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Abstract

Compared with the history of computing hardware, the hystdrsoftware is in a relatively unde-
veloped state. In particular, the history of programmingglaages still consists for the most part of
technical accounts presenting a rather Whiggish persggeati developments. Given the importance
of software in the contemporary world, however, it is impattto develop a more sophisticated un-
derstanding of the medium in which it is expressed.

This thesis considers some aspects of this history with itheo examining the influence of
formal logic on the evolution of notations for expressingnpuiter programs. It is argued that this
was not a natural or inevitable application of theory to picas as is sometimes suggested, but a
complex and contingent process with a rich history of its own

Two introductory chapters discuss the work on computgbddrried out by logicians in the
mid-1930s, and the controversial topic of the role of logidhe invention of the computer. The
body of the thesis proceeds chronologically, consideriaghmme codes, the introduction of higher
level notations, structured programming and software regging, and the early object-oriented
languages.

The picture that emerges is that formal logic was delibgragmployed by programming lan-
guage designers to provide a model for a theoretical uratetstg of programming languages and
the process of program development. This led to a flouristeéagarch programme in the 1960s and
1970s, many of whose results are of lasting significance ahayv The thesis concludes by exam-
ining the early history of object-oriented languages, enguhat this episode shows the emergence

of limits to the applicability of the logical research pragime.
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Typographical conventions

The literature shows little consistency in the way that thenas of programming languages are
written: variants such as ‘FORTRAN’, #/RTRAN' and ‘Fortran’ are commonly found. In this
thesis, the following conventions are adopted: names whaiehmore or less pronouncable are
treated as proper names and written as ‘Fortran’, wherga®noouncable acronyms are written as
‘NPL. In direct quotation, however, the style adopted bg triginal source is preserved.

The name ‘Mark I is used throughout to refer to the machingigteed by Howard Aiken and
also known as the ‘Automatic Sequence Controlled CalctlatdASCC'. A persuasive rationale
for this practice has been given by I. Bernard Cohen in higraiohy of Aiken [Cohen, 1999, p.

XiX—XX].



Chapter 1

Introduction

The roots of modern digital computing lie in the desire tooaudite certain processes of calculation
and collation. In the nineteenth century, Charles BablaD#ference Engines were intended to
compute various arithmetical tables, such as tables ofritbgas [Babbage, 1864], and Herman
Hollerith designed a punched-card system to facilitategioezessing of the results of the 1890
census in the USA [Austrian, 1982]. This latter work led dikgto the creation of a large punched-
card industry in the first half of the twentieth century whaaitomated many data processing tasks
in industry and commerce [Aspray, 1990a].

Babbage’s work did not result in any comparable applicatio in the 1930s a number of in-
dependent developments were started by people inspikedBhibbage, by a desire to escape the
labour of extended calculation. In 1935, Konrad Zuse hadriyg graduated as an engineer and,
apparently motivated by a desire to automate the long anghleancalculations he had had to per-
form, “decided to become a computer developer” [Zuse, 1p934]. He set up what he described
as an “inventor’'s workshop” in his parents’ apartment inlBerand by 1936 had started work on
the Z1, the first in a line of machines leading in 1941 to the&Z@8evice that has been described as
the “first fully operational program-controlled computingachine in the world” [Ceruzzi, 1983, p.
29]. In 1937, Howard Aiken at Harvard University noted thpeatitive nature of the computations
involved in calculating approximate values of functiongerforming numerical integration using
infinite series [Aiken, 1937]. He designed a large-scaleutator intended to automate these and
similar calculations. Known later as ‘Mark I', this machimas developed in partnership with IBM
and became operational in 1944 [Cohen, 1999].

The construction of automatic computing machines raisedgtiestion of how to specify the
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computational process that the machines should carry oot. @pproach was to build specialized
machines that could carry out one particular task, but exicegpecialized domains such as cryp-
tography, this approach was not followed: Babbage, Zusetdkeh all designed general purpose
machines which would be capable of carrying out a wide rafigemputations. At the time, large-
scale computations were carried out by people, known aspabens’, who followed computational
plans specified by instructions given on printed forms arebth Machines like Zuse’s and Aiken’s
were designed as direct replacements for the humans in ssoénario, a point that Alan Turing
made explicit in his theoretical analysis of computationrjiig, 1936]. The metaphor of ‘giving
instructions to the machine’, usually in the form of a declpohched cards, gradually emerged as
a way of describing the way in which computations were spetifi

As well as manipulating physical objects, such as punchedsdatended for machine pro-
cessing, people working with automatic computers begaepesent the instructions symbolically
for the purposes of designing or communicating computatiphans. This led to a convergence
with the discipline of mathematical logic which, since thedef the nineteenth century had been
investigating the properties of symbolic notations thatldde processed ‘mechanically’. By the
1930s a notion of formal language had been developed whipturead the important properties
of such notations. For people with a background in mathemlalibgic, such as Turing and John
von Neumann, it was natural to see the instructions givemtawiomatic computer as terms in a
mechanically processable language, and hence to see agamaitween logic and the activity of
programming automatic computers.

This was the beginning of what has turned out to be a long aradvied relationship between
logic and computer science, the anticipated significansehi¢h was described by John McCarthy
in the following terms: “It is reasonable to hope that theatiehship between computation and
mathematical logic will be as fruitful in the next centurythat between analysis and physics in the
last” [McCarthy, 1963a, p. 69]. Historical studies haverbegitten describing various aspects of
this relationship, covering for example the areas of aidifiatelligence [Pratt, 1987] and theoretical
computer science [Mahoney, 1997]. The principal aim of thésis is to explore the history of this
relationship in a different area, namely the developmemiroframming notations and languages.

The significance of this development is not restricted tdiiktory of computing. Following the
publication of Frege'8egriffschriftin 1879, mathematical logic had developed a notation in whic

mathematical proofs could be completely formalized, andiymaetalinguistic properties of this
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notation had been formulated and proved. By contrast, modbnotation existed for the expression
of algorithms. Although algorithmic procedures had beeovkmsince the earliest days of recorded
mathematics, they were still described at best semi-fdymalen the computation plans used in
large-scale manual calculations required some degreetarpietation by the human computers
carrying out the work.

When computational plans were first developed for autontatioputers, there was no longer
any possibility of the computing agent interpreting thermstions given to it. To ensure complete
explicitness and the possibility of mechanical intergieta plans were initially thought of simply
as sequences of the basic operations, such as the addittaro esfumbers, that a machine could
perform. Compared with a notation like the predicate calsuhowever, there are at least two
significant problems with this approach. Firstly, it is natraversal notation: programs are written
in a dialect specific to one type of machine, and so cannddasiread by or shared with workers
accustomed to another type. Secondly, there ig poiori reason to suppose that a sequence of
basic instructions provides a usable notation in which msyan write, study, or reason about the
properties of programs.

From this perspective, the history of programming langaaga be read as the search for an ad-
equate formal notation for the expression of algorithmsptation which would be as theoretically
fruitful and as universally accepted as the notation of tteeljgate calculus was for the expression
of proofs. Programming languages can therefore be seen erafyras a specialized topic within
the history of computing, but as having a larger significanithin the history of mathematics,
completing the project of formalization which had come torpinence in the nineteenth century.

This viewpoint provides one way of understanding why laisi saw relevance for their work
in the new and esoteric activity of programming automatimpaters. This thesis examines how
logic came to have a concrete influence on the developmenbgfamming languages and some
aspects of the nature of that influence. The period underidEnagion is roughly the years from
1930 to 1975. By 1936, mathematical logic had developed ar¢tieal analysis of the concept
of computability, and a number of practical projects in awdtic computation were beginning to
get under way. By the end of the period a degree of unanimity bbeen reached about many
of the desirable features of programming languages, andethdts obtained by researchers were
beginning to have a significant effect on the industrial ficacof programming, and indeed have

continued to provide a foundation for the development okegbient languages. A sense of closure
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at this time was sometimes recognized by contemporary nsyiseich as Peter Wegner who in 1976
suggested that “[ijt may well be that programming languagggssionals did their work so well

in the 1950s that most of the important concepts have alrbagy developed” [Wegner, 1976,
p. 1224]. The focus of the thesis is on the programming laggsialeveloped for scientific and
commercial data processing applications. More specaldiéyelopments, and in particular artificial
intelligence (Al), were clearly influenced by logic as muah & not more than, the mainstream.
The relationship between logic and Al has long been receghénd subjected to detailed critical

examination [Birnbaum, 1991, for example], however, antbisconsidered in any detail here.

1.1 The historiography of programming languages

This section briefly reviews prominent work on the historypabgramming languages, in order to
gain an overview of that history and also some insight ineovfay the history has been written.

One of the earliest surveys of programming languages walshal in 1964 by Saul Rosen,
a mathematician who had been involved in computing in botdemia and industry since the
1940s [Rosen, 1964]. Rosen provided a narrative accourdartf developments culminating with
the distribution of Fortran Il in 1957, a language which Roseedited with being responsible for a
“revolution” in the field of scientific computing. He then ga& detailed account of the development
of the Algol 60 language in the years 1958-1960, and a surfdfieolanguages that had been
developed for data processing applications, leading upeténtroduction of Cobol in 1961.

Rosen’s account combines a classification of existing laggs with more detailed considera-
tion of specific languages which were judged to be partibulsignificant or noteworthy. As was
common at the time, Rosen distinguished scientific from gadaessing applications, and identified
what he considered to be the most significant language inazaelh) Fortran and Cobol respectively.
Algol 60 was also identified as a key development, althougbeR@xpressed reservations about its
practical significance.

In 1967 Rosen published an anthology which reprinted a rahgeiginal papers on program-
ming systems and languages [Rosen, 1967]. The structuhesdidok again illustrates the themes
of classification and evaluation implicit in the earlier papwhich was reprinted in the book) while
also widening its scope. A section titled simply “programmlanguages” contained papers on For-
tran, Algol 60, Cobol and IBM’s ‘New Programming Languageter known as PL/I. A separate

section on “languages for processing lists and strings wibgys” contained papers on languages
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associated with the field of artificial intelligence, suchHRls-V and Lisp. The book also contained
a number of papers on language processors and operatiegnsyst

Another noteworthy publication in the 1960s was Jean Safarbebk “Programming Lan-
guages: History and Fundamentals”, published in 1969 [Setnt®69]. Like Rosen, Sammet or-
ganized her presentation largely around a classificatiapplication areas. Within each application
area, a small number of languages were discussed in deithilearly developments and languages
of restricted use being briefly described. Sammet adopteengally the same classification as
Rosen: Fortran and Algol 60 were listed as “languages forarigal scientific problems”, Cobol
as a language for “business data processing problems” Pan¥,ILisp, Comit, Snobol and Trac as
“string and list processing languages”. PL/l was classifie@ “multipurpose language”, and Sam-
met also included sections describing “formal algebrainimaation languages” and “specialized
languages” for areas such as the control of machine tools@amguter-aided design.

In 1971, at the conference of the International Federatiwrirfformation Processing (IFIP),
Thomas Cheatham delivered a paper which surveyed “the tresetution of programming lan-
guages” [Cheatham, 1971]. Cheatham wrote from a more adadmrspective than Rosen and
Sammet, and classified languages on technical grounds tatre by application area; he distin-
guished between “interactive” and “non-interactive” laages, and included categories of “special-
purpose” and “extensible languages”. In his account of threeait situation, he listed a number of
“popular” languages, including the then widely used For@ad Cobol. However, in the category
of popular languages Cheatham included Algol 60 and PLApite admitting that they were much
less widely used.

Why, then, were these less widely-used languages inclu@datham identified certain lan-
guages as “important” — “Lisp ... takes its place with Algl-as being one of the most important
programming languages ever developed” [Cheatham, 197301 — and a major component of
this importance was related to theoretical innovationaiathan practical success. The importance
of Algol 60, for Cheatham, came from the fact that it serve@ asodel for many subsequent de-
velopments, and in particular led to “considerable and ngge activity to develop formal models
for syntax and semantic specification which has borne somyamgortant fruit” [Cheatham, 1971,
p. 299]. Similarly, “Lisp was probably the first programmitemnguage to have a formal semantic
model” [Cheatham, 1971, p. 301]. This illustrates that byd®rogramming language theory had

developed to such an extent that languages could be evéloatomething other than their practi-
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cal or commercial success. For Cheatham, a key elementlinssuevaluation was the relationship
a language bore to certain metalogical ideas.

In 1972, as part of the 25th anniversary of the ACM, the Anariprofessional body concerned
with computing, both Rosen and Sammet were invited to dautii their thoughts on the current
situation. Rosen stated that “[ijn 1972 and on into the feeable futurefORTRAN andcoBOL are
the languages in which most of the world’s serious prodagtimgrams are written” [Rosen, 1972,
p. 591], although PL/I was also mentioned as an emergingndsta production language”. PL/I
was also mentioned because of the importance to languageytb&the formal description that
the IBM laboratory in Vienna had produced [Lucas and Wall§9 Algol 60 and its successor,
Algol 68, were described as primarily being of importancéhie “theoretical development of pro-
gramming language concepts” [Rosen, 1972, p. 593]. Dangribore recent developments, Rosen
adopted Cheatham'’s classification of ‘extensible’ andc¢gdeurpose’ languages, and highlighted
the use of APL and Basic in interactive computing systems.

Sammet began by discussing some general questions abdimgwhe history of program-
ming languages, and in particular tried to describe theryptedor identifying certain languages as
historically important. She concluded that “there arelyealo major reasons for a language to
be considered significant: one is that it is economicallyciical and hence very useful, and the
other that it is technically new” [Sammet, 1972, p. 603];stheeasons also seem to have informed
Rosen’s choice of subject material. Another feature of Satisnpaper was a “language history
chart”, which gave a graphical representation of many @ogning languages and the relation-
ships between them: one language could be a subset or asiexterfianother, and in many cases
a relationship of “influence” was shown, glossed as “somegithe second language is ‘like, or in
the style of’ the first” [Sammet, 1972, p. 606].

In 1976 Peter Wegner published a survey article describihg first 25 years” of program-
ming languages [Wegner, 1976]. This presented a more carhfgeorical account in which three
historical phases, each roughly corresponding to a deeaate, identified. For Wegner, the 1950s
represented a period of empirical investigation, in whinpértant programming language concepts
were discovered and described; in the 1960s a mathemagipedach was taken to the elaboration
and analysis of these concepts, and in the 1970s an engigesyproach was taken to developing
an effective software technology based on the earlier wa¢khin this periodization, Wegner de-

scribed “some of the principal milestones of programminggleage development ... includ[ing]
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the development of specific programming languages, andabel@pment of implementation tech-
niques, concepts and theories” [Wegner, 1976, p. 1208]. cFiteria according to which these
milestones had been selected were not made explicit, howmwethey did include familiar refer-

ence points such as Fortran, Algol 60 and Cobol.

The 1970s also saw a growing interest in the more generariist computing, and in June
1976 an International Research Conference on the HistoGoaiputing was held at Los Alamos
[Metropolis et al., 1980]. This conference concentratedlevelopments before 1960, and the pa-
pers on programming languages largely described workethout in and before the 1950s. A
further conference, organized by the ACM in 1978, was deeitéo recording the history of indi-
vidual programming languages [Wexelblat, 1981]. The detased for inclusion in the conference
were that a language must have been in use in the period 1967-ehd have had “considerable
influence on the field of computing” in at least some of thediwlhg areas: “usage, influence
on language design, overall impact on the environment, Ityoy#rst of its kind), and unique-
ness” [Sammet, 1981, p. xviii]. Two subsequent confergnice$993 and 2007, have been orga-
nized on similar lines [Bergin and Gibson, 1996, Ryder andgden, 2007].

By the end of the 1970s, then, there was quite a sophistiGddong-established tradition
of writing about the history of programming languages. Asslietwo criteria were routinely used
for assessing the significance of particular languagesehatime language’s importance in practice
or to theoretical development, and these were used to fdemtet of ‘landmark achievements’
about which there was a considerable degree of consensege Whs also the beginnings of a more
synoptic account of developments, apparent for exampleeipériodization suggested by Wegner.

All the historical work discussed so far was produced by petpined in computing and work-
ing in the field, either in industry or academia, but from abt®80 professional historians began
to take an interest in the history of computing. One effedhf was an increased emphasis on the
context surrounding technical developments. As Paul Gemu it in his 1980 thesis, “the em-
phasis will be on placing these descriptions [of early cotimgumachines] into a larger context—of
social, political, and historical themes as well as teciimnes” [Ceruzzi, 1981, p. 2]. Among other
things, this change contributed to a move of historical foaway from accounts of programming
languages to a more general attempt to write the historyfoface.

This change of perspective has affected what is seen adicagmiin the past. For example,

whereas Sammet recognized two distinct criteria for thaiiignce of a programming language,
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historians of software tend to emphasize only the extenthichva language is used in industry. In
the brief discussion of programming languages in theiohystf the computer, for example, Martin
Campbell-Kelly and William Aspray discussed Fortran and@pbut made no mention of Algol

60, or indeed of any other programming language [Campbelliykand Aspray, 1996].

In fact, programming languages as such have not been muztksdid by historians of software,
and when they have been it has often been in the context ohtedetopic. For example, Stuart
Shapiro included significant discussion of programmingylaages in an article whose main focus
was on different approaches taken to the task of softwareldgment [Shapiro, 1997], and Michael
Mahoney touched on language issues in papers on the devatdpfmathematical theories of com-
putation [Mahoney, 1997]. The organisers of an Internatfi@onference on the History of Com-
puting in 2000 devoted to “Software Issues” [Hashagen gP@D2] proposed that the history of
software be discussed under a number of general themagjiimglsoftware as science and as engi-
neering. Within these themes, however, programming lagegisvere only incidentally mentioned.
Later work, such as Campbell-Kelly’'s account of the sofevadustry [Campbell-Kelly, 2003], has
only reinforced this trend towards a more general, congdpproach.

A number of observations can be made on the basis of this suieiey of the literature of
the history of programming languages. Firstly, there hamnbe move away from technical de-
tail towards a kind of history which focuses almost exclaivon commercial and contextual
issues. Campbell-Kelly recently reflected on this changhkisnown work, stating that he could
not look back on his earlier, more technically-oriented kydwithout a mild flush of embarrass-
ment” [Campbell-Kelly, 2007, p. 40]. While recognizing theasons that led historians to move
away from the earlier, highly descriptive, technical aguswf programming languages, however,
it is still possible to feel that something is missing froneaients which treat software history purely
as business history, omitting any detailed consideratidheounderlying technology. This point has
recently been made in a slightly different context by Thomiésa, who wrote that, “[a] contextual
history—devoting close attention to specific details of t@chines while situating them in their
historical context—should be a vital ongoing tradition”igd, 2007, p. 53]. One of the aims of this
thesis is to re-engage with the richness of the detailechteahhistory of programming languages,
while simultaneously benefiting from the methodologicaigts of historians.

These insights are related to a second observation, thaigstary of programming languages

has been written by two distinct groups of people, and thatjildgements of these two groups
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on what is historically important are distinct. The first gpocan loosely be described as “insid-
ers” [Mahoney, 1997], computing professionals with in meases long experience and detailed
technical knowledge of programming and programming laggsa The second group, the ‘out-
siders’, have typically been trained in a non-computingigifne, such as history or sociology.
When judging a question such as the significance of a paatidahguage, insiders tend to focus
on aspects such as technical novelty and influence, whentsiders focus more on the importance
of the language in an external, commercial context (thotighauld be noted that insiders such as
Rosen and Sammet consistently applied both criteria ircsetglanguages for discussion). The
distinction between these two groups has often been noted. discussion of the writing of the
history of computing, for example, Jan Rune Holmevik dmptished two different types of his-
tory, one written largely by and for computer professioraald the other by historians with a wider
range of interests, and argued for the legitimacy of eack tyjhin the context of its intended
audience [Holmevik, 1994].

Insider history is sometimes said to be vulnerable to a nurabmethodological weaknesses,
such as “Whiggism” and “internalism” [Holmevik, 1994], vahi together lead to the writing of a
kind of history which represents the development of teabgplas an autonomous and teleological
process, in which historical events follow purely techmyidal laws of evolution to end up in what
is essentially the current state of affairs. By contrastsider history emphasizes the importance
of non-technological causes, such as economic and soimaldgctors, and presents technology as
just one element of a larger historical manifold which eeslunpredictably in response to a wide
range of events. The following sections examine the sugbtakacies of insider history in more

detail, concluding with a description of the methodologegaproach taken in this thesis.

1.2 Whiggism

The Whig interpretation of history was characterized byttistorian Herbert Butterfield as “study-
ing the past with reference to the present”, and he identfiadmber of methodological errors in
this approach [Butterfield, 1931]. Whig history misreads plast, seeing in it solely a reflection of
contemporary concerns rather than making the positivetaffdiistorical understanding necessary
to grasp a situation that might in many ways differ from thesant; it “over-dramatizes” the histor-
ical process, seeing it as the triumph of one set of ideastorsaover opposition and error rather

than as a general ongoing transformation, the outcomesiohwtight in a dialectical fashion differ
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from anything anticipated by the historical actors; and ibver-concerned with questions of origin
and causation, paying insufficient attention to the realmerity of historical transformation.

Whiggism in the history of computing has been specificalgniified as a problem by a number
of writers, including Holmevik and Anthony Hyman [Hyman,2§). A characteristic example from
the history of programming languages is a paper by F. L. BandiH. Wossner which discusses the
Plankallil programming notation developed by Zuse in the mid-1940sigBand Wossner, 1972].
The very title of the paper, which describes Blankalkil as a “forerunner of today’s programming
languages”, illustrates Butterfield’'s points, suggestimat historical events are to be regarded pri-
marily in their relationship to the present, and that thagigal motivation of the study is to identify
origins and causes of contemporary techniques in the pasattimpt is made to place Zuse'’s work
in its historical context, and it is seen as having value anerést primarily insofar as it anticipates
later developments: “it is nevertheless surprising to wadént thePlankalkil already contains
standard features of today’s programming languages” [Bane Wossner, 1972, p. 678].

