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and no other delays. From here on the process splits, according to which of the 4
cases (α), (β ), (γ), (δ ) obtains.
Consider (α) first. It begins with 1α , · · · , 4α of (i), i.e. e+43, · · · , e+46. Apart
from 4 words = 4

32 ms = .13 ms, there are the following delays: At the beginning
of this sequence 7 words (from e+ 36 to e+ 43) = 7

32 ms = .22 ms; from the
time of 11 (which follows upon e+ 46 and hence is e+ 47) until the beginning
of (α1) or of (α2) (e+ 47 or e+ 64), i.e. nothing or 17 words, averaging 1

2 17
words = 1

2
17
32 ms = .27 ms. This totals .13+ .22+ .27 = .62 ms. Next there is

(α1) [(α2)], consisting of 1α1 , · · · , 13α1 [1α2 , · · · , 13α2 ] of (l), i.e. e+ 47, · · · ,
e+ 63 [e+ 64, · · · , e+ 80]. Apart from 17 words = 17

32 ms = .53 ms, there are
the following delays: 15 averages p+ 1 words and 1

2 tank; 25 averages p+ 2
words and 1

2 tank; after 13α1 [13α2 ] (i.e. e+ 63 [e+ 80]) there is a delay until
11 (e+ 27), since this delay is to be taken modulo entire tank, i.e. modulo 32
words, it amounts to 28 [11] words, i.e. an average of 1

2 (28+11) = 18 1
2 words.

This totals (p+ 2)+ (p+ 1)+ 18 1
2 = 2p+ 21 1

2 words and 1
2 +

1
2 = 1 tank, i.e.

2p+21 1
2

3 + 1 ms = p
16 + .67 ms. The grand total for (α) is therefore .62+( p

16 +
.67) ms = p

16 +1.29 ms.
Consider next (β ), (γ). These differ from (α) only inasmuch as they replace 1α

by 1β , 2β (2γ , 3γ ) of (j). In either case, there is, with actual operation and delays,
a direct sequence from 101 to 2α , i.e. from e+36 to e+44. Hence there duration
is the same as α .
Consider finally (δ ). This involves the delay from 110 to 1δ of (j), i.e. from e+36
to e+47, and the word 1δ , i.e. e+47, itself. This amounts to 12 words = 12

32 ms=
.38 ms.
Now of the n+m+1 steps l = 0,1, . . . ,n+m all but the last one, n+m, are (α)
or (β ) or (γ); n+m is (δ ). Hence there are n+m lasting .38+( p

16 +1.29) ms =
p

16 +1.67 ms and 1 lasting .38+ .38 ms = .76 ms. The total duration of the entire
meshing process is therefore this: 1.84+(n+m)( p

16 + 1.67)+ .76 ms = 2.60+
(n+m)( p

16 + 1.67) ms. For p = 1 this is 2.60+(n+m)1.78 ms, for p = 7 it is
2.60+(n+m)2.11 ms, for p = 39 it is 2.60+(n+m)4.11 ms. (Concerning these
p values consider the first part of (6).)
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