A further characteristic of this approach is the reintetiggien of concepts and terminology in
the contemporary terms: “[Zuse] us@dgaberfor data and/orschriftfor algorithm. Not having at
his disposition the wor@rogramm he called a prograRechenplah[Bauer and Wossner, 1972, p.
678]. This approach obscures the evolution of technicatepts and the extent to which scientific
terminology can change its meaning over time.

Finally, the paper nicely illustrates what Butterfield edllthe “Whig historian’s quest for ori-
gins”. Bauer and Wossner describe tlankalkil as “a remarkable first beginning on the way to
higher programming languages” [Bauer and Wossner, 197@7@), despite acknowledging that it
was never used in practice, and had a minimal influence oneel@pment of later languages.

A slightly later and more sophisticated example of Whig¢gstdencies is a paper by Donald
Knuth and Luis Trabb Pardo, which played an important roliaéhistoriography of programming
languages by documenting and drawing attention to manyeoély languages and notations that
preceded the development of Fortran. Knuth and Trabb Pard@lyenuine interest in history, and
unlike Bauer and Wossner they emphasized the need toZeehbw long it took to develop the
important concepts that we now regard as self-evident” fKmand Trabb Pardo, 1980, p. 198] and
attempted to describe and illustrate each language as itvasiginally have been used. Never-
theless, they illustrated the languages under discussiarsing them to code an artificial example

program which required techniques that were not availabl@any of the older languages, and at



CHAPTER 1. INTRODUCTION 19

the end of the paper the languages were classified acconithg extent to which they supported a
number of linguistic features salient at the time the papas written.

Despite the methodological changes that have taken plabe inistory of computing since the
1970s, examples of Whiggism can still be found in historigégting on programming languages.
In 1997, for example, Wolfgang Giloi published another actaf thePlankalkil which, in terms
very reminiscent of Bauer and Wossner, described it asfitsignon von Neumann’ programming
language” [Giloi, 1997].

On the whole, it seems that Whiggish history is indeed opeamiticism. The writing of history
can not be completely divorced from the concerns of the pitess the selection of what is to be
written about will necessarily be made from the standpdimotemporary concerns and interests.
Nevertheless, once this selection is made, historicalracgus better served by making an attempt

to understand the past for its own sake and in its own terms.

1.3 Internalism

A distinction has often been drawn between ‘internal’ andeemal’ histories of science. In Kuhn’s
words, internal history is “concerned with the substancescxdnce as knowledge” whereas ex-
ternal history is “concerned with the activity of sciergists a social group within a larger cul-
ture” [Kuhn, 1968, p. 76]. The distinction is also appliedite kind of account that is given of the
historical process, depending on whether internal or patezauses are adduced to explain partic-
ular events. Internal history is typically written as an@mt of the autonomous development of
scientific ideas, whereas external history deals with ofhetors, often economic, sociological or
political, which are held to affect the development of thateat of science.

At the heart of the distinction is a belief that the contensciEnce can be clearly demarcated
from the context in which it is developed. For example, arrimal account of the development of
programming languages might focus on the features prowgetifferent languages, and the formal
differences between them, and explain how innovations &language influenced later designs.
By contrast, an external account might examine how langiagese from the needs of computer
users, and the way that the use of languages in industrytedféioeir development. These different
histories would typically appeal to different types of cauthe external account might consider the
existing level of usage of Fortran and the increasing maskate of IBM hardware, for example,

while the internal account might discuss the technical athges of certain language features.
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An extreme account of the distinction between internal axtéraal accounts was given by
Imre Lakatos [Lakatos, 1971]. Lakatos proposed that pbb&al accounts of scientific method-
ology which gave internal accounts of the “logic of scientifiscovery”, to use Popper’'s phrase,
should be used as the basis for writing the history of sciedcérational reconstruction” of his-
tory would show the extent to which it could be viewed as camfag to the chosen methodology,
and the non-rational residue would be given an externalamgtion. The ideal would be to give
a rational, internal explanation of all the historical mitke Lakatos thought of external factors as
unscientific, only capable of having a negative effect oardific progress by obstructing a rational,
methodology-led development.

The priority that Lakatos and others gave to internal exatian was challenged by an increased
interest in the sociology of knowledge. The “strong progmeet put forward by David Bloor em-
phasized a positive role for social causes in the creatiatiehtific knowledge [Bloor, 1976], and
proposed that a uniform causal explanation be given fotatiéments of scientific knowledge. The
strong programme was highly influential in the subsequewntldpment of science and technology
studies, and its effects can be traced in the history of ceimguas described above. As a result,
internalism is sometimes characterized as an error infigatanethodology comparable to Whig-
gism [Holmevik, 1994, for example]. Before consideringsthiew, however, it will be useful to

consider in more detail the typical characteristics ofities history’.

1.4 The insider perspective

Insider history of computing is overwhelmingly Whiggishoncerns of the present are routinely
used as a guide for describing the past, and great emphgsaced on identifying the origins of
particular developments and the links whereby one eventhraag influenced another.
Furthermore, insider history is typically internal histoboth in terms of the subject matter se-
lected for examination and the explanatory model used. &kjganatory model consists of two
parts: the historical events that are selected for exammaand the relationships between them.
From the insider perspective, historical events are thbafhs discrete episodes, each marking a
particular ‘contribution’ to the development of the didiig, such as the first publication of a new
theorem, or a description of a new programming languages fEmidency was noted by Kuhn, who
wrote that a historian who believed in an cumulative accofistience’s development “must deter-

mine by what man and at what point in time each contemporaensfic fact, law and theory was
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discovered or invented” [Kuhn, 1962, p. 2]. A good exampléhig tendency in the history of pro-
gramming languages is Wegner’s article, cited above, whiekented the history of programming
languages as a series of “milestones”.

Insider history is then typically concerned with tracinge timigration of ideas, or intellec-
tual content, between the discoveries or inventions sotifieth Ceruzzi states this explicitly:
“[a] central theme in the study of the history of science aechhology is the transmission of
ideas” [Ceruzzi, 1981, p. 170]. The process of transmisgooften described in terms of ‘in-
fluence’: a key task is to trace the way in which one piece ofkvinas influenced later workers in
the field. For example, in his recent history of research asaring about programs, Cliff Jones
stated that he would “trace the main line of developmenntki key publication of ... Hoare as a
pivotal point” [Jones, 2003, p. 26].

This basic picture is reinforced and motivated, as Kuhnddig a belief, which is usually left
implicit, in the cumulative nature of scientific work. Hiskeal episodes feature in insider history in
so far as they have contributed to later work; influence ioagss where a later worker will take up
and further develop the ideas of a predecessor. The eanidrmay be in certain ways developed,
or ‘its implications drawn out’ but, by the very nature of thdel, work which had no influence,
or which is later deemed to have been erroneous, will tentbrfetture in historical accounts. This
in itself reinforces the Whiggish nature of insider history

Another symptom of this view of history is the metaphoricsg of the term ‘pioneer’ to describe
those who carry out early work in a particular subject. Thisthas been widely used in the history
of computing: for example, conferences organized by the A@M IFIP have regularly included
‘pioneer days’. This usage is taken from celebrations dfeaplorers and settlers of the American
frontier, and encourages a perception of a new subject asiexplored territory. The metaphor
implies that the properties and features of the territong@ate its exploration, like an unexplored
country, and that new ideas and the connections between dnemwaiting to be discovered by
sufficiently gifted researchers. This sharply contrastth water sociologically-inspired views of
history which tend to emphasize the construction or ingentf new developments rather than
their discovery.

Clearly insider history, as described here, is suscepiittee fallacies of Whig history identified
by Butterfield. The present state of development in a pdaticarea is taken as the reference point

for the history to be written, inescapably affecting theesgbn of historical incidents to be consid-
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ered and their interpretation. The model can also be dyrediicized, however, on the grounds of
a lack of explanatory power.

One area in which this arises is with the question of antt@pa: it frequently happens that it
is possible to identify work which appears to be very mucleahof its time’, but which appears to
have had no influence. Later, the ideas are rediscoveredtdmd point are taken up and developed
further. The insider model has no way of explaining this mimeanon: as Jones says, referring to
early papers by Goldstine and von Neumann and Turing, ‘fg]li® no compelling explanation of
why more than a decade elapsed before the next landmarke&4,J@003, p. 29]. Despite this, a
common theme in insider history is the search for ‘forgop@neers’: good examples of this are
the papers on ZuseRlankalkil cited earlier. Ironically, the Whiggish search for orighnere seems
to be in conflict with the explanatory model of influence.

A second explanatory shortcoming occurs when individupfgear not to have perceived some
of the implications of their work, implications which frorhe perspective of the historian seem in-
escapable. Aiken is commonly criticized from this point @w, as Mark | did not in some respects
conform to later ideas about computer design: for examplikeh does not seem to have recog-
nized the general nature of logical control which is implichis use of register 72" [Ceruzzi, 1981,
p. 155]. Within the insider model, the only explanation tbah be given of such cases is by ap-
pealing to the intellectual limitations of the individualsncerned. To extend the ‘pioneer’ analogy,
itis as if an explorer could only be prevented from reachiygummit of an unclimbed mountain,
for example, by some physical or logistical weakness: asakalos’s account, external causes are

invoked to explain what would otherwise be a puzzling falur

1.5 Methodology

In summary, then, insider history is predominantly Whiggénd internal, whereas following the
recognition of the importance of sociological and relatactdrs to scientific development, an al-
ternative historiography has emerged which aims to avaddhacies of Whiggism and is largely
external.

In this thesis, it is assumed that Whiggism is indeed a poor twanrite history and to un-
derstand the past. It will be assumed that it is importantytdd understand the past in its own
terms, and in particular to avoid projecting the concepts tenminology of the present onto the

past. Instead, an attempt will be made to depict the textlirsovation and recapture the meaning
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that events and ideas had for the people who were involved thvitm. Such a description should
try to avoid selecting material on the grounds of its curretgvance, and should not assume that
particular events had the same significance as may now britgtt to them. Andrew Pickering has
described this as the attempt to giveradi-timeunderstanding of [scientific] practice” as opposed
to the “retrospective” account typically provided by pisictg scientists [Pickering, 1995, p. 3]

Some writers have identified internalism as a historiogiagbiallacy comparable to Whiggism.
Holmevik makes this criticism explicit [Holmevik, 1994]nd it is implicit in much writing on the
sociology of scientific knowledge. There are, however,rgiroeasons for supposing that internal
history is a legitimate and important pursuit. Firstly,dflects important properties of the scientific
enterprise as it is perceived by its practitioners. Sciéntre often inspired by the work of others,
and certain pieces of work do give rise to large amounts afigcin new areas. Secondly, it is
not obvious that all the fine detail of scientific work can b@leined by purely external factors.
For example, a convincing explanation for the developmémpragramming languages during the
1950s could be based on the increased use of computers asdaittage of people with skills in
machine code programming, but it is less plausible that tag w which the syntax of Algol 60
was presented, say, can be adequately explained by sucbneicosind social factors.

The subject matter of this thesis is largely concerned witbrhal details of the development
of programming languages and the influence of logic on thaeldpment. In the light of the
foregoing discussion, the question arises of how this ptajan be carried out while avoiding the
more problematic aspects of insider history. Part of thevanivolves the avoidance of Whiggism,
as discussed above, but in addition the following ideas drfsam research into the methodology
of scientific activity have been found useful in the comingato understanding of the historical
phenomena.

The first of these is to recognize the importance of the natiomormal science’ introduced
by Kuhn [Kuhn, 1962]. For Kuhn, normal science is sciencechhakes place in the context of
a ‘paradigm’, or ‘disciplinary framework’ which among oththings defines the problems that are
to be addressed and the form that an acceptable solutioriakél Normal science is contrasted
in various ways with pre-paradigmatic science and the wak takes place at times of scientific
revolution.

For the purposes of this thesis, a key feature of normal seiethat it seems to possess some of

the characteristics that the insider perspective ateibtd science generally, notably the appearance
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of progressing through a steady accumulation of new resuisnce it can be argued that it is
appropriate that an internal account be given of the histéngormal science. In Kuhn’s words,
“[t]hat quite special, though still incomplete, insulatifof normal science from external factors]
is the presumptive reason why the internal history of s@emonceived as autonomous and self-
contained, has seemed so nearly successful” [Kuhn, 19@3,]p.

In this thesis, Lakatos’s terminology of ‘research progmahis used to describe a coherent
tradition within which normal science progresses [Lakal®@¥0]. Although inspired by Kuhn's
work, Lakatos’s concept of research programme adds a nuofilbeatures to the notion of normal
science. Among these are an emphasis on the core propedited by adherents to a research
programme, thdard core and the observation that within a particular field, a nundfatistinct
research programmes can coexist, some progressing and ddgenerating.

In the history of software, the term ‘agenda’ has been usedibitael Mahoney in describing
the history of theoretical computer science. Although Maocites neither Kuhn nor Lakatos,
his notion has echoes of both: an agenda is defined as “wheatitimaers of the discipline agree
ought to be done, a consensus concerning the problems ofelide tiieir order of importance
or priority, the means of solving them, and perhaps most naptly, what constitute solutions”
[Mahoney, 1997, p. 619]. However, the term is also used iagds such as “the agendas of seman-
tics” [Mahoney, 2000, p. 31] to label diagrams which depint$ of influence between key workers
and concepts in a field, in a style very reminiscent of thedigisperspective.

From the point of view of historiography, the important tipiabout this family of ideas is that
they provide a way of understanding how science can procetpendently of external factors, but
without appealing exclusively to individual moments ofgiration, or some notion of the unfolding
logic of a discipline. Paradigms, research programmes gaddas define ‘what is to be done’ in
a particular field, providing direction and scope for cneaindividual work, and it is plausible that
an ‘internal’ account can quite legitimately be written loé twork carried out in such a context. The
situation is different with work carried on outside a resbgrrogramme, or before the formation of
an initial paradigm in a particular area.

The second methodological guideline adopted in the thedsmake explicit the development
and change of meaning of technical concepts. Insider kiséords to identify the current meaning
of a term with the meaning or significance it may have had irpéest, a Whiggish practice which

can lead to significant misinterpretation of the past. Th&tafion given earlier from Bauer’'s paper
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on Zuse'sPlankalkil exemplifies this tendency.

By contrast, it is often the case that a particular term whilarge its meaning over time, or
that a concept will evolve from a simple initial form to a ma@mplex set of ideas. In his study of
Lakatos, Brendan Larvor has labelled approaches whichidesuch changes as ‘dialectical’: “Di-
alectical philosophy of mathematics studies the processhigh mathematical argument improves
mathematical concepts” [Larvor, 1998, p. 11]. Where appab@, this thesis attempts to illustrate
the way that practical experience has changed the techinalagpncepts used to characterize that
practice. It is a major weakness of the insider perspedtiatit is blind to the evolution of concepts
in the light of experience.

A third methodological guideline relates specifically te tiopic of the thesis, namely the use
made of an existing discipline, mathematical logic, in guidthe development of a new subject
area. Andrew Pickering has described this type of concéptnavation as a process afodelling
in which existing results are applied in a new domain, a eaehich he breaks down into three
stages [Pickering, 1995, p. 115-7]. Finstidging is the choice of which existing work to take as
a model in the exploration of a new domain. In Pickering’scartt, this choice is not determined,
and researchers typically have alternative approachéklalea Once a choice is made, however,
a process ofranscriptionfollows, in which moves from the existing model are appliadhie new
domain. When transcription breaks down, because of resistaencountered in the application of
ideas from the original domain in the new environment, ibiofved by a process dilling, where
aspects of the new system which do not correspond to anythitige model are completed, again
in a fairly free way. Pickering’s scheme is attractive footreasons: it provides an analysis of what
the rather vague term ‘influence’ might mean in at least satnat®ns, and the notion of bridging
can be seen as an important ingredient in some cases of garddimation. In the body of the
thesis, the scheme will be applied to a number of historitahons; see for example Section 2.9

for an example of its applicability.

1.6 The argument

The historical event at the heart of the thesis is the emeggehhigh-level programming languages
in the years around 1960. As discussed earlier, this peawd gse to a number of long-lived and
influential languages, in particular Fortran, Algol 60, G@band Lisp, whose introduction was seen

as highly significant by contemporary observers. It is adgtiat after 1960 the further investi-
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gation of programming languages was given coherence by aesyarch programme whose hard
core was the identification of programming notations witl thrmal languages characterized by
mathematical logic. The formation, development, signifiGechievements and potential decline of
this research programme up to the mid 1970s are describéé tvody of the thesis.

Chapter 2 describes work in formal logic that was of particuinportance to the later develop-
ment of programming languages. A significant aspect of tlais thie articulation of a formal notion
of computability in the first half of the 1930s. Turing’s faompaper of 1936 is often seen as mark-
ing a transition between logic and computing; rather thawing it as a ‘milestone in computing’,
however, this chapter reads it in the context of related vimt&gic. The chapter also describes the
concept of formal language that was developed by Carnapkiland Morris in the 1930s and later
drawn upon by workers in the field of programming languages.

Chapter 3 represents a slight detour from the main argundésaussing the development of
computing machines in the period from the mid 1930s to 195Bhogh an appreciation of this
material is important for the understanding of later chegpthe main reason for its inclusion is to
address the question about the influence of logic on ‘thenitime of the computer’, about which
there has been considerable debate. As with the relatpi&tiween logic and programming lan-
guages, it is argued that this is not the straightforward/sib'influence’ that is sometimes claimed.

Chapter 4 describes the style of machine-level programuaévgloped alongside the computers
of the late 1940s and early 1950s. Although there was an aesseof a connection between logic
and the activity of programming, there was little systematinnection between the two areas at this
time and programming techniques were based fairly diramtlgharacteristics of typical machine
architectures.

Chapter 5 describes the gradual development in the 1950gloéievel programming nota-
tions and the role played by logic in this development. Workhis decade shares many of the
properties that Kuhn identified as characteristic of pregigmatic science: workers in the field
shared an ambition to ‘make programming easier’, but lacgkedmmon understanding of how to
achieve this goal. By 1960, however, the Algol 60 and Lisglages had demonstrated two distinct
ways in which logic could be applied in the development ofgpasnming languages.

Chapter 6 argues that Algol 60 played the role of a concreatadigm, a technical achievement
which served as the catalyst for the formation of a new rebgarogramme. Evidence for the exis-

tence of a coherent research programme is considered antidh&er describes that achievements
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of the new programme in the area of programming languagetfsea design.

The Algol research programme also had a significant impath@mpractice of software devel-
opment, and Chapter 7 considers the details of this pro@éssstructured programming movement
of the early 1970s is characterized in the light of this reste@rogramme.

Chapter 8 describes work from the early 1970s in the Algaaesh programme on the modular
structure of programs and the unification of data and coidgit. The attempts by the developers
of the Smalltalk language to address similar questions eseribed, and in the light of subsequent
developments it is suggested that Smalltalk representsrtteegence of a competitor to the Algol
research programme and marks a limit to the influence of logiprogramming language develop-
ment.

Finally, chapter 9 summarizes the argument and conclusitthe thesis, and offers suggestions

for further work.



Chapter 2

Logic, computability and formal systems

This chapter surveys work in mathematical logic that was@dout in the 1930s and later drawn
upon in the development of programming notations for autan@igital computers. Two devel-
opments are described, namely the evolution of a matheahaiomcept of computability and the
articulation of a particular concept of formal language.

In the first half of the 1930s, the informal notion of effeetigomputability was formalized in
a variety of ways, and in 1936 different, but provably eglémg accounts of it were published
by Stephen Kleene, Alonzo Church, Emil Post and Alan Turmfgonfluence of ideas” that has
been analysed by Robin Gandy [Gandy, 1988]. One reasonddntportance of this work is that
it is often seen as having had a material influence on the deweint of digital computers in the
following ten years: the links between logic and the develept of the computer are considered in
detail in Chapter 3.

Later chapters are concerned with the influence of this &giork on the development of
programming languages. This development made use not éslyeaific logical formalisms, but
also of a metalinguistic account of those notations dewldp the 1930s by Alfred Tarski, Rudolf
Carnap and Charles Morris. Their work described a framewgdtkin which formal languages
could be described and their properties discussed. Theimpsttant elements of this framework

are described in Section 2.8.

2.1 Historical links between logic and computation

Before looking in detail at the work of the 1930s, it is usdfukonsider briefly the origins of the

relationship between logic and computation. Logic is oftefined as the study of valid patterns

28



CHAPTER 2. LOGIC, COMPUTABILITY AND FORMAL SYSTEMS 29

of reasoning in human thought, and if it is understood inWag the connection with computation
is perhaps hard to see. Since the seventeenth century, aéovpdiosophers and logicians have
explicitly linked the two areas, and as a number of histbrmaounts have pointed out, a major
theme in logical research has been to develop a calculusasbning so that deductions can be
made or verified by algorithmic methods [Pratt, 1987, DaR@£)0].
An early connection was made by Hobbes, in whose view of laggugeneral” or “universal”

names signified collections, or “parcels”, of objects, andrnsequence” was a relation between
names corresponding to the relation of inclusion betweesetltollections. He explicitly compared

reasoning with numerical computation, as follows:

When a marReasonethhee does nothing else but conceive a summe totall, &dm

dition of parcels; or conceive a Remainder, fr@nbstractionof one summe from

another: which (if it be done by Words,) is conceiving of tlmmsequence from the
names of all the parts, to the name of the whole; or from theasanh the whole and
one part, to the name of the other part. [Hobbes, 1651, ch&pte

In the seventeenth century, this programme was develogaeiways. There were a number of
attempts to develop a “real character”, or a complete categgmn of all the objects and concepts
that could be referred to in discourse, together with symsitolrepresent them, and to base on
this a “philosophical language” suitable for clear and ubmmous communication on any subject
whatsoever [Wilkins, 1668, for example]. In this vein, Leiib hoped to create eharacteristica
universalis a universal language which would be adequate to reprdsemttiole of human thought,
by defining a set of elementary concepts from combinatiomehith all complex propositions could
be expressed [Lewis, 1918].

Leibniz also planned to producecalculus ratiocinatoy an algebra which would make explicit
the particular forms of ‘reckoning’ applied in reasoninge flade some progress with the calculus,
formalizing, for example, the idempotency of logical aduit in which it differs from the numerical
operation.

The development of logic in the direction of symbolic marépion was continued by George
Boole and others [Boole, 1854]. Boole’s goal was to mathemaixisting logic, particularly the
syllogism, and the formulas of the resulting algebra of dogiere not sufficiently expressive to
capture all the features of sentences important to valisor@ag. In particular, the approach did not
seem adequate to account for all the patterns of reasonadjingnathematics and so serve as a

rigorous foundation for the subject.
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Frege, by contrast, created a notation which did appear soffieiently expressive, but one for
which the process of deduction did not possess the clardyease of use of algebra [Frege, 1879].
Deduction was represented by a formal system charactebizednumber of axioms and rules of
inference. Frege’s system and those based on it, notablyelRasd Whitehead'®rincipia Math-
ematica[Whitehead and Russell, 1910], shared with the algebragi€ Ithe property that logical
relationships could be checked by the manipulation of symhmutting aside any thought of their
meaning. Godel among others highlighted this aspect of it:

The development of mathematics toward greater precisistedi as is well known, to
the formalization of large tracts of it, so that one can pramg theorem using nothing
but a few mechanical rules. [Gddel, 1931]

In arithmetic, however, mechanical processes such as arithlg for long division are guar-
anteed to lead in time to an answer to any problem, if cogreqiplied. In contrast, Frege’s system
and those based on it did not provide a guaranteed way oflissialy whether a particular conclu-
sion in fact followed from a set of premises. The decisiorbfgm orEntscheidungsproblengiven
prominence by Hilbert and Ackermann [Hilbert and Ackermal®28], was the question whether
an algorithmic process existed for establishing the i@hstiip of logical consequence.

Although it did not directly address this question, Gosléimous paper on the incompleteness
of formalized theories of elementary arithmetic [Godé&31] introduced a number of ideas and
techniques that were widely used later, and is a convenlangpo begin a more detailed consider-

ation of the logical background.

2.2 (Gddel’s construction

Godel's incompleteness proof is based on the idea of amisig, in the formal system d®rin-
cipia mathematicaa self-referential sentence similar to those occurringpénsemantic paradoxes.
By analogy with the natural language sentences used initdrephradox, which assert their own
falsity, Godel constructed a formula which could be inteted as asserting its own unprovability.
Assuming the consistency of the system, it can be shown #ititan this formula nor its negation
is provable. This implies that the formula is true, howeeagid hence that the system is incomplete
in the sense of containing true but unprovable formulas.

Informal presentations of the argument rely on the fact tiztiral languages are rich enough

to serve as their own metalanguage: it is possible in Engisbfer to sentences of the English lan-
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guage, and the language also contains semantic predicetess ‘is true’. Given these resources,
the paradoxical sentences can easily be constructed.dt @wious that a system designed for for-
malizing mathematics will necessarily be equally expresdiowever, and a large part of Godel’s
paper is devoted to presenting the technical details of lwodefine the necessary syntactic and
semantic properties in the formal system.

A formal system, for Godel, is based on a set of primitivensigr he formulas of the system are
finite sequences of these signs, and proofs are finite segsiefformulas. According to Godel, “it
is easy to state with complete precisiwhichsequences of primitive signs are meaningful formulas
and which are not” [Godel, 1931, p. 147, emphasis in orifjirend the properties that distinguish
proofs from non-proofs can similarly be specified. Godelega description of a particular formal
systemP: this description is ‘precise’ but not formal, being statedentences of natural language.
P consists of the logic oPrincipia mathematicacombined with Peano’s axioms and its intended
domain of interpretation is therefore the natural numbers.

Godel then pointed out that for metamathematical purptheeexact choice of primitive signs is
irrelevant, and proposed to use natural numbers as pravsigns in place of the conventional typo-
graphic symbols. By making use of the unique factorizati@otem, Godel showed that sequences
of natural numbers could also be represented as numberkgeand that it was possible to represent
every primitive sign, formula and proof @ by a single natural number, its ‘Godel number’. Godel
explicitly defined a functio® which mapped linguistic elements to their Godel numbedsgcked
out an “isomorphic image” [Godel, 1931, p. 147]Bfin the natural numbers. This encoding of the
formulas of P as numbers, aarithmetization is at the heart of Godel's approach.

Metamathematical discussion 6f could now be carried out by talking about the isomorphic
image® (P) rather than the formulas @t themselves. In other words, a metamathematical property
Rp of formulas of P could be expressed as a propeRy; of natural numbers such th&tp is true

of certain formulas if and only iRy is true of the corresponding Godel numbers:

Rp(e1,...,en) = Rn(®(e1),...,P(en))

It remained to show how the required metamathematical ptieseof P could be represented by
formulas of P. Godel did this in a slightly roundabout manner. First, béroed a class of number-
theoretic functions and predicates which could be spedifiesb-called ‘recursive’ definitions; the

precise nature of these definitions is discussed in mord dethe following section.
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Godel then gave a series of recursive definitions of a numberetamathematical properties of
P, expressed in terms of the corresponding Godel numbebgit). A number of these properties
defined the syntax of the languaffethus demonstrating how the syntax of a formal system coeild b
defined formally, or mathematically, rather than ‘pregisil a natural language. Further predicates
gave number-theoretic definitions of the properties of p@imeaningful formula and being a valid
proof.

These recursive functions and predicates were defined inaanguage which went beyond the
resources of the systef. As P was defined as a formal language for number theory, it is aktur
to ask whether they could have been define® iitself. Godel proved that this was in fact the case,
and that in principle all the functions and predicates defjihe metamathematical propertiesrof
could have been directly defined by formulasfoitself.

In summary, then, Godel’s strategy was to code formuld? a$ natural numbers, thus mapping
the syntax ofP into its own domain of interpretation. The metamatheméaticadicates required
for his proof were then defined as number-theoretic preglicatich were themselves expressible
as formulas ofP. These formulas could therefore be interpreted in two wéiystly as statements
about natural numbers, and secondly, thanks to the magdpiag statements about formulasif
By means of this second interpretatiafi,was enabled to act as its own metalanguage. The final
requirement for the incompleteness proof was to constrpetrticular formula ofP which, in this
second interpretation, made reference to itself and @skés own unprovability. The details of
how Godel achieved this are not of importance to this thdssvever, and will not be discussed
further.

The techniques and arguments employed by Godel were higthliential. In particular, Tur-
ing adapted Godel's strategy in his definition of the urda¢machine, as discussed in detail in
Section 2.7. The following section describes the furtheretioment of the notion of recursively
defined functions. These formed the basis of one of the defisibf effective computability given

in 1936, and were later of importance in the development efimming languages.

2.3 Recursive functions

The class of functions that Godel called ‘recursive’ hadrbivestigated before 1931. Definitions
of functions over the natural numbers by ‘simple recursiaare well-known: an example is the

definition of addition by the definitions+0 = a anda+ (b+1) = (a+b) + 1, for all e andb. The



CHAPTER 2. LOGIC, COMPUTABILITY AND FORMAL SYSTEMS 33

step-by-step evaluation of functions defined by simple nr@on seemed to capture an important
aspect of the notion of effective computability, and resurslefinitions were widely discussed as
an example of a finitistic approach to the definition of fuocs, acceptable to intuitionistic modes
of thought.

In 1919 Skolem applied “the recursive mode of thought” taredatary arithmetic, with the aim
of removing quantification over infinite domains from theteys of Principia mathematica He
made extensive use of simple recursive definitions, basmggproach on “Kronecker’s principle
that a mathematical definition is a genuine definition if antldf it leads to the goal by means
of a finite number of trials” [Skolem, 1923, p. 333, emphasis in orifjindaus highlighting the
connection between recursive definition and the informébnoof effective computability.

In 1925 Hilbert categorized the “elementary” methods ofstarcting functions as substitu-
tion and recursion, and restated the connection betweensien and finiteness as follows: “[t]he
method of search for the recursions required is in essengeadgnt to that reflection by which one
recognizes that the procedure used for the given definigidimitary” [Hilbert, 1926, p. 388].

Godel's 1931 definition of recursive functions employedsih two basic techniques. Substitu-

tion allowed a functiony to be defined from functiong andy; . .. x.» by the equation

$(z1,. . zn) = O(xa(zr, - 2n), o Xm (@1, 2n)

and a functionp could be “recursively defined in terms of” functiogisand y by the equations

#(0,29,...,2n) = P(z2,...,7y)
Ok +1,29,...,24) X(k, d(kyxoy ... Zn)yToy ..y ).

A function ¢ was said to be “recursive” if it was a constant function, thecgssor function, or could
be defined from other recursive functions using these twianigoies [Godel, 1931, p. 159].

It appeared, however, that the class of functions definabtedse means did not exhaust those
that appeared to be, in an informal sense, effectively &bber Ackermann had proved that allow-
ing higher-level recursions, involving “functionals” wdti could take functions as arguments, and
definitions involving simultaneous recursion on more thaa wariable both allowed the definition
of functions that could not be defined by substitution andptgmecursion [Ackermann, 1928].

In 1934, Godel gave a more general definition of recursiveetions, based on a suggestion
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from Herbrand [Gddel, 1934]. This defined a “general reigarfunction” ¢ as being defined by a

system of equations if from the equations exactly one eguati the form

¢(k1,...,kn) = m

could be derived, for natural numbeks andm, or in other words, a system of equations from
which it followed that¢ was in fact a function. Definitions involving only substitnt and recur-
sive definition were special cases for which the uniquenéfisedunction defined could be easily
proved.

In a definitive paper of 1936, Kleene discussed Godel’s digiim introducing the now standard
terminology of “primitive recursive” for functions definaasing substitution and recursion only,
and “recursive” for the wider class [Kleene, 1936a]. Kleafs® gave the first ‘formal’ definition of
recursive functions, in the sense of describing the setquitions involved in a recursive definition
as terms in a formal language. He adopted Gddel's techrofjaeithmetization and, like Godel,
defined a series of number-theoretic functions which charaed important syntactic properties of

recursive definitions.

2.4 \-definability

The A-calculus was developed by Alonzo Church, and used in thediglicit attempt to give a
formal characterization of the intuitive notion of effaticalculability. It was inspired by work in
which Schonfinkel had investigated the minimal set of giivainotions necessary for the formula-
tion of logic, and in particular had attempted to remove thechfor the use of variables in purely
logical formulas [Schonfinkel, 1924]. Schonfinkel tookmgnitive the notion of a function, and
generalized it firstly by allowing functions to use other dtions as arguments and result values,
and secondly by using this capability to reduce functionseferal arguments to those of a sin-
gle argument. Schonfinkel's work was further developed laghell Curry, who commented that
the “raison d&tre of the theory” was the fact that any expression involvingialdesz, ..., z,
could be transformed into the forfiz,, ... z, whereF was a variable-free expression denoting a
function ofz, ..., z, [Curry, 1929].

Church first made use of this work in a paper on the foundatfdagic. In Church’s notation,

the function ofx defined by an expressioNI was represented by the notatiax[M], and the
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application of a functiorF to an argumeniX by the notation{F}(X) [Church, 1932]. These
notations were related by the rule that function applicatiof the forms{Ax[M]}(N) could be

evaluated by substituting the argumé¥itfor the variablex in the expressioM, giving a result

symbolized a${M]|. This procedure could also be reversed, allowing a term teWwetten as the
application of a function to an argument.

It turned out that the attempt to base logic on these fouodstgave rise to inconsistencies.
However, following the discovery of a way of representing ttatural numbers as-expressions,
investigations by Church’s students Kleene and Rossealeddhat an unexpectedly wide range
of number-theoretic functions weredefinable. In 1934, Church came to the opinion that the
informal notion of effective calculability and the formabtion of A-definability were equivalent, a
belief dubbed as “Church’s thesis” by Kleene [Rosser, 198845].

In 1936 Church and Kleene published proofs thatXkdefinable functions were precisely the
recursive functions [Church, 1936, Kleene, 1936b], andr€hproposed that this set of functions
be identified as those which were effectively calculableis Haper gave a more detailed account
of the formal properties of the notation, including an ari#tization which Church described as
“the Godel representation of a formula” [Church, 1936, pl9]3 This was used to demonstrate
that syntactical operations on formulas were themselvesrsive. Finally, Church answered the
decision problem in the negative, by exhibiting an unsdkgisoblem.

Godel was apparently unimpressed by thealculus, and his definition of general recursive
functions in 1934 has been described as an attempt, at Chisugyestion, to propose an alternative
account of effective computability [Rosser, 1984]. For @wand his colleagues, however, the
two formulations seemed intuitively acceptable, and thegxpected equivalence gave support to

Church’s thesis [Church, 1936, p. 346, footnote].

2.5 Direct approaches to defining effective computability

Both recursive functions and Churchsnotation characterized effective computability in terms
of formal systems in which the class of computable functioosld be defined. However, the
plausibility of this approach depends on the extent to whiigfelt that the basic operations defined
by the formal systems fall within the informal notion of aeff&eness [Gandy, 1988, Soare, 1996].
In 1936, Emil Post and Alan Turing independently gave are\af effective computability which,
in Post's words, aimed at greater “psychological fidelity®opt, 1936, Turing, 1936]. This work had
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a significant impact in gaining acceptance for Church’s Vilbat the informal notion of effective
computability could be captured by a formal system.

Both Post and Turing described models which were based ingtakriously the metaphor that
human beings perform certain intellectual tasks in a ‘meicia manner. As discussed below, Tur-
ing made explicit reference to the behaviour of ‘computdts term then current to describe people
carrying out complex calculations complex predefined plalu Agar has described how similar
‘mechanical’ processes had been introduced in non-nuaiexieas, particularly in the British Civil
Service, and has speculated that awareness of this was gioraldactor leading to Turing’s me-
chanical definition of computability [Agar, 2003]. Post analing abstracted two essential features
from the familiar activity of human computation: an exténmedium on which the data involved in
the computation could be recorded, and a representatidmedhstructions that the computer was
following.

In Post's terminology, the model consisted of a “worker” @gtimg in a “symbol space” by
following a “set of directions”, and the symbol space wasveo‘tvay infinite sequence of spaces
or boxes” [Post, 1936, p. 103], each of which could be emptgamtain a single symbol. The
worker was assumed to be capable of performing a number iof tyasrations on the symbol space:
moving to an adjacent box, placing or erasing a mark in a bod,detecting whether a box was
marked or unmarked. The instructions followed by the workere given as a numbered sequence
of “directions”. As well as start and stop instructions, therker could be directed to perform a
basic operation and then continue with a particular spekifistruction, or to perform one of two
alternative instructions depending on whether the cugremicupied box was marked or unmarked.

Post only gave an informal description of sets of directicarsd unlike Godel, Kleene and
Church, he did not define an arithmetization of his notatidansequently he gave no formal proof
of the equivalence of his formulation with the others, butdigtanticipate that his account would
“turn out to be logically equivalent to recursiveness in gemse of the Godel-Church develop-
ment” [Post, 1936, p. 105], as indeed proved to be the case.

Turing presented his model and notation in much more détail Post, as described in the next
section. Like Post, he made use of the notion of an extermabelyspace, which he described as a
“tape” infinite in one direction only and divided into squaeach capable of storing one of a range
of distinct symbols. Rather than invoking the notion of a fiay’, however, Turing talked in terms

of “machines” which embodied the agency necessary to ezexset of basic operations and be
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responsive to the contents of the tape. Turing went on to shatthe operations carried out by a
worker following a set of instructions could themselves &gresented as a machine, the so-called

“universal machine”; this development is discussed furth&ection 2.7.

2.6 Turing’s machine table notation

Turing’s analysis was carried out by defining a class of abstmachines which are meant to em-
body the essential processes carried out by a human cledngputer. Specific machines are de-
scribed using a notation that Turing called “machine tdblasd in the first half of the 1936 paper
the machine table notation is developed into a powerful apthisticated formalism for describing
computations.

Despite the importance of Turing’s work, the machine talatation has not received much at-
tention from logicians and has gained a reputation for belmgrure and confusing [Chaitin, 2001,
p. 16, for example]. When it is discussed in detail, it is oftgth a view to identifying precursors
or anticipations of features found in later programmingglaeges [Knuth and Trabb Pardo, 1980,
Copeland, 2004a]. Some of the resemblances between Tamagation and programming lan-
guages are indeed striking, but focusing on these leads &harrunhistorical interpretation of
Turing’s work. In this section the machine table notatiofl W& considered in the context of the
other notations for computability defined in the 1930s, amdli be argued that many of its features

fit naturally into this context.

Turing machines

Imagine a human performing a ‘mechanical’ procedure, ssca ealculation. Assuming that the
procedure has been memorized, there will be no explicitt@vritnstructions being followed, but
intermediate results may be recorded externally, perhapsaper. A typical example of such a
situation would be somebody carrying out an elementaryutation, such as a long multiplication.
Turing described a class of abstract machines which wesadetd to simulate the behaviour of the

human calculator in such cases. These machines have tbeifall characteristics.

1. At any given moment, a machine is in exactly one of a finitember of states, known as
m-configurations These are intended to model the different ‘states of mirich duman

computer, recording for example the stage reached in carigiit a computation.
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2. The machine is supplied withtape representing the paper that a human worker would use
to record the intermediate and final results of an ongoingpedation. The tape consists of a

sequence ofquaresin each of which one of a finite number of symbols may be writte

3. At any given moment a machine has access to the contentsulifset of the squares on its
tape, known as thecannedor observedsquares. This reflects the fact that computations
can be carried out which are so large that human computersotdimmediately recog-
nize” [Turing, 1936, p. 250] all the details of the work beitigne, and at different times will

focus on particular aspects only.

Human memory has two distinct roles in computation, whichreaeearly distinguished by
Turing. Itis possible to carry out computations mentaliywihich case the intermediate results of
the computation are not written down, but simply remembéoed short period of time. The use
of external aids such as paper becomes important as thefdtze computations being undertaken
increases. This might suggest that intermediate resultlsl de represented either asconfigur-
ations or as the contents of the machine’s tape. Howevein@sdistinction betweem-configur-
ations and the tape is based strictly on the differing fuumal roles of each component. The tape
stores all the intermediate and final results of the comjautadnd in writing them all down Turing
machines are more pedantic than a human computer might be.nfonfigurations represent
the computer’'s knowledge of which steps in the computatiavetbeen performed and what is to
be done next, but not the results of those steps. If we imatiaiethe instructions specifying a
computation are written down somewhere, the purpose oftraonfiguration is simply to record
which instruction is to be followed next.

In a Turing machine, computation proceeds by way of a seguehdiscrete steps. At each
step, the machine’s behaviour is determined by its cumenbnfiguration and the symbols in the
currently scanned squares, together known as the machioefiguration In a single step, the
machine may perform one or more basic operations and pgsgibihge itan-configuration. The
basic operations are of two sorts: firstly, the symbols instenned squares may be changed, and
secondly, the distribution of scanned squares on the tagdémahanged. The nemrconfiguration
and scanned symbols then determine the machine’s behanithe next step of the computation.

A particular class of machines can be defined by specifyiegsthucture of the tape, the set of
symbols used by the machine, the distribution of scannedreglon the tape, and the repertoire of

basic operations. The machines that Turing described aildhetve a one-dimensional tape and are
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only capable of scanning one square at a time. The basictaperallow the symbol on the scanned
square to be erased or altered, and only the squares adja¢batscanned square may become the
new scanned square (i.e. the machine can ‘move’ by only amarsdeft or right at each step of a

computation). The symbols used may vary from machine to imachnd are specified as required.

Machine tables

Turing described particular machines using a notation whie called ‘machine tables’. The sim-
plest form of machine table consists of a set of rows, eachidgfithe behaviour of a single step in
a computation, or what the machine will do in a particularfiguration. A row therefore consists

of the following elements:

1. Them-configuration and the scanned symbol that define the coafigarin question. In
Turing’s paperm-configurations were named by Gothic characters and symimys shown

literally.

2. The actions that the machine performs in this step of timepetation. Turing used the ab-
breviationsP« for the operation of writing the symbat to the scanned squaré;, for the
operation of erasing the symbol in the scanned square,Laand R for the operations of

moving left and right, respectively.

3. Them-configuration that the machine is in at the end of a step irctimeputation, known as

thefinal m-configuration.

Using these conventions, Turing gave the following exangbla table describing a machine
which prints the sequenc@10101 ...’ on alternate squares of the machine’s tape [Turing, 1936, p

233].

m-config. symbol operations final m-config.

b None PO, R ¢
¢ None R e
e None P1.R 12
¢ None R b

This table is consistent with Turing’s description of theamiaes’ behaviour, which states that
they can perform at most one write or erase operation and one at each step in the computation.

Turing immediately extended the notation, however, in twaysv Firstly, he allowed arbitrary
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sequences of basic operations to be specified in a singlefliagable. In general, this reduces the
number ofm-configurations needed to describe a computation. Secdmelintroduced a notation,
similar to the mathematical notation for ‘definition by cgisdor grouping together all the rows in
a table that share the sammeconfiguration and selecting the required behaviour on #séstof the
currently scanned symbol. Using these conventions a singide can be given for the machine

defined above, using only ome-configuration [Turing, 1936, p. 234].

m-config. symbol operations final m-config.
None PO b
b 0 R, R, P1 b
1 R, R, PO b

Turing explained this form of machine table informally, Baythat “for a configuration de-
scribed in the first two columns the operations in the thiddicm are carried out successively, and
the machine then goes over into timeconfiguration described in the last column. When the second
column is left blank, it is understood that the behaviourhaf third and fourth columns applies for
any symbol and for no symbol” [Turing, 1936, p. 233]. It candeen that the machine table nota-
tion is at least as expressive as the sequence of instraatieed by Post to specify computations.
The rows in a machine table are not ordered, but the sequen€ibasic operations is determined
by the explicit specification of a finaf-configuration in each row, and the ability to select between
alternatives is provided by allowing each instruction tscdiminate on the value of the currently

scanned symbol.

Variables and functions

Turing then went on to consider ways in which the task of wgttables for particular machines
could be made easier. He observed that there are a numbesioffsacesses, such as locating,
copying, comparing and erasing symbols, which will formtmdrmost machines and which may
be carried out many times in a given computation. When defisignificant numbers of recursive
functions, Schonfinkel and Godel had addressed this ibgudefining simple functions which,
by means of substitution, could be repeatedly used withedefinition in the definition of more
complex functions, and Turing reinterpreted this techeiguthe context of his machine tables.
The definition of a function consists of an expression whiefings in some way the transforma-
tion carried out by the function. In conventional functibnatation, variables are used to represent

those elements of the expression that can vary in differentexts of application. When a simple
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process represented by a machine table is repeated, theenafb-configurations and the basic
operations carried out will remain the same, but the symbmislved and them-configurations
that specify what the machine should do next may differ frame occasion to another. Turing
therefore introduced variables for symbols andonfigurations, and alloweah-configurations to
be denoted not simply by names, but by expressions involmnagpnfiguration functionsor m-
functions|[Turing, 1936, p. 236]. Tables containing these notati@xétnsions were callezkeleton
tables

The extended notation is best appreciated by means of anpéxarfihe table below defines
a machine which will locate the first occurrence on the tapa phrticular symbol, denoted by
the variablex [Turing, 1936, p. 236]. lfa does occur on the tape, the scanned square at the end
of the computation will be the one containing the leftmasand the finalm-configuration will
be that denoted by the variab& if there are noas on the tape, the finah-configuration will
be that denoted by the varial##. In this example Turing introduces a convention whereby two
occurrences of the special symbgl indicate the leftmost end of the used portion of the tape. In
effect, computations take place on a tape which is unboutaltitk right, and which contains at the

start the symbolss .

m-config. symbol operations final m-config.
L ¢, ’B,
(€. 8. 0) ° (&8, )
nota L (€, B, a)
« ¢
fl(@,%,a) nota R fl(ca%aa)
| None R f2(¢,B, @)
[« ¢
f2(C, B, ) not « R f1(C, B, a)
| None R B

This table defines thrae-functions,f, f; andf,. On different occasions of use, these expressions
would denote differenin-configurations, depending on the values supplied for thiabkes®s, ¢
anda. The names of therfunctions were presumably chosen to emphasize the facthbwp are
parts of a self-contained table with a unified purpose. Wihennbachine is imm-configuration
f(€,B, ) it moves left until it reaches the beginning of the tape. #rtlgoes intam-configur-
ation f1 (¢, 8, «) and begins to move right, searching for @an If an « is found the computation
finishes and the machine goes to the ‘successonfiguration,g. If a blank square is found the

machine goes intarconfigurationfs (€, 98, ), and otherwise it moves on to the next square to the



CHAPTER 2. LOGIC, COMPUTABILITY AND FORMAL SYSTEMS 42

right. The behaviour of the machinenmconfigurationfs (€, 95, «)is the same as im-configuration
f1(€, B, a), with one exception: the discovery of a blank square meaatsttyo blanks in a row
have been found, and hence, according to a second convetigried by Turing, that the end of
the tape has been reached. In this case the machine goesftiltine’ m-configuration 2.

Skeleton tables therefore introduce the familiar logigaparatus of variables and functions
into the machine table notation. It should be noted thdtnction expressions have a different
significance if they appear in the first or last column of agahin the first column they behave
rather like expressions in Churcl¥sotation, binding the variables that appear in that rows tlain
be seen by noting that the variables in a row could be comsigteenamed without changing the
behaviour specified by the table. In the final columnmfréunctions are applied to determine the
machine’s nextn-configuration.

Outside of skeleton tablesp-functions are applied by replacing the bound variableshay t
names ofm-configurations and symbols, and the resulting terms, sscf{oae, z), denotem-
configurations. Such applications enable a skeleton thlkdea function, to be ‘reused’ whenever it
is necessary to carry out the process that it defines. Forggagiven the following table fragment,
a machine in then-configurationc will proceed to delete the first occurrence of the symboh the
tape.

m-config. symbol operations final m-config.
¢ f(0,¢,x)

0 E ¢

4

Fromm-configurationc, the machine willimmediately move to theconfiguration specified by
the expressiofi(?, ¢, z). The effect of thism-configuration is defined by the skeleton table above.
With the obvious substitution for the bound variables, thachine will then search for the first
occurrence of the symbal on the tape. If this search is successful, the machine willarto
m-configurationd, in which the currently scanned symbol, thehat has just been located, will
be erased. After erasure, or in the case that neas found on the tape, the machine will be in
m-configuratione.

Turing defined the general effect offunction application in the same way as function appli-
cation is defined in the\-calculus, “by repeated substitution [oEconfigurations and symbols in

place of variables] in the skeleton tables” [Turing, 1936,286]. Applying this procedure to the
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table fragment, and replacing expressions file ¢, z) with a simplem-configuration name such

asf, yields the following expanded table in the original naiativithout variables and+functions.

m-config. symbol operations final m-config.

¢ f
) L f1

j { nota L f
T 0

f1 notz R f1
| None R fa

(2 0

fo notz R f1
| None R ¢

0 E e

In practice, of course, this substitution would remain iitipand use of then-function{ in the
original table would be understood as a way of invoking arrajpen to find a particular symbol.
In this way, skeleton tables provide a mechanism for bujjdiomplex tables out of simpler and
independent components. Furthermangfunctions allow the instructions for a particular task & b
defined once and then used many times. There may be manyats#sia complex computation
when specific symbols must be located: once the skeletor tallefined, this can be achieved
simply by writing f, with suitable arguments, as the fimalconfiguration of some row in the table.

Thought of in this way, an analogy can be drawn between skelables and the open subrou-
tines or macro instructions found in later programming leages, as noted by Knuth and Trabb
Pardo [Knuth and Trabb Pardo, 1980, p. 201] and more recbptiyopeland [Copeland, 2004a, p.
12]. However, Turing’s procedure in the introduction and o§skeleton tables is readily compre-
hensible in the light of contemporary work on effective caigbility. Godel’s formal definition of
provability, for example, began with the definition of veiynple arithmetical functions, and then
reused these to define a series of increasingly complexifunscfGodel, 1931], and the general
strategy, of defining complex functions in terms of simplees, was commonly used by writers on
recursive functions and effective computability [Skolet®23, Kleene, 1935a, Kleene, 1935b, for
example]. In this context, Turing’s use of skeleton tablas be seen as a natural extension of the

same strategy to the domain of machine tables.



CHAPTER 2. LOGIC, COMPUTABILITY AND FORMAL SYSTEMS 44

Defining m-functions using substitution and recursion

In Godel's original definition of recursive functions, ndunctions could be defined in terms of
old ones by using the two techniques of substitution andrsdai definition. Turing used both
techniques in the machine table notation to enable the tefindf new m-functions in terms of
existing ones.

Substitution, in this context defined by Godel as the “stiigin of some of the preceding func-
tions at the argument places of one of the preceding furgti@bdel, 1931, p. 159, footnote], was
provided by allowingm-function expressions to appear in the argument positibttsecapplication
of anm-function. Just as with recursive functions, this providg®werful mechanism whereby new
operations can be built up in terms of those already definedexample, Turing gave the following

definition of an operation to erase the first occurrence of symbol a on the tape [Turi@®8g6,1p.

237].
m-config.  symbol operations final m-config.
e(@,%,a) f(h(ﬂ’l,%,a),%,a)
€1 (Qla EB? Oé) E ¢

This table defines am-configuratione(<, B, o) which will erase the first occurrence of the
symbol « on the tape and then move te-configuratione. If no occurrence oty is found, the
machine moves ton-configuration®s. The machine first moves directly to an-configuration
defined by the skeleton table for timefunction f, which finds the first occurrence of on the
tape. If the symbol is found, the machine will moved to theonfiguration specified by the first
parameter of; this is a newm-configuratione; which will erases the symbol before moving to the
‘success'm-configuratione.

Although the syntax used here for nestadunction applications is identical to the standard
functional notation, it is worth noticing that the infornmakaning of Turing’s use of the notation dif-
fers from conventional usage. In a functional expressiotheformd¢ (v (z)), the functiom)(z) is
evaluated first, and its value used in the evaluatiop. h Turing’s expressiofi(e; (€, B, «), B, ),
however, the effect is that the computation denoted byrfmonfiguratione; takes placefter that
denoted byj.

The m-configuratione(¢, B, o) will erase the first occurrence of on the tape, but if all oc-
currences ofxs are to be deleted, this operation needs to repeated un&l renain or, in other

words, until it fails. Turing gave the following recursivefthition of anm-configuration to achieve
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this [Turing, 1936, p. 237].

m-config. symbol operations final m-config.
¢(B, ) e(e(B, ), B, @)

Them-configuratione(B, «) will erase all occurrences af from the tape and then go to state
B. It is important to note here that there are two distimetunctions in this table, both denoted
by ¢, and distinguished only by the fact that one takes two andther three parameters(*s, «)
first moves to then-configuratione(<, 98, «), defined in the previous table; this will delete the first
occurrence ofv. If this succeeds, the nert-configuration will again be(8, ), and the process
will repeat to delete the second and subsequent occurrefeesventually, there will be no more
as on the tape and the deletion will be unsuccessful, in whide ¢he machine will move to state

B.

Free variables

The final syntactic feature of the machine table notatiowiges a way of passing the value of the
currently scanned symbol to the fimatconfiguration without having to name it, by allowing free
symbol variables to appear in the second column of the tabtethe table below, therconfigur-
ation pe prints the symbof3 at the end of the tape and then goes tortheonfiguration¢. This
operation is then used in an-configuratione; which copies the currently scanned symbol at the

end of the tape [Turing, 1936, p. 237].

m-config. symbol operations  final m-config.
pe(@,ﬁ) f(pel(gaﬂ)acaa)
An R,R e1(¢, B
pe(€.5) { ‘ P (&)
None Pp ¢
c1(¢) p pe(€, B)

In the first two linesS is a parameter (or bound variable) and the value suppliedhieerow
is called will be substituted in the remainder of the row.Ha tine definingey, 8 is free: the effect
is that it will temporarily be bound to the scanned symbolatelrer that is, and that symbol will be

supplied as a parametergie. Turing explained this as follows:

The last line stands for the totality of lines obtainablenird by replacings by any
symbol which may occur on the tape of the machine concerfeding, 1936, p. 238]

In other words, the line defining can be thought of as a shorthand for the lines
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m-config. symbol operations final m-config.
c1(¢) 0 pe(€,0)
¢ (€) 1 pe(€.1)

where there is exactly one line for each symbol used by thénmeac

At this point the question arises whether every skeletotetabitten using the abbreviations
and conventions that Turing has introduced can be repexdyt a table in the unextended nota-
tion. Turing asserted this, but did not provide a proof. Hesidered the features of the extended
language to be convenient abbreviations, stating that ‘g as the reader understands how to
obtain the complete tables from the skeleton tables, tlser® ineed to give any exact definitions
in this connection” and “a table can always be put in this fahform by introducing moren-

configurations” [Turing, 1936, p. 236, 239].

2.7 Universal machines

Them-configurations of a Turing machine represent the “stateminél” [Turing, 1936, p. 250] of
a human computer, and encode information about the progfessomputation and the steps to
be carried out next. Although humans can carry out familia simple algorithms mentally, more
complicated processes require written instructions waretthen followed in a step-by-step manner.
Provided the computer or clerk can perform individual stepthe process and keep track of the
next instruction to be carried out, this procedure is justféective as memorizing the instructions.

The act of following instructions is itself a clerical tagiowever, and this raises the question
of whether it is itself mechanizable. Turing called a maehivhich could follow the instructions
expressed in a machine tahlaiversal and answered this question in the affirmative by giving an
explicit table for a universal machine. In the context of ifigis paper, this is “a single machine
which can be used to compute any computable sequence” fTUr@s6, p. 241]; more generally, it
is a demonstration that the process of following explicglyen instructions is itself a mechanical,
effective procedure. As Turing later put it, “we should ddes the machine as doing something
quite simple, namely carrying out orders given to it in a d&ad form which it is able to under-
stand” [Turing, 1946, p. 21].

Turing began the construction of the universal machine by#&tizing the simple form of ma-

chine table to which he claimed all tables could be reducéds fbrmat is referred to as tlstandard
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form of a table. It is assumed that an enumeragon .., gz of the m-configurations used in the
table is given, and also an enumerati®y}. . . , S, of the symbols which can appear on the tape. A
machine table in standard form consists of a number of linek ef which has one of the following

forms:
qiSjSkLagm
4SSk Ram
qiSjSKN gm

Hereg; andS; denote the initiam-configuration and scanned symbol, apgdand S, the final
state and symbollL, R and N represent the three basic operations of moving one squére teft,
one square to the right, or staying in the same position oteihe Each line defines the behaviour
of the machine when the current-configuration isg; and the scanned symbol &. When the
machine reaches this configuration in the course of a coriputahe following events will take
place. The symbab;, will be written to the scanned square;df and Sj, are the same, the effect
is that the symbol is unchanged, but this form of descriptibows this case to be subsumed into
the case where a new symbol is written. The machine then numesquare to the left or right, or
stays put, and the finafrconfiguration isy,,.

For an example of standard form, consider the first example f@resented by Turing. It has
four m-configurations and uses three tape symbolsS{aepresent a blank squarg, the symboD
andsS, the symboll. Assuming that the tape contains the sym#pin every square at the beginning
of the computation and starts in theconfigurationg;, the following table defines a machine which
prints the unending sequen@&0101 ... on alternate squares of the tape.

q15051 Rz
925050 Rqs3
q35052Rqa
q450S0Rq1

A universal machine must be able to examine the table of anatlachine. This can be achieved
if it is defined how a machine table can be represented on pleecthe universal machine. For this
purpose, Turing defined a further representation of madaibles, which he called thestandard
descriptions

A standard description of a machine is an encoding of a tabdaindard form into the specific
set of symbols used by the universal machine. Turing’s usalenachine uses the symbals C,

D, L, N, R and; to represent the standard form of tables. Treonfigurationg; is represented
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by the symbolD followed by: occurrences of; the symbolS; is represented by the symbbl
followed byj occurrences of’; L, N andR represent themselves and the lines in the standard form
table are separated byThe standard description for the table given above in stahfbrm would

therefore be:
DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA

Standard descriptions are one-dimensional sequencesmifoty, and therefore comprise an
encoding scheme which enables machine tables to be refedsmma tape, and hence as data that
can be manipulated by other machines. Like Kleene and Chiliteing went one step further and
produced an arithmetization of his notation, associatingique natural number with each machine
table. This representation was only used for theoreticglgmres, however, and did not form part of

the definition of the universal machine.

2.8 The concept of a formal language

We now turn to the second area of logical research to be cemesidnamely the development of a
theory of a formal languages themselves. The similarityben the syntactic operations involved
in the definition of a formal notation and the recursive, adlictive’, definitions used in mathe-
matics was familiar to logicians. For example, in an earlggyaChurch commented on an informal
explanation of the structure of the well-formed formulasisf system, saying that “[t]his is a defi-
nition by induction” [Church, 1932, p. 352]. Gddel madestidea precise by employing the tech-
nique of arithmetization and defining syntactic propertiegecursive number-theoretic functions.
As described above, a number of logicians subsequenthiqedwan explicit arithmetization of their
notations and commented on the theoretical role of the éngodleene, for example, wrote that
“[t]he operations on symbols which occur in the computatiame a similarity to ordinary recursive
operations on numbers” [Kleene, 1936a, p. 727], and Chwafdrned to “the now familiar remark
that, in view of the Godel representation and the ideascésteal with it, symbolic logic in general
can be regarded, mathematically, as a branch of elementanper theory” [Church, 1936, p. 94,
footnote 8].

The insight provided by the technique of arithmetizationdmaossible the development of a
mathematical theory of formal languages, a developmentcaged particularly with the work of

Tarski and Carnap [Tarski, 1933, Carnap, 1937, Carnap,,X@8fhap, 1942]. This section briefly
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describes the major features of this account of formal laggs, which served as the framework

within which programming languages were subsequentlyietd

Object language and metalanguage

An important preliminary distinction was drawn between taeguage under investigation, the
object language and the language in which the investigation is carried thé metalanguage
This distinction originated in Hilbert’'s notion of metarhatnatics: for example, Godel wrote of
a certain formula that it “is merely metamathematical descriptioof the undecidable proposi-
tion” [Godel, 1931, p. 149, footnote 13], and went on to axphow the proposition itself could be
written down. In the technical parts of his 1931 paper, Gddginguished the formal language
from the metamathematical notation used to define recufsihaions over the expressions Bfby
using distinct logical symbols for the two cases.

For Tarski, the distinction between object and metalangweas motivated by the fact that not
every language possessed “terms belonging to the theoangtibge” [Tarski, 1933, p. 167], and
so in general it would not be possible to discuss the syntgx,of a language in that language itself.
Carnap stated explicitly that “we are concerned with twalsages: in the first place the language
which is the object of our investigation—we shall call thie bbject-language—and, secondly,
with the language in which we speakoutthe syntactical forms of the object-language—we shall
call this thesyntax-languagé [Carnap, 1937, p. 4].

This distinction raised the possibility of the need for armaling hierarchy of metalanguages.
Arguing against this, Carnap emphasized that arithmeatizatrovided a general technique whereby
a language rich enough to contain the theory of the natumalbeus could, without fear of contra-
diction, function as its own syntactic metalanguage [Cpyi837, p. 53].

Different metalinguistic resources were needed for diffiépurposes. For the purposes of log-
ical syntax, Carnap only needed a metalanguage which wableapf describing the syntax of
the object language, hence his use of the more specific tgmaislanguage’. Tarski's semantic
investigations, however, required the ability to deschibéh the syntactic form of object-language
sentences and also their meaning. Tarski therefore demidndéer that a metalanguage be ex-
pressive enough to contain a translation of each expres§itie object language: “the fact that the
metalanguage contains both an individual name and a ttaslaf every expression. . of the lan-

guage studied will play a decisive part in the constructibthe definition of truth” [Tarski, 1933,
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p. 172].

Syntax

The first aspect of the metatheory of logic to be addressedtaildvas that of syntax. Formal lan-
guages were originally characterized by the fact that staicture and properties could be discussed
without any reference to the meaning of expressions in thguage. Tarski wrote that formalized
languages were those which could be described using “oolethoncepts which relate to the form
and arrangement of the signs and compound expressions laindpeage” [Tarski, 1936b, p. 403],
and Carnap stated that “ [a] theory, a rule, a definition orliteis to be calledformal when no
reference is made in it either to the meaning of the symbotseffample, the words) or to the sense
of the expressions (e.g. the sentences), but simply anty $olthe kinds and order of the symbols
from which the expressions are constructed” [Carnap, 183Z, italics in original].

Syntax was therefore understood to be the theory of theysteictural properties and relation-
ships of the expressions of a language. Carnap thought afytitactical description of a language

as containing two aspects:

The rules of the calculus determine, in the first place, theditmns under which

an expression can be said to belong to a certain categorypoéssions; and, in the
second place, under what conditions the transformationnef @ more expressions
into another or others may be allowed. ... The two differénd& of rules are those
which we have previously called the rules of formation amh$formation—namely
the syntactical rules in the narrower sense ..., and thekeddogical laws of deduc-
tion. ... [Carnap, 1937, p. 4]

The rules of formation described the structure of the exgimes of a language, and defined
which expressions constituted meaningful sentences onias. Tarski characterized the important

aspects of the rules of formation by two properties:

(«) for each of these languages a list or description is givestrinctural terms of all
signs with which the expressions of the language are foriffcmong all possible ex-
pressions which can be formed with these signs those cadletgnceare distinguished
by means of purely structural properties. [Tarski, 1933,68, italics in original]

Property &) specified that the alphabet of the language must be giveyraly structural terms.
The expressions in a language were all sequences, gramatiwot, of signs in the alphabet, and

Tarski gave an axiomatization of the operation of concdiendy means of which these sequences
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are formed. The sentences of the language were those dgpsesshich were “well-formed”,
and property §) asserted that it must be possible to distinguish the veeihed expressions, or
sentences, within the complete class of expressions pirédyms of their structural properties, or
in other words, without referring to any interpretation lobse expressions.

As the guotation above indicates, Carnap seems at this tirhave thought of deduction as
being an intrinsic part of a formal language. Tarski was noin@umspect, writing that “formalized
languages have hitherto been constructed exclusivelyhmptrposes of studying thdeductive
science$ but for him too the relationship of entailment betweentsanes was of particular interest.
The study of proofs had made it apparent that much of the matieentailment could be captured
in formal terms, and so dealt with as part of logical syntaarski summarized the way in which
this was typically done in two further properties. Propdry stated that a set of sentences called
axiomsshould be specified in purely structural terms, and prop@ijtghat a number ofules of

inferenceshould be specified by which sentences could be transformteather sentences.

Semantics

Godel's incompleteness result had shown that the syntaotion of validity or provability did not
in general coincide with the notion of truth. Tarski had fdigently given a ‘semantic’ definition
of truth, so called because it was built upon a relationshigeaotation, or designation, between the
terms of a language and the objects and properties in a kudaimain of interpretation. Building
upon this definition, Morris and Carnap defined semantichkastudy of the “relations between the
expressions of [a language] and their designata” [Carr2®9,1p. 6].

Tarski’s definition of truth was taken by Carnap as an exerg@amantic definition. Tarski re-
quired that “the sense of every expression is uniquely detiydts form” [Tarski, 1933, p. 165-6].
One important aspect of this requirement@npositionality the meaning of a whole expression
is given as a function of the meaning of its parts, and the wayhich the meaning of a whole
expression is arrived at depends solely on the way in whiéh styntactically constructed. For
example, Tarski's definition of satisfaction is based on gketactic structure of sentences: for
each clause defining how a sentence can be constructed fngptesisentences, there is a match-
ing clause defining satisfaction of the resulting sentenderms of the satisfaction of the simpler

sentences [Tarski, 1933, p. 193].
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The structure of the metatheory

Tarski's definition of truth established a distinction beem purely syntactic accounts of formal
languages and a semantic treatment. This distinction walgedpand generalized by Charles Mor-
ris as part of the theory of signs. Morris based this theonthenprocess ofemiosiswhich in-
volved a three-way relationship between a “sign vehicle"dasignatum” and an “interpretant”,
the “effect on some interpreter in virtue of which the thimgduestion is a sign to that inter-
preter” [Morris, 1938, p. 3]. Considering the three termghis relationship, Morris defined se-
mantics as the study of “the relations of signs to the objectshich the signs are applicable” and
pragmatics as the study of “the relation of signs to integees [Morris, 1938, p. 6]. Noting that
signs normally occur in the context of a system of relatedssi¢syntactics” was further defined as
the study of the “relations of signs to one another in abstmadrom the relation of signs to objects
or interpreters” [Morris, 1938, p. 13].

Carnap restated Morris’s categorization for the specifsea# the analysis of language, distin-
guishing between “the action, state, and environment ofrawke speaks or hears, say, the German
word ‘blau’ ... the word ‘blau’ as an element of the Germarglaage ... [and] a certain property
of things, viz., the color blue, to which this man ... intendsefer” [Carnap, 1939, p. 4]. Carnap
suggested that all three aspects, which he called “pragsiatisemantics” and “logical syntax”,

should be studied as part of a theory of language.

2.9 The relationship between Turing’s work and logic

Turing’s 1936 paper has often been described as foundatiorthe subsequent development of
computing and computer science. This chapter has takerfesetlif perspective, and has empha-
sized the close relationships between it and other work ithemaatical logic. This section tries to
do justice to the originality of Turing’s work, not howevey escribing it as a ‘precursor’ or ‘antic-
ipation’ of later work, but by applying to it Pickering’s sefme for conceptual innovation, described
in Chapter 1.

The first stage in Pickering’s schemabisdging, the discovery of a way of using the concepts
and results of one field to guide the development of some nesa diuring wanted to take seriously
the idea of computation by machines as a basis for an anafssmputability, and his problem

was how to bridge the gap between the existing discipline athematical logic and the more
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concrete world of machines. He achieved this by the intrbdoof the machine table notation,
which provided textual equivalents of potentially physicechines. By treating machine tables as
texts in a formal language, it became possible for Turingpayathe well-developed resources of
formal logic to the study of machines.

Bridging is followed by a stage which Pickering describesrasscription in which ideas and
techniques from the existing domain are applied, in a motesx routine manner, to the new area.
lllustrating this, Section 2.6 showed how the syntactidarat of variables, functions and recursion
were applied to machine tables, and Section 2.7 how Gdelmique of arithmetization was used
in the definition of the universal machine. Because of thieihces between machine tables and
conventional languages of logic such as Godel's languadsowever, Turing’s approach differs in
detail from Godel’s.

The most significant difference stems from a basic semaifterehce between the languages.
The atomic formulas in conventional languages are formedgdplying a predicate to one or more
terms, which are in turn made up from variables and constamtined with function applications.
Semantically, terms denote objects in some domain of irgeapon, and atomic formulas make
assertions which can be true or false. More complex formzdase built up using truth-functional
connectives and quantifiers, and these formulas also egrassertions and are evaluated for their
truth value.

Turing’s machine table language is quite different. It eims three kinds of terms, representing
the symbols that can be written on the tape,theonfigurations, and the primitive actions that can
be taken by a machine, and complex terms can be built up usifusctions. However, there are
no predicates, and hence no atomic formulas and no way ofgsipg an assertion or a judgement
in a machine table. At this point, the transcription of idé@sn mathematical logic breaks down
and reveals the need for what Pickering céillsng, or the creation of new material to fill out or
complete the new theory.

The question is, how should the semantics of a machine tablentlerstood? Turing wrote of
his first example, “[t]he behaviour of the machine is desaliim the following table” [Turing, 1936,

p. 233], and his informal annotations to subsequent tablasthe form of a description of what the
machine would do when in the appropriateconfiguration. This suggests an interpretation where
machine tables and the lines comprising them are taken txfressions denoting, or possibly

making assertions about, machine behaviour. Apart fromrinél descriptions, however, Turing
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gives no characterization of machine behaviour separata fhe machine tables themselves, and
this interpretation is therefore left undeveloped.

Later in the paper, in the discussion of the universal maghinring makes use of an alternative
interpretation. Tables are translated into standard gers in order to be written on the tape of
the universal machine; this is a purely syntactical tramsédion, however, which we can assume
leaves the semantics of the table unchanged. Turing theéesntiat “[tlhe S.D. [standard descrip-
tion] consists of a number of instructions, separated byi-setons” [Turing, 1936, p. 243]. A very
similar interpretation is suggested by Post, who spokermgef a “set of directions” to be given
which would determine the operations performed by a worResf, 1936].

The use of the word ‘instruction’ to describe lines in maetiables suggests an interpretation in
which lines are treated not as denoting terms but as commasdtiaguistic forms in the imperative,
not the indicative, mood. If machine tables are understadtis way, however, the question arises
of how to treat them semantically: commands are not najuuaitlerstood as making assertions, so
the kind of interpretation used for indicative sentencessdwot seem to apply in this case.

Speaking informally, what we do with commands is to obey thernrcarry them out, actually
performing the actions that they specify: Post's notion aff@ker obeying a set of directions
captures this intuition. For the instructions contained imachine table, we are interested in the
computation that would be performed and the results oldainethe machine whose behaviour
was described by the table. However, this is precisely whiatiiversal machine does. Given a
machine table, the universal machine will go through thpsstevolved in obeying the instructions
in the table, and in so doing generate precisely the reddtshe original machine would produce.
From this perspective, the universal machine defines a fsemantic account of the meaning of
machine tables. This is not a semantic account of the deoaghtform assumed by Carnap and
Morris, but one appropriate to the imperative nature of rrectables.

Given this, the relationship between Turing’s work and Elédcan be presented by means of
the following structural analogy between their systemsthBxegin by defining a formal language,
in Godel's case the languade and in Turing’s case the machine table notation. The exiomess
of the language are then coded by mapping them into the doofi&iterpretation of the language.
For Godel,P is a formal language for number theory, so by means of aritlzaten its formulas
are encoded as natural numbers. Turing’s notation descititeebehaviour of machines computing

with symbols on a tape, so Turing encodes machine tablesaadastl descriptions which can be
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written on a tape, thus making them accessible to otherdablihe same way that an arithmetized
formula of P is accessible to other formulas. Finally, the encoding élus express metalinguistic
properties of the object language in the object languag#.iiSor Godel this involved the definition
of recursive functions, which are known to be expressibl® inFor Turing, this must involve the
definition of appropriate machine tables: the example he gas the universal machine which, as
argued above, defines a semantic account of machine talgais of what is involved in following
the instructions they contain.

Morris wrote in 1938:

[Logical syntax] has limited its investigation of syntaeti structure to the type of sign
combinations which are dominant in science, namely, thosgbinations which from
a semantical point of view are called statements, or thoggbgwtions used in the
transformation of such combinations. Thus on Carnap’saisagimands are not sen-
tences .. [Morris, 1938, p. 16]

In contrast, this chapter has argued that Turing’s work @&61€an be understood as extending the
domain of mathematical logic by introducing the machinddaiotation as a formal, textual repre-
sentation of commands. Further, it has shown how Turingiegind generalized existing work in
logic, particularly that of Godel, to give, in the form oftluniversal machine, a formalization of the

semantic notion of obeying a command.



Chapter 3

Logic and the invention of the computer

During the 1930s, the concept of computability was beingstigated from both theoretical and
practical points of view. As described in the previous chgphathematical logicians had succeeded
in giving a precise logical characterization of the infotmation of effective computability, the
culmination of a long investigation in how to make logicabpedures effectively calculable. At
the same time, Zuse and Aiken were beginning projects whighldviead to the construction of
large-scale automatic computing machines.

These investigations were largely independent of each.olthearticular, it appears that Zuse
and Aiken were principally motivated by the desire to avaitihg to perform long calculations by
hand, and were, at least initially, ignorant of theoretaabelopments in logic. For example, Zuse
invented what he thought was a novel notation to descriti@indieatures of the design of his ma-
chine, only to be later told that he had in effect rediscode¢he propositional calculus [Zuse, 1993,
p. 46].

In contrast, at least some logicians were aware of the irapoé of practical computation. By
the 1930s, calculating machines and punched card machimemy extensively used in industry
and commerce, and techniques for organizing large-scétalaaons were widely known. Turing
used the example of a human performing complex calculatiomaotivate the design of his ab-
stract machines, and it has been suggested that his use wiattténe concept in the definition of
computability may have been partly motivated by his awassmd the processes of mechanization
employed, for example, in the British Civil Service [Agaf(3].

In the following decade computing machinery developedesmély rapidly. A major cause of

this was the extensive computational requirements of tlber@8World War, not only in traditional
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areas of applied mathematics but also notably in cryptaislyBy 1950, machines such as those
of Zuse and Aiken were becoming obsolete, partly becaudweaflimited computational capacity,
but also because the design principles on which they weedldzed been superseded. Of particular
significance is the adoption of the so-calleibred programdesign: unlike the machines of Zuse
and Aiken, which read their instructions from an externatlime such as punched cards or paper
tape, later machines stored their instructions internailyhe same medium that was used to store
the data being operated on. The stored program concept wh&d\wy a group working at the
University of Pennsylvania on a large electronic machihe,ENIAC, and was first described in a
proposal describing its successor, the EDVAC [von Neuma@a5s].

During this period the logical and practical approachesampmutation became increasingly
entwined. Turing was extensively involved in the practidalelopment of various machines in
Britain, and in the United States the mathematician JohnNeamann was from 1944 onwards
centrally involved in the planning and construction of newamines, starting with the EDVAC.
After 1950, it became a commonplace to describe computebeiag instantiations of Turing’s
concept of a universal machine, and stored program congaterto this day described as being
based on the ‘von Neumann architecture’.

These observations raise the question of the extent to vithaxdbry and practice interacted in
the development of computing technology. A widely accemedount sees the adoption of the
stored program design as being the crucial innovation, aradim which theory played a crucial
role. Michael Mahoney has expressed this view clearly:

it is really only in von Neumann’s collaboration with the EAQ team that two quite
separate historical strands come together: the efforttieee high-speed, high-precision,
automatic calculation and the effort to design a logic maehiapable of significant
reasoning. [Mahoney, 1988]

This image was reinforced by Eloina Pelaez, who wrote tfiite' development of the stored-
program computer can be seen as the result of the cominghtrget two quite different tradi-
tions” [Pelaez, 1999, p. 359]. In her account, the “tworslisl had been separated by the increasing
formalization of mathematics since the nineteenth centumy were then forced back together by
the practical demands of the war.

A number of writers have made the stronger assertion thattiméng together of the two strands
was a necessary precondition for the emergence of the cemiputs modern form. For example,

Stan Ulam, a mathematician who became an early computethrseigh his involvement with the
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Manhattan project, wrote that “computer development becpassible only by a confluence of at
least two entirely different streams” [Ulam, 1980], and is hiography of Turing, Andrew Hodges

describes Turing and von Neumann as “assemblingnéoessarydeas for the digital computer out

of the conjunction of Hilbertian rationalism and Second WWdNar technology” [Hodges, 1983,

p. 556, emphasis added]. Forceful arguments in favour sf‘tieinfluence’ theory have also been
made by the logician and computer scientist Martin DavisvjB,&2000].

However, a widespread belief about the importance of lagibé¢ practical development of the
computer seems only to have emerged some time after thdriabie mid-1950s, for example, the
logician Hao Wang wrote that “Turing’s theory of computaflactions antedated but has not much
influenced the extensive actual construction of digital potars. These two aspects of theory and
practice have been developed almost entirely independehdach other” [Wang, 1957, p. 63].

This chapter examines the interaction between theory aactipe and the influence of logic in
the development of the computer. A number of distinct cldiage been made about this relation-
ship. The first concerns the nature or essence of the compungrasserts that the computer can
best be characterized by its relationship with logic, asospg, say, to its relationship with numer-
ical analysis or electronic engineering. Davis put thisigoms bluntly, stating that “a computing
machine is really a logic machine” [Davis, 2000, p. xii].

A second claim concerns the causal role played by logic imdéwelopment of the computer, a
role emphasized by Mahoney: “[a]s logic machines, the fimesl-program computers . .. emerged
as byproducts of theoretical inquiry into the nature andtsiraf logical thought” [Mahoney, 1989].
This idea was reinforced by Davis, who wrote as if the creatithe first computers was a relatively
straightforward implementation of Turing’s abstract maelconcept.

A third claim relates to the general-purpose nature of caergutheir ability to be used not only
for numerical computation, but for any task involving infaation processing. According to Davis,
the general applicability of computers is attributable twifig’s concept of a universal machine.

This chapter will examine these three claims in detail. ttaavenient to start with the second

claim, which also provides an opportunity to review the vate historical material.

3.1 The origins of the stored program computer

Historians have traditionally located the origin of the gauter in its modern form in work car-

ried out at the Moore School of Engineering, part of the Ursitg of Pennsylvania, during the
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period 1943-1946 [Ceruzzi, 2001]. During this period, arted electronic engineers and applied
mathematicians, led by John Mauchly and Presper Eckerigries and constructed an electronic
calculator, the ENIAC [Goldstine and Goldstine, 1946]. Shias not the first actual or proposed
device to use electronics for automatic calculation, betBNIAC project was on a far larger scale
than its predecessors. It promised to remove a backlog inalealations required in the develop-
ment of new artillery weapons, and was supported finandigllthe Ballistics Research Laboratory
(BRL) at the nearby Aberdeen testing grounds. The congbrucf the ENIAC demonstrated once
and for all the feasibility of large-scale electronic cortipg devices.

The group soon recognized that there were several shomgsnm the design of the ENIAC,
and during 1944 work started on a follow-up project [Ste®81]]. Later that year, the ENIAC team
came into contact with von Neumann, who joined the group astatipne consultant. This appears
to have been a highly fruitful collaboration, which led irdBto the writing of theFirst draft of a
report on the EDVAQvon Neumann, 1945, hereaftddraft Report], an internal report describing
features of the design of a proposed successor machine E©NHEC. Although not intended for
publication, this report was widely circulated, and is gaflg credited with defining for the first
time the high-level design principles underlying virtyadlll computers subsequently built.

The ENIAC became operational at the beginning of 1946, arld ib@and the ‘von Neumann
design’ were described in detail at a summer school held thet year at the Moore School
[Campbell-Kelly and Williams, 1985]. Many of those attemglithis summer school were subse-
quently active in developing computers, including Maukigiékes from Cambridge whose EDSAC
was very closely modelled on the machine described by vomiden. TheDraft Reporttherefore
had an immediate and direct influence on subsequent congbeitefopments.

Recent historical writing has been concerned to place themats in a wider context and, rather
than describing a self-contained episode of technologitevation, has emphasized continuities
within the wider history of computation. The history of pekectronic calculating technology has
been extensively described [Aspray, 1990a], and links behnthe office automation industry and
the post-war computer emphasized [Agar, 2003]. Howevemn é@v this broader historiographical
tradition, the events at the Moore School are seen as a Wwatkrs$n their history, entitled simply
Computer Campbell-Kelly and Aspray devoted a chapter entitled émting the Computer” to the
topic [Campbell-Kelly and Aspray, 1996]. Similarly, Cemiig History of Modern Computindated

the advent of the modern period to the completion of the EN&A@ the writing of théraft Report
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in 1945 [Ceruzzi, 1998], and Ceruzzi later wrote that “tr@eti-program principle remains a valid
focus for computing’s history” [Ceruzzi, 2001, p. 51].

The initial impetus for the Moore School work appears to hawme from John Mauchly. Be-
fore the war, Mauchly was a professor of physics at a smalegelnear Philadelphia. He was
interested in meteorology, and in particular in the po$igioof automating the very large calcula-
tions required in numerical meteorology. He explored the afsvacuum tubes to build electronic
counters [Stern, 1981, p. 9], and in 1941 visited the Unityers lowa and examined an electronic
device intended to solve simultaneous equations develbpelbhn Atanasoff. In the summer of
1941, Mauchly attended a training course in electronichatMoore School, and subsequently
joined the faculty in the autumn of 1941. While on the coursedme into contact with Eckert, and
succeeded in interesting him in the possible use of eleicttenhnology for constructing very high
speed calculating devices.

In 1942, Mauchly wrote a report entitled “The Use of High-8pé&/acuum Tube Devices for
Calculating”, stressing the advantages to be gained froplafimg electronic technology to per-

form automatic calculation:

There are many sorts of mathematical problems which regaiculation by formulas

which can readily be put in the form of iterative equationsa great gain in the speed
of calculation can be obtained if the devices which are usepl@y electronic means
for the performance of the calculation [Mauchly, 1942]

The report was submitted both to the Moore School and to theyADrdnance Department, but
little action was taken until 1943, when it came to the attenof Herman Goldstine. Goldstine was
a mathematician with a background in ballistics who in 1942 wosted to the US Army Ordnance
Department at the BRL. There had been liaison between thedvBdhool and the BRL since before
the war.

A significant computational problem faced by the BRL was tingety production of firing
tables for new artillery. The development of new weapons pvaseeding at such a pace that the
computational resources of the BRL could not keep up withdgmand. Early in 1943, Goldstine
came across Mauchly’s report, and became convinced thettaté technology could provide a
solution to the BRL's computational needs. A joint projecsainitiated in April 1943 between
the Moore School and the BRL to develop the ENIAC, or Elegaravumerical Integrator And

Computer.
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The ENIAC was developed over the subsequent two years, heiad to perform calcula-
tions for the Manhattan Project in the autumn of 1945, and pudddicly demonstrated on Febru-
ary 14, 1946, when it was able to “compute the trajectory ohalldaster than the shell itself
flies” [Burks, 1947, p. 756]. It was subsequently transféne the Ballistics Research Laboratory
and was extensively used until finally being decommissianed®55 [Fritz, 1994].

The ENIAC consisted of 40 distinct units. Of these, 20 wereuawlators, each capable of
storing a humber and carrying out programmable operatiéreddition and subtraction on the
stored number. Other units implemented more complex dpastsuch as multiplication or taking
square roots, and the progress of a computation was caurblf a unit known as the ‘master
programmer’. It deviated significantly from other machiméshe time, such as those of Zuse and
Aiken, in the way in which instructions for a calculation wegiven to it. It did not seem feasible to
use external paper tape or punched cards because the spa@dhainstructions would be read in
would be so much slower than the electronic speed of compntttat the advantages of computing
electronically would be lost.

Instead, the ENIAC was manually reconfigured for each diffeproblem it was applied to, a
time-consuming and laborious process. This was recogtiyéts developers to be a problem, but
it was felt that in the ENIAC’s intended context of use the ragh was tolerable, because it was
assumed that the machine would be running the same progoaraldulate firing tables, for long
periods of time. This was noted in a progress report writtdheaend of 1943:

No attempt has been made to make provision for setting up lalggoautomatically.
This is for the sake of simplicity and because it is anti@pathat the ENIAC will

be used primarily for problems of a type in which one setup dl used many times
before another problem is placed on the machine. [Anony243]

The inconvenience of programming the ENIAC was soon re@eghas being a significant limi-
tation, however, and the desire to come up with a better ndetlas one of the goals for subsequent
development. In a document written in January 1944, Eckestiibed a device that was partly
mechanical and partly electronic and that made use of miaggtetage devices [Eckert, 1944].

The device described consisted of a rotating shaft with albmurof “discs or drums” mounted
on it, of various types. So-called type (a) devices were t@dggable of being magnetized and
demagnetized quickly, thus providing “a method of storimgsome usable code, those characters
or digits which must be used later or indicated”. Type (b)icdes would be engraved in some

suitable way to “generate such pulses or other electrogitass as were required to time, control
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and initiate the operations required in the calculatioriBhese descriptions suggest that different
storage media were envisaged for data and program code ensitméing stored on the volatile type
(a) discs with the type (b) discs playing the role of punchadis or paper tape in other machines,
holding the program instructions. Eckert’'s proposal tfaee clearly addressed the problem of
reprogramming the ENIAC: the machine he described coul&pmgrammed simply by changing
the disc containing the program code. However, he went oayto s

If multiple shaft systems are used, a great increase in thidable facilities and for

allowing automatic programming of the facilities and preges involved may be made

... this programming may be of the temporary type set up on allsgsdor of the

permanent type on etched discs. [Eckert, 1944]

The statement that “this programming may be of the tempdsg®”, i.e. the type (a) discs,
seems to imply that data and instructions could be storetidrsame medium, but Eckert does
not appears to view this as an intrinsic feature of his mazhinhis hard to draw firm conclusions
from such a short document, but it does not appear from thisrdent that Eckert is thinking of a
machine characterized by being based round a single, attzhstore.

In 1944, the Moore School group was joined on a part-timesbagivon Neumann. Although
originally a pure mathematician, von Neumann became eixtdgsnvolved in consulting activities
to the US government concerned with various aspects ofapptiathematics, an activity which
during the war years occupied much of his time [Aspray, 1996ts consulting activities began
in 1937 at the BRL, coincidentally enough, and after the m#k of war quickly intensified. A
significant involvement was with the Manhattan project as l/damos, where he advised on the
shaping of explosions by the appropriate placement of sy@aharges.

Many of these projects brought with them significant compor@l challenges, and von Neu-
mann developed a serious interest in the current state opatational equipment. This interest
was fostered by a visit to England in April 1943, when he eithe Nautical Almanac Office in
Bath and helped to work out a program for an interpolatiomfda to be run on the punched card
equipment being used there [Todd, 1974]. Following thigwsn Neumann wrote to Oswald Ve-
blen that “I have also developed an obscene interest in ctatipoal techniques” [Aspray, 1990b,
p. 27].

During 1943 and 1944, von Neumann carried out on behalf diftaehattan project a survey of
the existing technology for automatic computation. In Zapu 944, he contacted Warren Weaver,

then head of the Applied Mathematics Panel of the Office ofi8ific Research and Development,
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asking for information about the current situation. Wealieected him to research groups at IBM
and Harvard, Bell Labs and Columbia University, which voruhb&nn subsequently visited. None
of these projects however seemed to be in a state enabling tthhée of immediate use to Los
Alamos. Von Neumann also gained first hand experience ofdhgatational equipment currently
in use at Los Alamos. In a letter of 1 August, 1944 to Robertéhgimer, von Neumann summa-
rized his findings, and demonstrated a “deep and practic@mgtanding of many of the important
concepts of high-speed digital computation” [Aspray, 1998 33].

Curiously, it appears that despite this interest in autamatmputation, von Neumann had not,
before August 1944, either been told about or come acrosSNHAC. Weaver had not mentioned
the project, despite the fact that he undoubtedly knew oéxistence. Various arguments have
been put forward for this omission. In a book emphasizingcthwtributions made by Eckert and
Mauchly, Nancy Stern has suggested that this was becaudeNH&C project was held in low
esteem by the scientific establishment, partly becauskandickert and Mauchly had at this stage
much of a scientific reputation [Stern, 1981]. Alternatyyél has been suggested that Weaver would
not have known of any significant progress on the ENIAC, as tieldvhave been unlikely to have
read the first progress report, dated 31 December 1943 gxefgponding to von Neumann'’s enquiry
in January 1944 [Aspray, 1990b, p. 35]

Whatever the reason, it appears that von Neumann did not khtdwe ENIAC project until he
met Herman Goldstine, apparently by chance, and was toldtaboldstine’s involvement in the
development of an electronic calculating device [Goldst®72, p. 182]. Aware of the limitations
of the electromechanical technology he had been investggaton Neumann was quick to appre-
ciate the potential of the electronic speeds of computaiiomised by the ENIAC and its planned
successor, and soon became involved with the ENIAC groupcassultant.

Von Neumann therefore brought to his work on the EDVAC prapadetailed practical knowl-
edge of current calculating technology, and a keen appieciaf the need in many areas of applied
mathematics for greater computational capacity than was #vailable. This complemented the
orientation of the ENIAC group towards the applications wfoanated calculation in areas such as
ballistics and meteorology.

Progress reports on the EDVAC project give some insightwoto Neumann’s contributions to
the work. The first report, in March 1945, does not mentiongioeed program idea specifically,

but does indicate what the group was expecting fronTttedt Report
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The problems of logical control have been analyzed by meaimsaymal discussions
among Dr. John von Neumann,. Dr. Mauchly, Mr. Eckert, Dr. Burks, Capt. Gold-
stine and others. .. Points which have been considered during these discusaiens
flexibility of the use of EDVAC, storage capacity, computisigeed, sorting speed, the
coding of problems, and circuit design.. Dr. von Neumann plans to submit within the
next few weeks a summary of these analyses of the logicatalaftthe EDVAC to-
gether with examples showing how certain problems can hgs@Eckert et al., 1945]

A second report, in September 1945, is more explicit aboaithibtorical background of the
project, and claims that the stored program concept daves Eckert's 1944 disclosure, though

describing it in terms which go beyond what Eckert had ogtjinwritten:

... Iin January, 1944, a “magnetic calculating instrument” wigsldsed. ... An im-
portant feature of this device was that operating instomstiand function tables would
be stored in exactly the same sort of memory device as that fasenumbers.. ..
[Von Neumann] has contributed to many discussions on thedbgontrols of the ED-
VAC, has prepared certain instruction codes, and has tektess# proposed systems
by writing out the coded instructions for specific probleni3t. von Neumann has
also written a preliminary report in which most of the resulf earlier discussions are
summarized. [Anonymous, 1945]

The attribution of credit for the invention of the storedygram concept has proved to be very
controversial. In retrospect, Turing’s universal machias been interpreted as embodying the no-
tion, and some writers have therefore argued that credhtaulgjmately to be given to Turing. The
relationship between Turing and von Neumann and the exaenihich von Neumann’s contribution
to the EDVAC was influenced by his knowledge of Turing’s work discussed further below.

In his autobiography, Zuse quoted diary entries made in E@ir1938 which appear to state,
very briefly, the idea of holding both program and data in tame store [Zuse, 1993, p. 53].
However, Zuse did not build a machine based on these praxcimfore 1945, and his work was in
any case unknown to the EDVAC team.

Prior to 1945, other computer developers in the USA do natsieehave been aware of the
stored program concept. Like Zuse, Aiken and George Sshigam at Bell Research Laborato-
ries designed machines which were programmed by means efnely supplied programs. In
1940, Norbert Wiener described an automatic digital comgutachine which would use elec-
tronic technology and contain data stored on a rewritalpje,tén a manner very reminiscent of
Turing’s machines [Wiener, 1940]. Wiener's proposal wasafepecial purpose machine, however,
and despite incorporating many of the features of the p@48&Imachines, his proposal did not

include the idea of the stored program.
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Testimony from the members of the Moore School group therase$ mixed, and appears to be
largely coloured by the subsequent split between von Nearaad Eckert and Mauchly. Goldstine
and Burks, both with a mathematical and logical backgroweht to work with von Neumann at
Princeton, and were clear that credit should be given to vemnivann. Eckert and Mauchly, on the
other hand, contested this. Von Neumann himself appeaes tehave claimed credit for the idea,
and in the EDVAC progress reports, as quoted above, he wasstamtly credited primarily for his
work on logical control and coding.

The documentary evidence, summarized above, does not givaeruivocal answer. Draw-
ing on Eckert's 1944 disclosure in particular, some writesse concluded that priority should be
assigned to Eckert and Mauchly [Stern, 1980, Metropolis\&bdton, 1980]. This places a heavy
weight on a rather thin text, however, and neglects the anhbat differences between the disclo-
sure and the latddraft Report A reasonable compromise position, which seems to go as filuea
evidence will allow, was given by Ceruzzi, who wrote that kBt and Mauchly had conceived of
something like a stored-program principle by 1944, butt wais von Neumann who clarified it and
stated it in a form that gave it great force” [Ceruzzi, 19982@]. The relationship between logic

and the stored program concept is discussed further indpegiit.

3.2 The early development of cybernetics

The previous section described the emergence of the spoogglam computer against the back-
ground of research in the field of automated calculation, fandd little evidence for the explicit
involvement of logic in this process. One area in which aarigst in logic and computers did come
together in this period, however, was the emerging subjecylzernetics. This section briefly de-
scribes the origins of cybernetics, and in particular thlirement of Turing and von Neumann
with the subject in the period before 1945.

Von Neumann first met Turing in Cambridge in 1935, and thegrlaame into contact in
Princeton, where Turing spent two years between 1936 anél WaBking with Alonzo Church
[Hodges, 1983]. In his thesis, Aspray relates testimongnf@tephen Rosser about this period, in

which the interaction between Turing and von Neumann isriest in the following terms:

Even as early as his student days at Princeton, Turing anpefrously that comput-
ing machines could be built which would adequately model mental feature of the
human brain. Von Neumann . was attracted to Turing because of their common in-
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terest in mathematical logic. Turing’s view on the compuated the brain was disputed
by von Neumann, and the two discussed the issue on many onsaghile Turing was
completing his dissertation. This is purportedly what iresgh von Neumann’s interest
in computing. Von Neumann and Turing separated when Tuehgmed to England,
leaving both determined to build computers to test the pdigi of mathematically
modelling the human brain. [Aspray Jr., 1980, p. 147-8]

There are a number of anecdotal references testifying toN&umann’s continuing interest
in Turing’s work, and the high regard in which he held it. Admtiog to Stan Ulam, von Neu-
mann spoke highly of Turing’s work and “played with Turing chine-like mechanical descriptions
of numbers” in the summer of 1938 [Aspray, 1990b, p. 178]. letter quoted by Brian Ran-
dell, Stan Frankel describes how in 1943 or 1944, while wakat Los Alamos, von Neumann
urged him to read Turing’s 1936 paper. Frankel went on to kay @an “essential role” played
by von Neumann was “in making the world aware of these fundaaheconcepts introduced by
Turing” [Randell, 1972, p. 10].

It is striking, however, that it appears to have been theagyabetween Turing’s machines and
the brain that caught von Neumann’s imagination. This analeas also central to the work of
Norbert Wiener who at the start of the war was investigatiraysvof improving the performance
of anti-aircraft artillery. As Paul Edwards has describtiis was of importance because of the
increasing speed and complexity of modern technologicafana [Edwards, 1996]. Anti-aircraft
batteries in particular were handicapped because humareguwere unable to track fast aircraft
with sufficient accuracy. The solution adopted was to dgved@chanisms which would automati-
cally carry out some of the processing required, such tieatgbulting ‘cyborg’, a system consisting
of both mechanical and human components, would achieveebdéperformance beyond what each
component was independently capable of.

In the course of this work, Wiener and his collaborators camegiew the phenomenon of
negative feedback as playing a crucial role. In 1942, in &epapmmarizing their results, they
argued that “a uniform behavioristic analysis is applieatd both machines and living organ-
isms” [Rosenblueth et al., 1943, p. 22]. They outlined adrigrical taxonomy of behaviour and
argued that “[a]ll purposeful behavior may be considerektuire negative feedback”, a principle
which was later commonly seen to encapsulate the centradagef cybernetics [Wiener, 1948,
Wisdom, 1951].

At about the same time, the psychologist Warren McCulloahlagician Walter Pitts described

a model according to which aspects of the behaviour of a m&tebneurons, such as that found
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in the brain, could be captured in a logical calculus. Mc@zhl later described the work as having
been directly inspired by Turing’s paper on computabilitgiming that they had viewed themselves
as “treating the brain as a Turing machine” [McCulloch, 194Bhe paper concluded by claiming
that neural nets equipped with a tape could “compute the sammbers as can a Turing machine”,
a result viewed as providing a “psychological justificat@frihe Turing definition of computability
and its equivalents” [McCulloch and Pitts, 1943, p. 129].

Von Neumann read this paper in 1943, apparently at the re@mdation of Wiener and Bigelow
[Aspray, 1990b, p. 180], and according to Bigelow, was “emmusly impressed” with the work of
McCulloch and Pitts [Aspray, 1990b, p. 313, note 23]. In 1948described the main result of
the work as being the demonstration that behaviour whichbeafuefined at all logically, strictly,
and unambiguously in a finite number of words can also bezeslby. .. a formal neural net-
work” [von Neumann, 1948, p. 412]. In other words, McCullcatd Pitts had linked the earlier
work on computability with a plausible model of the brainushinvolving logic centrally in the
emerging cybernetic framework.

Von Neumann immediately became involved in the area. Aryeeasult of this involvement was
a conference organized by Wiener, von Neumann and HowarehAthkeld in Princeton in January,

1945. This meeting was described by Wiener as follows:

The first day von Neumann spoke on computing machines, anokkespn communi-

cation engineering. The second day Lorente de N6 and Mo€hujbined forces for a
very convincing presentation of the present status of thblpm of the organization of
the brain. In the end we were all convinced that the subjetiraoing the engineering
and neurology aspects is essentially one, and we shouldegalatith plans to embody
these ideas in a permanent program of research [Wiener] 1945

Plans to found a research institute subsequently cametiongohowever, and the most concrete
outcome of the 1945 was a series of conferences held overttifaw years under the auspices
of the Macy foundation. These conferences were of greatiitapce to the history of cybernetics
but of less immediate relevance to the development of thepaten and so will not be discussed
further here.

Because of constraints on travel during and immediatebr #fie war, and the classified nature
of his other work, Turing himself was only peripherally imfved in these developments. However,
he was visited by Wiener and McCulloch during the war, anahsgiee early months of 1944 in the
US, visiting Claude Shannon at Bell Labs [Hodges, 1983].
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3.3 Von Neumann’s design for the EDVAC

By 1945, then, von Neumann was not only deeply involved infible of automatic calculation,
but was also playing a leading role in an informal group oéstists exploring analogies between
computing machines and neuronal structures. This sedtigsirates how these two approaches
were made explicit in th®raft Report which presented not simply an electronic calculator, but
rather a machine in which, to echo Wiener, “the engineerimjreeurology aspects were essentially
one”.

The report began by defining the purpose of the EDVAC, charizatg it as “avery high speed
automatic digital computing systérivon Neumann, 194531.1, emphasis in original]. The phrase
“automatic computing system” is glossed as meaning “a @éevithich can carry out instructions to
perform calculations of a considerable order of complexigyg. to solve a non-linear partial differ-
ential equation in 2 or 3 independent variables numeritaiyn Neumann, 194551.2]. Later, von
Neumann wrote that “the device is primarily a computer” [\W@umann, 1945;2.2]. The EDVAC
was therefore designed to be a machine to automate maticaizliculation: the report nowhere
suggests any wider uses for it.

Von Neumann next addressed the overall structure of the imacfThe design is based on a
small number of relatively high-level components, eachiified with a single, clearly defined
function. This contrasts strongly with the ENIAC, which wiaased upon a set of 20 identical
accumulators, each capable of storing data, performirignagtic operations, and controlling the
sequencing of subsequent operations. In the EDVAC, by ashitcomponents would not be repli-
cated, and each would have a single clearly defined fundtiotea

The first component that suggested itself was derived attplictom the EDVAC's intended role

as a calculator:

Since the device is primarily a computer, it will have to penfi the elementary opera-
tions of arithmetic most frequently. These are additiomtiaction, multiplication and

division ... It is therefore reasonable that it should contain spe@édliargans for just

these operations. [von Neumann, 1945.2]

In a discussion of an advanced electronic device, the uskeofvbrd ‘organ’ is striking. It
introduces a metaphor that runs through the text of the depfirt, that of the machine viewed as a
body. As in the body, the ‘organs’ of the EDVAC are charactedi primarily by the functions they

perform. Observing that the list of operations that the rirecihould be able to perform directly
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is debatable, von Neumann concluded that “[a]t any rabendral arithmeticalpart of the machine
will probably have to exist, and this constitutie first specific part: CA [von Neumann, 1945,
§2.2, emphases in original]

The report then went on to consider how the course of a cortiputaould be controlled:

The logical control of the device, that is the proper seqimenof its operations, can be
most efficiently carried out by a central control organ. H tlevice is to belastig that

is as nearly as possib#dl purpose then a distinction must be made between the specific
instructions given for and defining a particular problend #re general control organs
which see to it that these instructions—no matter what they-are carried out. The
former must be stored in some way. the latter are represented by definite operating
parts of the device. By theentral controlwe mean this latter function only, and the
organs which perform it forrthe second specific part: C@zon Neumann, 19452.3,
emphases in original]

Again, this distinguished the EDVAC from the ENIAC, in whige instructions for particular
problems were represented in the reconfigurable circuitrh@ machine. Instead, the EDVAC
design drew upon established practice in automatic cortipntaBabbage’s analytical engine had
been designed to read the instructions for a computatian fsranched cards, and punched paper
tape was used for this purpose by Zuse and Aiken.

In its portrayal of a machine which will be supplied with andlwarry out instructions for
different computations, this passage is evocative of fginniversal machine. Von Neumann
does not draw attention to this analogy, however, and asdimparison with other contemporary
machines makes clear, this was not a particularly innogdéature of the EDVAC design.

The report then continued by noting that “[a]ny device whiglo carry out long and compli-
cated sequences of operatians must have a considerable memory” [von Neumann, 1925],
using a term perhaps calculated to reinforce the machidg/bretaphor. Among other require-
ments, it was noted that the instructions for the currerdutation must be remembered as well as
any intermediate results generated during the calculaiod this raised the question of whether

different types of memory would be required:

While it appeared that various parts of this memory have tfopa functions which
differ somewhat in their nature and considerably in theirppsge, it is nevertheless
tempting to treat the entire memory as one organ, and to tsyeiits as interchange-
able as possible for the various functions enumerated abovét any rate, the total
memoryconstituteghe third specific part of the device: .fon Neumann, 19452.5,
emphases in original]
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This decision to have a single uniform memory is the innavathat makes th®raft Report
the canonical source of the stored program idea. Againgadth von Neumann did not comment
on this, the design is reminiscent of Turing’s universal hiage, which used its single tape to store
both the information required for, and that generated ircthese of, a computation.

Von Neumann then refined the machine/body metaphor by makiplicit reference to neurons
in the central nervous system. The metaphor was used toat®tive introduction of the remaining
components of the EDVAC design, the input and output deviessl O which transfer information

from some external recording medium R to the internal p&#s, CC and M) of the device.

The three specific parts CA, CC (together C) and M correspotidetassociativeneu-
rons in the human nervous system. It remains to discuss thieadéents of thesensory
or afferentand themotor or efferentneurons. These are tiput andoutputorgans of
the device .. [von Neumann, 1945;2.6, emphases in original]

This refinement aligned the internal parts CA, CC and M with &issociative neurons, or in
other words equated the central components of the EDVAC thighbrain. This analogy was re-
inforced in the next section of the report where von Neumamnetd to consideration of detailed
structure of the three internal parts and the elements outhidh they were built. Rather than
moving straight to a description of this structure in terni®lectronic components and circuits,
however, he noted that computing devices were typicallyt louit of elements which had two or
more stable states, and could switch between states innsspo various stimuli, commenting that
“[i]t is worth mentioning, that the neurons of the higherraals are definitely elements in the above
sense” [von Neumann, 19484.2], thus reinforcing the connection between brains amdpzders.

To substantiate this claim, Von Neumann referred at thiatpoi the only technical reference in
theDraft Report to McCulloch and Pitts’s abstract model of the neuron [Middaih and Pitts, 1943].
Vacuum tubes were then presented as components which gharptbperties of abstract neurons
and were suitable for the construction of electronic coramutThe details of the EDVAC's circuits
in the remainder of the report are not presented in termsbefsithowever, as von Neumann wanted

to separate issues of design from detailed consideratioglgctronics. Instead:

The analogs of human neurons, discussed in 4.2-3eem to provide elements of
just the kind postulated at the end of 6.1. We propose to wga ticcordingly for the

purpose described there: As the constituent elements afaviee, for the duration of

the preliminary discussion. [von Neumann, 1946&.2]

In other words, the ‘machine as brain’ metaphor is now bemgented as a substantial struc-



CHAPTER 3. LOGIC AND THE INVENTION OF THE COMPUTER 71

tural equivalence. It is being proposed that at an apprptevel of abstraction, an electronic
computer can be described as being built out of the same fselgraents as the human brain.

Von Neumann later described this strategy as a form of axiaataon [von Neumann, 1948].
He described the problem of understanding the functionin@ebrain as consisting of two parts:
the first part would consider the physiological details af tieurons, the ‘elements’ of the brain,
while the second would describe the overall organizatiotheflements, and the behaviour emerg-
ing from this organization. Linking the two parts is a abstrdescription of the elements, such as
that given by McCulloch and Pitts. This should be framed ichsa way as is convenient for build-
ing up the higher-level theory, while at the same time remagifaithful to the lower-level properties
of the elements. Turing made a similar point, distinguighdetween the roles of “mathematicians”
and “engineers” in the design and use of automatic comp[fargng, 1946].

As this discussion has shown, then, the underlying cyberetsumption of a fundamental
analogy between natural organisms and machines was éyplicitten into the first presentation
of the architecture of the modern computer, and von Neumarmat/pains to demonstrate that the
new machines could be understood, at one level, as beirfigiattbrains. TheDraft Reportwas in
this respect part of a much wider discourse in which advaetstironic machines, and computers
in particular, were figured as ‘giant brains’; this issuel Wé discussed further in Section 3.6.

The community of applied mathematicians who were the pymeers of the early com-
puters, and presumably very conscious of their limitatiomere rather resistant to seeing com-
puters as brains, however, and in von Neumann’s later iemortcomputer design, coauthored
with Burks and Goldstine, much less is made of the analogyd&ioe and von Neumann, 1946,
Burks et al., 1946]. It continued to play an important rolevan Neumann’s thinking, however,
notably in the papeThe General and Logical Theory of Automataesented to an audience of
cyberneticians in 1948 [von Neumann, 1948].

The role of logic in theDraft Report then, is rather indirect. Rather than situating the EDVAC
in an explicitly logical tradition, as Turing had his abstranachines, von Neumann presented the
computer as simultaneously a calculator and an artificeihbfThe connection between the stored-
program computer and the Turing machine was left implicigdiated by McCulloch and Pitts’s

work on the application of logic to the modelling of neurostlictures.
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3.4 Logic and the stored program concept

Two conclusions can be drawn from this overview of the histiircomputers in the decade leading
up to the writing of theDraft Report Firstly, the report was grounded in a very practical pro-
gramme of research into automatic computation, of whichiMamnd the ENIAC are perhaps the
two best-known examples. Secondly, the focus of this rebesas on the automation of numerical
calculation. The seems to have provided the impetus whitkdegeral individuals to enter the field,
and it was a tendency which was massively amplified by theanflidemands of the war. These
computer was not, as Mahoney and Davis suggest, developdiditixas a practical logic machine.

A weaker claim, however, would be that aspects of the desigre wdopted for reasons that
were specifically logical, and it is the case that a numberspeats of théraft Reporthave been
characterized as being ‘logical’ in one way or another. Eaneple, Aspray has described a sense

in which von Neumann'’s influence could be described as immglogic:

Von Neumann was interested in presenting a “logical” desiomn of the stored-program
computer rather than an engineering description; thatisscéncern was the overall
structure of a computing system, the abstract parts it cizegrthe functions of each
part, and how the parts interact to process informationpfag 1990b, p. 40]

The abstract description of a computer’s architecture a af$unctionally distinct subsystems
is not original to the EDVAC, however. In particular, the &ef an architecture based around
an extensive memory and a control or arithmetic unit opegatin the contents of that memory
appears to have occurred independently to several peoplehage’s Analytical Engine is perhaps
the earliest example of such an architecture, containirggare” and a “mill” which are functionally
very similar to the EDVAC’s memory and control, and in the @93 uring and Zuse independently
came up with similar designs. Given this, it would be implblgsto assert that this represented a
specific influence of logic on the design of the EDVAC.

In the EDVAC progress reports, von Neumann’s particulatrioutions are described as being
in the area of logical control. The phrase ‘logical contisidefined in thdraft Reportas signifying
“the proper sequencing of [the EDVAC's] operations” [vonudgann, 1945§2.3], and referred to
the control circuits that ensured that operations werdathiout in the intended order and to the
sequencing of operations required in particular probleBiementary logic was certainly a useful
tool in the design of such circuits, as Zuse and Claude Shahad discovered [Shannon, 1938],

but again, this does not point to a specific influence of logithe design of the EDVAC.
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Perhaps the strongest arguments in support of the influéhogioare based on the introduction
in the Draft Reportof the stored program principle. Before considering thegeraents, however, it
is necessary to distinguish three distinct concepts whiishtérm is sometimes used to refer to. The
first is the notion of universality, of a single machine whien be made to simulate the work of any
other. A universal machine requires access to some repatieenof the machine it is simulating,
but this representation does not need to be in the same medidhe data generated in the course
of the simulation. Turing’s arguments in 1936 would not hagen affected if he had equipped the
universal machine with a second tape to hold the coded t&lfeanachine being simulated.

The stored program principle itself was defined above to beddtision to store the program
and data of a computer in the same storage medium. Turing/ensal machine does have this
property, but this is not an essential part of its univetgaliThis distinction is not always made
clear: for example, Ceruzzi appears to conflate the two nstiariting that “the reason [for the
importance of the computer] is the stored-program pricigl computer is not a single machine,
but one of an infinite number of machines, depending on thevaod written for it” [Ceruzzi, 2001,

p. 50].

The third concept is a consequence of the colocation of progrode and data, namely the
possibility for a program to manipulate its own code as if &revdata, and hence to modify itself
as it is being executed; this can be describededsmodifying code Turing’s universal machine
makes no use of this possibility: the symbols in the squaneh® tape which hold the table of the
machine being simulated are left unchanged by the operatibthe universal machine.

The earliest example of self-modifying code occurs in Bvaft Report which made use of
a restricted form of self-modification known address modificatianThis made it possible for a
program to modify a instruction which retrieved a data vdhaen a given location, say, so that
the next time it was executed it would retrieve data from &gt location. The use of address
modification offered great advantages in the writing of pangs which processed repeated sets of
data such as vectors or matrices.

Different arguments for the influence of logic on the develept of computers have been based
on these concepts. For example, Davis argues that uniipgrisalvhat distinguishes the later ma-
chines from “earlier automatic calculators”, writing tlfithese post-war machines were designed
to be all-purpose universal devices capable of carryingaaytsymbolic process” [Davis, 2000, p.

185]. As a statement about the EDVAC, this assertion apfeds false: as discussed above, the



CHAPTER 3. LOGIC AND THE INVENTION OF THE COMPUTER 74

Draft Reportmakes it clear that the EDVAC was primarily designed as a migalecalculator. The
relationship between universality and the computer isudised further in Section 3.7.

Arguments related to the stored program principle are basete decision in thBraft Report
to equip the EDVAC with a single memory which would contairttbtine code of the program being
executed and the data on which it was working. As noted abibne was a feature of Turing’s
universal machine, and it has been suggested that von Netsriarowledge of Turing’s work led
directly to the incorporation of this feature in the desidthe EDVAC.

Evidence for or against this position appears to be whotlyuchstantial. On the one hand, von
Neumann was aware of and admired Turing’s work, and woulthitey have been familiar with
the design of the universal machine. On the other hand, tee@explicit mention of Turing in the
Draft Reportwhich, as discussed above, was concerned to link the newingagith the developing
area of cybernetics rather than directly to logic.

One way to address the question is to ask why this particesigd feature was adopted, when
other aspects of Turing’s design, such as the restrictiomowement to adjoining tape positions,
were not echoed in the EDVAC proposal. Explanations of tiuergby members of the EDVAC
team did not stress the similarity of the two forms of stonefrimation, numeric data and stored
instructions, and give abstract or logical reasons foringldboth in a single store; rather, the two
forms were clearly distinguished and pragmatic reasorsgdan engineering concerns, given for
holding the two in a single store.

For example, in one of the Moore School lectures in the sunoh&946 Eckert explained as-
pects of the EDVAC's design [Eckert, 1946]. He identified aer of distinct uses for the memory
of a computer, including the need to store data and instmstiand compared the characteristics of
the memory required for these purposes. In particular, bedrthat instructions must be available at
high speed, so as not to hinder the progress of the computatimthen observes that different types
of problem can have significantly different memory requiesrts, in terms of the relative amount of
space required for these two purposes. Maximum flexibilitgt aconomy in construction could be
obtained by combining both data and code in a single statteerghan providing separate memory
components for each.

In another report dating from 1946 [Goldstine and von Neumaf46], Goldstine and von
Neumann gave a similar account. They noted that the memeny tesstore instructions should

provide the flexibility of media like paper tape, which cowslhre an indefinitely large number of
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instructions and allow a machine to be easily reprogramraad, also the ability to access these
instructions at a high speed. They then noted that instnuston paper tape are already digitally
encoded, and hence that there was no reason why they shdube stored in the same memory

that is used for storing numerical data. The same point v&srahde in another report:

Conceptually we have discussed above two different fornnseshory: storage of num-
bers and storage of orders. If, however, the orders to thdimaare reduced to a nu-
merical code and if the machine can in some way distinguishnaber from an order,

the memory organ can be used to store both numbers and oBieks [et al., 1946].

None of the writings originating from the Moore School gramgntion a specifically logical
or theoretical rationale for the development of the stomedjram concept. It remains a possibility,
of course, that the idea was suggested by von Neumann’'s &dgelof Turing’s work, but even
if that was so, its inclusion in the design was subsequentified by practical, not theoretical,

arguments; an influence from logic would not be sufficientiteown, to explain this inclusion.

3.5 Turing and the ACE

The importance of th®raft Reportlies in the concepts and approach it put forward, not in the
specific details of the design presented. Later in 1945, wioenNeumann was working on the
code for a sorting and collating program, he assumed a Bliglifferent machine structure and
instruction set [Knuth, 1970], and the design for a machinéha Institute of Advanced Study,
developed by von Neumann, Goldstine and Burks, differs fthenEDVAC proposal in several
significant ways [Burks et al., 1946], as did designs produneothers. Although important to the
history of computer architecture, these alternative desidjd not introduce anything new into the
relationship between logic and the computer. The situasistightly different, however, in the case
of a design produced by Turing in 1946.

At the end of the war in 1945, Turing joined the National PbgkLaboratory (NPL). He was
given a copy of von NeumannBraft Reportand by the end of the year had produced a report
outlining the design of a stored-program computer that lopgsed the NPL should build, the
Automatic Computing Engine, or ACE [Turing, 1946]. The AGHport is in many ways comparable
in scope and ambition to von Neumanbsaft Report and a comparison of the designs presented
in the two reports is a good way of highlighting some of therahteristic features of each.

The influence of th®raft Reportis apparent in the ACE report, and Turing recommends that



CHAPTER 3. LOGIC AND THE INVENTION OF THE COMPUTER 76

they be read together. In many ways, the ACE is similar to taened EDVAC. Both designs use
mercury delay lines as the principal high-speed storagéhamésm, and have a basic structure pre-
sented as a number of functionally distinct units, inclgdinstore, an arithmetic unit and a central
control unit. Further, Turing uses von Neumann’s abstractron-inspired notation for describ-
ing the logical circuits of the ACE, extending the notationvarious ways for his own purposes.
Nonetheless, the proposed ACE is in many ways quite diffdrem the EDVAC, and it has been
argued that these differences are not merely technicalkdfigict a fundamental difference in the
approaches of von Neumann and Turing [Carpenter and DogaiT, Pelaez, 1999].

As discussed above, von Neumann in Braft Reportpresented the EDVAC as fundamentally
a calculator. Turing, by contrast, makes a very clear linkvieen the ACE and his earlier analysis

of computability as a formalization of certain more gen@ralctices:

The class of problems capable of solution by the machinare those problems which
can be solved by human clerical labour, working to fixed rud@sl without understand-
ing ... [Turing, 1946, p. 39]

He then goes on to list a number of possible applicationsefitachine, ranging from mathe-
matical calculations to the solution of jigsaws and the jpigyf chess. In 1947, he was even more
explicit and described the ACE as a “practical version” e type of machine described in the 1936
paper [Turing, 1947, p. 107].

This difference in orientation is reflected in the designhaf ACE in a number of ways, most
noticeably in the way the machine is structured as a numbduraftional units. Turing ini-
tially describes the ACE as containing a memory, a logicaitrmd and a central arithmetic part
in a manner virtually identical to von Neumann’s descriptif the internal structure of the ED-
VAC [Turing, 1946, p. 21-22]. However, Turing’s later tre@nt of the memory and the arithmetic
unit is rather different from von Neumann'’s.

In both designs, it was proposed that the majority of theagierrequired would be provided by
mercury delay lines. Delay line storage had the advantafjbeing cheap and relatively perma-
nent, but the disadvantage of providing slow access to datause of the latency time involved as
the data circulated round the delay line. More importardBlay lines provided a passive storage
medium, rather reminiscent of the tape in a Turing machia¢a dould be written to and retrieved
from a delay line, but in order to add two numbers togethet, tb& numbers had first to be moved

to a special location where the arithmetic circuits coulthgeccess to them. Both designs there-
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fore included provision for additional memory capability érder to get round this problem, but
approached it in different ways.

In the EDVAC design, the arithmetic unit itself containedrage for three numbers, the two
operands of the desired operation and the result. Instngtivere provided to move data from
the delay line storage into the arithmetic unit, and to mdneresult back to the delay lines. The
arithmetic unit therefore functioned as a sort of ‘black 'baxumbers were inserted into and the
result extracted from it, but its internal workings weretgundependent of the rest of the computer.

The design of the ACE is rather different. The ACE containetumber of “quick reference
temporary storage units (TS)” [Turing, 1946, p. 22] in additto the delay lines, but these were
not associated with any particular functional unit of thenpoiter. Rather, they were part of the
memory, which was therefore divided between the delay lioeage and the temporary storage.
Operations were provided for moving data between the delag lnd the temporary storage.

Some of the TS locations were reserved for particular p@wgoBor example, Turing proposed
that the arithmetic circuits should operate on the dataddo'S 2 and TS 3 and store the results
in TS 4 and TS 5. Similar conventions were proposed for sontbeobther TS units. Whereas the
EDVAC could be described as having special purpose memagpsulated within the arithmetic
unit, the ACE by contrast did not have a specialized aritionetit, but rather a set of conventions
governing the use of some locations in the general purposeonye The ACE therefore maintained
a strict distinction between memory and control reminisaérthe universal machine, whereas the
EDVAC complicated this basic design with special-purpositsu

A second striking difference between the two reports careéne way in which they viewed
programs. Although its code supports looping programs adositines, theDraft Reportcon-
ceived of a program as primarily a sequence of instructiomskiing the basic arithmetic operations
provided by the machine, in a way reminiscent of earlier nrahsuch as Aiken’s Mark 1. In con-
trast, Turing’s model of programming emphasized the idaattie basic operations required for the
task being programmed should be defined as subroutinesfitauiitthe ACE’s primitive instruc-
tions. This is the same procedure that he followed in the ¥88&r, in which machine tables to
perform simple tasks, such as copying or erasing symbol®tape, were first defined and then
extensively reused. It was argued in Chapter 2 that thisitqak was derived from existing practice
in the definition of recursive functions, and in the ACE ra@p@e can see this approach being car-

ried forward into the sphere of practical computation. figniecognized that this approach could be
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applied even to basic arithmetical operations: the aritinuércuits in the ACE were therefore not
viewed as fundamental components, as they were iDth#& Report but rather as conveniences to
increase the speed at which arithmetic could be carried out.

Thirdly, the two designs differed in the use made of the gbjrovided by the stored-program
design to modify the code of a running program. In Bbraft Report instructions and data were
clearly distinguished and only a limited form of instruetionodification was allowed. Turing on
the other hand allowed unrestricted operations to be paddron instructions, and referred more
generally to the possibilities created by allowing the niaeho write its own orders. As discussed
above, this more free-wheeling approach would be enabletebgiesign of the universal machine,
although in 1936 Turing made no mention of the possibilityngtruction modification.

It appears plausible, then, that a number of features ohgjisrdesign for the ACE were derived
from his earlier theoretical work, and hence that the ACE¢tdu a sense be described as more
influenced by logic than the design of tBeaft Report In practice, however, the EDVAC design
was vastly dominant. Like the EDVAC, the ACE was never impaited in precisely the form
described in the initial report. The first machine completethe NPL was the ‘Pilot ACE’, which
was built on a smaller scale than Turing’s proposed ACE affirdd from it in a number of ways.
The ACE itself was completed in the early 1950s, and the dgsigciples it embodied were used in
a small number of later machines. After the mid-1950s, hewndte line of machines that directly
made use of Turing’s design died out.

This raises the guestion of why von Neumann’s design, in seags less logical than the
ACE, proved so much more successful in practice. This questias addressed by Pelaéz, who
downplayed ‘internal’ factors, such as the increase in derilly inherent in Turing’s approach to
programming, in favour of ‘external’ factors, and suggddteat the primary reason for the greater
success of the EDVAC design was its “instrumentality” B, 1999]. In emphasizing the pro-
vision of high-speed calculation von Neumann was addrgssinimmediate social need, and the
EDVAC design was therefore picked up as a solution to a maigtiroblem.

However, the ACE was as capable as the EDVAC of carrying ati-epeed arithmetic, if not
even faster, so this cannot be the whole story. Other relexgernal factors include the wide
circulation of the principles of the EDVAC design at the Medchool course in 1946, and the
prestige lent to the whole project by von Neumann himself. érerinternal consideration is that

the Draft Reportpresented the EDVAC as a relatively straight-forward etiotufrom well-known
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machines such as the Mark [, in terms of application arearniat design and programming style.
In contrast, the ACE was in many ways a more radical desigrigowiard by a relatively unknown
researcher, and the more ‘logical’ nature of its design dagsappear to have been sufficient to
ensure its widespread adoption. At the very least, thisestgghat the connection between stored
program computers and the universal machine was not wigglyeaiated in 1946: this point and

its implications are considered in more depth in the folloyvections.

3.6 Giant brains

During the war, most research into computers was carriethagcret, and little information about

the new machines was made publicly available. This sitnati@anged rapidly after 1945, and it is
possible to trace the reception and representation of ctargin both the technical and more pop-
ular literature. Firstly, however, it had to be recognizeata significant development in computing
technology had taken place. In January 1946, an articlegijaitrnal of the American Institute of

Electrical Engineers discussed the “Impact of the War orr®&”, but made no mention of comput-
ing technology [Briggs, 1946]. Later that year, howeveeg, jfurnalMathematical Tables and other

Aids to Computatiomoted, in a review of a conference on ‘Advanced Computatiechmiques’

held at MIT in October 1945, that:

During the recent war there was a tremendous developmerdrtsilc types of com-
puting devices. . these and other similar developments suggest that thelreomih be
available mechanical and electrical computing equipménithy in terms of speed and
flexibility, will completely outdistance anything thougbt before. [Archibald, 1946]

The new machines, in particular the ENIAC and Mark |, wereaekjdeported in the press, and
one prominent aspect of the coverage was the analogy dratmedse high-speed calculators and
the brain. During the war, various devices had been destabéelectronic brains’, and the term
was immediately applied to computing devices, as the faligwguotation from the psychologist

Edwin Boring reveals:

We have heard so much during the late war about electroniashr@ihe electronic
computer on a range-finder figures the range and course agd sp&target, setting the
fuses and aiming and firing the gun, all at a speed of whichuegm brain is incapable.
There are now huge electronic mathematicians which willessolathematical problems
with a speed and accuracy and lack of fatigue that puts the heaxdwork of the human
mathematician out of the running. [Boring, 1946]
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The press coverage of electronic computers in this perisdban surveyed by Dianne Martin,
who concludes that “during the critical early years of 19316948, the predominant characterization
of the computer was as a mechanical or electronic brain asttdMartin, 1993, p. 130]. This
phenomenon was not restricted to journalistic accountsiglier. For example, Edmund Berkeley
was deeply involved in the use and promotion of the early agerg, and wrote one of the first
books to provide a popular account of the new machines. Hedc#te book “Giant Brains, or
Machines that Think” [Berkeley, 1949].

Computer developers themselves often viewed such cheeattens as inappropriately an-
thropomorphic. In a letter to th&imes Douglas Hartree opined that use of the term ‘electronic
brain’ obscured the distinction between the thought andgutent involved in planning and set-
ting up a computation and the labour of carrying it out ancttides to the machine capabilities
that it does not possess” [Hartree, 1946a]. Mauchly, Tuand Aiken all gave newspaper inter-
views during 1946 and 1947 in which they were at pains to poittthe limitations of the new
machines [Martin, 1993, p. 129].

Such arguments were often supported by an appeal to a peritit enunciated by Babbage's
collaborator Ada Lovelace: in Hartree’s words, “[tlhesecmiaes can only do precisely what they
are instructed to do by the operators who set them up” [Hari®846a]. Along with the related
question of whether machines could think, this generatedbatantial public discussion in the
following years.

In Section 3.2, it was shown that the cybernetic conceptidheocomputer, which was explicitly
drawn upon by von Neumann and Turing, depended on the bie#igfd¢onsidered in the abstract as
information processing machines, a strong identificationladt be made between the brain and the
electronic computer. The description of computers as tgimains’ can therefore be viewed, not
as irresponsible anthropomorphism, but rather as a faitefwiesentation of the cybernetic point of
view.

A striking feature of the situation at this time is that it wag early machines, such as Mark |
and ENIAC, which were described as revolutionary. Machiveesed on the stored program design
did not become at all widely available until the early 195@tthe point at which they entered public
discourse, then, computers were not represented or uaddras logic machines. Rather, the way in
which they were described reflects the dual heritage of thehinas that von Neumann emphasized

in the Draft Report as scientific devices for carrying rapid and autonomousutations, and also
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as models or analogues of the brain.

3.7 Universal machines

Davis’s third claim about the influence of logic on the depahent of computers draws attention
to an important difference between modern computers arigéreaalculating devices, namely that
computers are intended to be, and are used as, universautiogpevices rather than as purely
numerical calculators [Davis, 1988, Davis, 2000]. The argnot plays slightly on an ambiguity in
the word ‘universal’, which can refer specifically to Turimgoncept of a universal machine while at
the same time suggesting less formally the very wide ranggplications that computers are used
for. This section will examine how stored-program compaitsrme to be understood as ‘universal’,
in Turing’s sense, and the following section will considiee argument that this led to the use of
computers in applications more general than calculation.

In Turing’s 1936 paper, the word ‘universal’ is applied topeesific machind’/ which is able
to simulate the behaviour of any other machine, given alslgiteepresentation of the table of the
machine to be simulated! is only universal relative to the class of machines desdribé¢he paper,
however. Presented with a description of a configuratiomefNIAC, say, it would be unable to
simulate the resulting computation: for this purpose, edéht universal machine would have to be
defined.

A machine such as the EDVAC can also be described as univardas sense. We can imag-
ine specialized machines which have the same memory andoigpeof basic operations as the
EDVAC, but whose control units are configured, like that af ENIAC, to perform only the basic
operations required by one particular computation. An EDMJrogram serves as a representa-
tion of such a machine, in the same way that a machine tablesas a representation of a single
Turing machine. The EDVAC itself, whose control unit is vdrap in such a way as to interpret
the program and reproduce the coded sequence of basicioperas therefore acting in a manner
precisely analogous to Turing’s machitie

As pointed out above, a computer does not have to incorparatered program in order to be
universal in this sense. The argument of the previous papagrould be applied to machines such
as Zuse's Z3 or Mark |, and leads to the conclusion that theyatso be described as universal,
despite reading their programs from external storage dsvic

In both the examples above, the machine being described iasrsal belongs to the same
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class of machines as those being simulat®ds itself a Turing machine, for example. It would

be perfectly possible for a machine to be universal relativéhe machines of a different class,
however: for example, the ENIAC could be wired up to intettandard descriptions of Turing

machines, and in fact something similar to this was done #81¢hen it was reconfigured to operate
as a stored program computer [Rope, 2007]. A condition aflteing possible is that the machine
doing the interpretation must be able to simulate the merasocture and basic operations of the
machines being simulated, thus creating a ‘virtual machit@se behaviour it will then emulate.

The notion of a virtual machine has found a number of apptinat notably in the semantics of
programming languages, as will be discussed in Chapter 5.

This consideration leads to another sense in which a madaindée described as ‘universal’,
namely that it is capable of simulating the behaviour of atheo machine whatsoever. It does
not follow automatically that a machine which is universaltie first, technical, sense has this
property. Rather, this is a consequence of an argumentttbanachine can perform, within the
limits of finiteness, all the computations that can be penfedt by Turing machines, and hence,
by the Church-Turing theses, all effectively computablecpsses. Early discussions of electronic
computers tended not to distinguish these two senses oftsal’, nor to demonstrate the ‘Turing-
completeness’ of the machines under discussion.

The characterization of stored-program computers as rgal/erovides one way in which the
claim that computers are ‘really’ logic machines can be wstded. It is striking, however, that
this characterization was not immediately obvious, andai wot until the early 1950s that it was
common for computers to be described as universal machigedon Agar has written, “the good
historical question to ask is not ‘Are stored-program cotaiuniversal Turing machines?’ but
‘Why have electronic stored-program computers been cashagrsal, as general-purpose ma-
chines?’ " [Agar, 2003, p. 7]. This remainder of this sectiafi describe the process by which this
took place, and suggest an answer to Agar’s question.

Turing was quite clear about the connection between hiseedhleoretical work and the prac-
tical post-war computer developments, and on a number afsimes he explicitly compared the
ACE with the universal machine. In a report written in 194&, dxample, he gave a classification
of “logical” and “practical” computing machines, consiaey in some detail the question to what
extent a finite machine such as the ACE could be consideree tmiversal [Turing, 1948].

Turing evidently imparted this understanding to his closiéaborators. In 1946, a semi-popular
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account of the ACE project explicitly linked the constroctiof automatic computing machines with

On Computable Numbers

Although this Harvard machine [the Mark 1] is an independandl original develop-
ment, the possibility of the construction of such machireeg], indeed, more elab-
orate ones, had already been foreseen in this country. DiM.Aluring, a fellow
of King’'s College, Cambridge, had written in 1936 a severalgthematical paper in
which he had discussed the properties of such machines imecton with certain
problems of mathematical logic, without considering pradtproblems of construc-
tion. [Department of Scientific and Industrial Research6]9

This report makes no mention of the universal property, veweln a review article written
in 1948, Harry Huskey, who had worked at the NPL for a yearrduti947/8, described a ma-
chine resembling the new machines but with an infinite merasfiabsolutely general in the sense
that it could be made to imitate any other computing machieeely by giving it the appropriate
instructions” [Huskey, 1948, p. 976], citirgn Computable Numbens support of this claim. Con-
fusingly, however, he later refers to computers as progidirfuniversal model” for a large class
of physical experiments, as opposed to specific models su@biral tunnels. This would appear
to refer to the distinction between digital and analogueuwdation, rather than the more technical
notion of universality.

Another long-term collaborator of Turing, Max Newman, méaue connection explicit in 1948

in a discussion on computing machines held at the Royal §ocie

[a] universal machine is a single machine which, when predidith suitable instruc-
tions, will perform any calculation that could be done by ad@ally constructed ma-
chine. .. subject to this limitation of size, the machines now beinglenan America
and in this country will be ‘universal’'—if they work at allhat is, they will do every
kind of job that can be done by special machines [Newman, ,1194871-2]

However, despite these statements, the connection betive@ew computers and the universal
machine was not appreciated more widely. At the same disguss which Newman made the
statement quoted above, Maurice Wilkes described the ED&MA@achine then under construction
at Cambridge. He made no mention whatsoever of Turing’s Wodusing instead on the expected
influence of the EDSAC on scientific research [Wilkes, 1949].

A more detailed presentation can be found in the bGalculating Instruments and Machines
published by Douglas Hartree in 1949 [Hartree, 1949]. InGLBirtree had travelled to the USA

and made practical use of the ENIAC [Hartree, 1946b]. Hiskbwas based on a series of lectures
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given at the University of lllinois in 1948 and, as the titleggests, Hartree was primarily interested
in the mathematical applications of computers.

Hartree referred to the computer designs of both von Neuraaduring, and his presentation
of the ideas underlying computers derived from them in a remab ways. For example, when
introducing digital computing machines, he first considetteeir functional design very much in
the style of von Neumann, even drawing the same analogy ket structure of computers and
that of living organisms. He then motivated the particulasign of the computer by referring to
Turing’s analogy with the procedures carried out by humammaters [Hartree, 1949, p. 56-7].
Later, when giving a more detailed description of the stiweebf computers, he used the neuron-
inspired notation of computing elements “introduced, is tontext, by von Neumann and extended
by Turing” [Hartree, 1949, p. 97].

Hartree did not, however, refer to Turing’s 1936 paper, gikars not to have had a very clear
notion of the concept of the universal machine. He describedoroblem caused by the need to
set programs up manually on the ENIAC, and went on to suggestthis would be replaced by
“a means by which the machine can set up for itself the cororectrequired for the sequence of
computing operations” [Hartree, 1949, p. 94]. Perhapsghiaseology was an attempt to make the
concept accessible to a non-specialist audience, buttiiking that it does not make the point that
a universal machine removes the need to alter any connedcttail from one calculation to another.

Later, in the context of a discussion of whether machinekwagth decimal or binary numer-
als, Hartree commented that, with the exception of the UNBV&e proposed computers “work
in the scale of two, though the A.C.E. is intended as a ur@ersachine and will be able to be
programmed to work in scale of ten—or any other scale—arglrtiay also be the case for the
others” [Hartree, 1949, p. 97]. This rather contorted serdesuggests on the one hand that Hartree
was aware of Turing’s characterization of the ACE as unaletsut on the other that its significance
was lost on him. Given Hartree’s first hand experience oftela@ computing and intellectual
standing, this is strong evidence that the characterizatfccomputers as universal machines was
not at all obvious or straight-forward.

A different perspective was offered by Claude Shannon inréal@ discussing work carried
out in 1948 on “the problem of constructing a computing neitor ‘program’ for a modern gen-
eral purpose computer which will enable it to play chess"di8ton, 1950, p. 256]. Shannon did

not define what he means by “general purpose”, however, antediately introduced a contrast
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between such computers and machines which would carry eaifgpnon-numerical tasks, stating
that “[m]achines of this [latter] general type are an exiem®ver the ordinary use of numerical
computers in various ways”. Later in the paper, when disngsthe need to “represent chess as
numbers and operations on numbers, and to reduce the gtoeigled upon to a sequence of com-
puter orders”, Shannon concluded that “[iJdeally, we wolike to design a special computer for
chess containing, in place of the arithmetic organ, a ‘cloegan’ specifically designed to perform
the simple chess calculations” [Shannon, 1950, p. 265].

It is not easy to extract a single consistent view on univigystiom Shannon’s paper. On the
one hand, the computer is described as ‘general-purpoddaharpaper demonstrates the feasibility
of programming such a machine to play chess. On the other, Isrmhnon stated that “the rather
Procrustean tactics of forcing chess into an arithmeticpder are dictated by economic consid-
erations” [Shannon, 1950, p. 265] and made clear that hfenemrece would be to develop special
purpose machines. The paper makes no reference to Turings and it seems clear that Shannon
views the machines being designed in 1948 as numericallatdcs, not as universal machines.

In September 1950, both Shannon and Turing attended a Siumpos Information Theory,
organized by the Ministry of Supply in London. In a histotipaesentation, Colin Cherry made
the following observation, suggesting that Shannon waslwote in his view that special-purpose

machines would ideally be developed for various purposes:

Just as arithmetic has led to the design of computing mashs® we may perhaps
infer that symbolic logic may lead to the evolution of “reasm-machines” and the
mechanization of thought processes. [Cherry, 1950]

At the same symposium, Turing made a comment in discussiaich he distinguished spe-
cial purpose machines for playing chess from the task ofraragiing a computer to perform the
same task [Turing, 1950b], but in 1950 his most significamtigoution was in a paper discussing
the relationship between machine thought and intelligerinediscussing the question “Can ma-
chines think?”, Turing proposed to limit the discussionlec&onic computers, and to motivate this

included a section on “The Universality of Digital Compw#erHe concluded:

This special property of digital computers, that they camiuiany discrete state ma-
chine, is described by saying that they ardversalmachines. The existence of ma-
chines with this property has the important consequendg ¢basiderations of speed
apart, it is unnecessary to design various new machines varitmus computing pro-
cesses. They can all be done with one digital computer,iByitaogrammed for each
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case. It will be seen that as a consequence of this all digitadputers are in a sense
equivalent. [Turing, 1950a]

This paper appears to have been widely read, and very quitldgged the way in which com-
puters were described. In August 1951, Wilkes wrote anlartar the Spectatoron the question
“Can Machines Think?” in which he referred to Turing’s papdassified “modern automatic-

calculating machines” as universal, and wrote that:

Provided that the basic operations form a logically congptadt, a universal machine
can be programmed to do anything which could be done by aapebuilt machine.

The tendency nowadays is, therefore, to ask whether a saiverachine could be pro-
grammed to perform a particular function, rather than towals&ther it would be pos-
sible to design a special machine for the purpose. The walenrachines which have
been built so far have been designed for performing aritivaletalculations rather
than the logical operations which would be involved if thegrevto simulate human
behaviour. This is not, however, a matter of fundamentabirigmce. [Wilkes, 1951b]

Although Wilkes is here clearly influenced by Turing, he agelike Shannon, to be envisag-
ing different classes of machines specialized for diffetasks, while simultaneously recognizing
the universality of particular machines within each cladse required specialization is in the set of
basic operations that the machine provides. As Wilkes datet in 1951, “[a] machine primarily
intended for experiments on ‘thinking’ would not differ imafundamental way from an automatic
calculating machine. The choice of basic order code wowddhaps, be somewhat different, since
the emphasis would be on logical rather than arithmeticatatpns” [Wilkes, 1951a, p. 88]. Tur-
ing, however, is quite explicit that a single machine cowdulsed for all purposes: as pointed out
above, this point of view is implicit in his design for the ACE

Over the next few years, Turing’s view gained ground. In a2188icle about chess programs,

D. G. Prinz wrote of:

‘electronic brains’ or, to give them their proper name, ensal high speed electronic
digital computers. The emphasis here is on the ‘universalThe problem is no longer
‘making a machine to play chess’ but rather ‘making a macpiag chess’ [Prinz, 1952,
p. 261]

In the same year, Tony Oettinger spent a year with Wilkes im@alge working on programs
which simulated learning. One of these simulated the ghilffta machine to go shopping, but
rather than suggesting that the EDSAC be supplemented wihopping organ’, Oettinger was

happy to represent shops and products by integers and ® avgtirely numerical simulation. In
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documenting this work, he cited Turing’s 1950 paper and atbat universal machines “have the
important property of being able, when provided with a dlégprogramme to mimic arbitrary
machines in a very general class” [Oettinger, 1952, p. 1243]

By 1953 Wilkes himself had adopted the more general view:chrges of this kind are some-
times known asiniversalmachines. Given a suitable program a universal machine @amything
which could be done by a specially built machine” [Wilkes538, p. 1232]. Shannon, however,
retained an interest in special purpose machines, dewgjapiphysical machine to solve simple
mazes rather than writing an equivalent program. In a supager written in 1953, he stated that
“[m]ost digital computers, provided they have access to @limited memory of some sort, are
equivalent to universal Turing machines and can, in priecipitate any other computing machine
and compute any computable number” [Shannon, 1953, p. 1B@6%ignificant parts of the paper
are devoted to a consideration of ‘machines’ for variougppses, not programmes. More gener-
ally, this preference for special purpose machines has betad as a feature of the cybernetics
community [Pickering, 2002].

Turing’s paper of 1950 was therefore a turning point in tharahterization of the computer
as a universal machine. Before its publication, this linksvealy made by Turing and his close
associates, and other writers, even those intimately adedevith computers and familiar with the
relevant literature, did not make the connection, or thinknportant. Following 1950, however,

Turing’s paper was widely cited, and his characterizatiorepted and put into circulation.

3.8 General purpose machines

The third claim to be considered in this chapter is most tlestated by Davis, who states that
the fact that the computer is now thought of and used as a @egmampose machine rather than,
say, a specialized calculator is attributable to Turindyaracterization of it as a universal machine.
However, automated computation was applied in a wide waoiedreas, both before and after 1945.
As discussed above, modern digital computers emerged frertwo fields of automatic com-
putation and cybernetics. The majority of the early comgsuteere built specifically for performing
numerical calculations; the best known exception is pestiag Whirlwind, developed at MIT as a
flight simulator [Redmond and Smith, 1980]. Cyberneticsgastied a wider range of applications:
Wiener had originally been inspired by the problems poseduigmated support for anti-aircraft

guns, and the cybernetics-inspired analogy between theutemand the brain naturally suggested
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that a wide range of mental tasks could be performed by caenput

A third influence on the application of computers came fromdhta processing industry. Even
before the first electronic computers were completed, peshcard equipment was adapted or de-
veloped to provide a greater capability for automatic cotapen. Such machines continued in
use well in to the 1950s, when electronic machines weresstilfce and expensive resources. The
possibility of carrying out commercial applications on qmuters was encouraged by these devel-
opments, and the company started by Eckert and Mauchly liedgtits focus.

Turing himself had a very clear idea of the range of applicetithat computers could be used
for, and in a lecture in 1947 gave as an example the posgibilicomputers being used to solve
jigsaw puzzles [Turing, 1947]. As Davis comments, it is flassthat Turing’s outlook here was
coloured by his computing experience during the war whictika von Neumann’s, was not pri-
marily concerned with numerical calculation. The detaflshis work remained classified, but it
is striking that Turing’s design for the ACE made many fewssuamptions about the intended use
than the EDVAC design, and in described a computer whichdchave been more easily used for

non-numerical applications [Turing, 1946].

3.9 Conclusions

This chapter has focused on a particular episode in the gf@vant of modern computers, namely
the articulation of the so-called ‘stored program pringiph 1945. This episode has been given
great prominence by historians of computing, and the irmmlent of von Neumann makes it a
plausible place to look for a logical influence on computesigie. However, it should be stressed
that this episode represents a momentloSureas much as a moment of invention, a point when
the efforts of many people over the preceding decade to mlesgchines capable of large-scale
automatic calculation reached a widely accepted congiusibhe Draft Reportwas a concrete
paradigm which, as the response to it at the Moore Schookeahrowed, enabled workers in the
field to agree on the basis of the design of computers and foasoncentrated and collaborative
way on their implementation.

Outside the world of computer builders, however, the stqedjram principle attracted little
immediate attention. In the scientific literature befor&@,%he new machines and those under de-
velopment were treated together, and characterized flogtijeir ability to perform computation

automatically, leading to the discussion about ‘giantisaiand secondly by the high speed ob-
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tainable with electronic technology. The stored prograopprty was seen as a technical feature
required by the use of electronics, and slightly later astbaemade programming easier in some
respects, not as the defining property of a new technologylaer became.

The details of the history of the development of the complated little support to the claim of
Mahoney and Davis that the computer was developed as a hygirod application of theoretical
work in mathematical logic. Instead, the majority of thelgavork was inspired by the desire
to automate numerical calculation. The interaction betwemn Neumann and the ENIAC group
raises the possibility that logical concerns played a pettté design of th®raft Report and while
this cannot be ruled out, it is striking that in the immediat®llowing period arguments for the
design were based on practical concerns of engineeringrrittan logic. It seems quite plausible
that something like the stored program design would havegadesven without von Neumann’s
involvement with the ENIAC group.

Similarly, the claim that the general-purpose nature ofabmputer stems from Turing’s uni-
versal machine concept seems to overstate the role of lAgtomatic computation using punched
card machinery was widespread between the wars, and thgemeerof the computer from a back-
ground in automatic calculation, cybernetics and datagesiog made it inevitable that a range of
applications would be considered for the new machines.

In both areas, of the design and application of computeesinffiuence of logic seems to have
been indirect, mediated by the ideas of cybernetics and riticpkar the idea that the electronic
stored-program computer could be understood not merely &beatronic calculator, but as a de-
vice essentially analogous with the brain. Von Neumann eviiois analogy explicitly into the first
description of the new computer, in tiraft Report Although more constrained by security re-
strictions, Turing seems to have inspired many of his cokexs at Bletchley with a similar vision
of the meaning of the computer and the scope of its potergjaliGation. The success of this strat-
egy can be seen in popular representations of the new texhynaihich was very widely described
as being an “electronic brain”.

Finally, it was argued that in the 1950s, stored-programpugers became widely characterized
as universal machines, a development that seems to beylatty@utable to the writings of Turing
himself. To this extent, then, Davis's comment that “congpsitare logic machines” can be sup-
ported, but with the important proviso that this does notdbe a fact about the nature or origins

of the computer, but rather the way in which scientific cidtaame to think of the new machines.



CHAPTER 3. LOGIC AND THE INVENTION OF THE COMPUTER 90

Again, we can note the importance of cybernetics: Turin§SQlpaper was not specifically logical

or technical, but rather a philosophical contribution te tiscussion of the cybernetic question of

whether machines could think.



Chapter 4

Machine-level programming and logic

The task of programming the new machines, or ‘coding’, wadetstood to be that of specifying
the sequence of operations that a machine would carry oliteirtcdurse of a computation. The
available operations were defined by the machine’s ‘ordee’ca list of the instructions out of
which programs could be constructed. Many different oraetes were possible, however, and it
was only through practical experience that the featuressoicaessful code could be identified, as

the von Neumann and his collaborators realized:

It is easy to see by formal-logical methods that there exides which arén abstracto
adequate to control and cause the execution of any sequénpemtions which are
individually available in the machine and which are, in thegitirety, conceivable by the
problem planner. The really decisive considerations froepresent point of view, in
selecting a code, are of a more practical nature: simplafithe equipment demanded
by the code, and the clarity of its application to the actuiatiportant problems together
with the speed of its handling of those problems. [Burks etl&i46, p. 100]

By 1950, broad agreement had been reached about the bdsrefethat a successful and usable
code should provide. A book published by Wilkes and his egjiees in Cambridge described the
programming system devised for the EDSAC, but its authoirst@d out that “for the main part [the
methods] may readily be translated into other order cod&flkgs et al., 1951, preface]. This book
was widely read, and contributed to the further spread sfrttodel of programming.

The first half of this chapter describes the evolution of thizdel; the historical development
of the key features of the early machine codes is describaghasizing the experimentation and
consideration of alternatives that preceded the acceptaire ‘standard model’. The second half of

the chapter considers the more logical and philosophigaas of this programming style.

91
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4.1 Sequencing

In his proposal for an automatic calculating machine, emitin 1937, Howard Aiken observed that
the design of existing calculating machinery made it eagatoy out a small number of operations
repeatedly on the elements of large data sets, typically aeldecks of punched cards. In many
scientific applications, however, Aiken believed that tippasite procedure was required, namely
the ability to carry out an extended sequence of operationsdividual numbers [Aiken, 1937].

This requirement strongly influenced the design of the fngjd-scale, automatic digital calculators.

Aiken and Grace Hopper wrote of the completed Mark | that:

The development of numerical analysis [has] reduced, in effect, the processes of
mathematical analysis to selected sequences of the fivarfiugatal operations of arith-
metic: addition, subtraction, multiplication, divisioand reference to tables of previ-
ously computed results. The automatic sequence contrcéiedlator was designed to
carry out any selected sequence of these operations unaigaetely automatic con-
trol. [Aiken and Hopper, 1946, p. 386]

and Arthur Burks described the ENIAC in similar terms:

the ENIAC can solve any problem which can be reduced to nwalezromputation, i.e.

to a finite sequence (of reasonable length) consisting dfiadd, subtractions, multi-
plications, divisions, square-rootings, and the lookipg{function values. [Burks, 1947,
p. 756]

Specifying the required sequence of operations was threrafbasic aspect of coding problems
for these machines. Prior to 1945, however, the majorityatdudating machines and installations
had units which were capable of operating in parallel, amstbehey could carry out more than one
operation simultaneously. This introduced a conflict betwthe need to describe a computation
as a sequence of operations, and the desire to make the ricishéfuse possible of the available
machinery.

For example, Mark | contained a number of storage regisbexyunters, each of which stored a
number and allowed other numbers to be added to it. A prograsmiewed as a simple sequence of
instructions in a standard form, each specifying that a rerrhb copied from one register to another,
along with some operation that might be performed on the mupsguch as taking its complement
to enable subtraction rather than addition to be performigis sequence of instructions was read
from a paper tape by a sequence mechanism which was incagfaiigpping instructions or going

backwards in the sequence.
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As well as the storage registers Mark | possessed a numbgreofatized units for carrying
out other operations, such as a unit which performed midépbn and division. These specialized
units were controlled by multiple instructions: for exampperforming a multiplication required
two instructions to load the multiplier and multiplicandarthe multiplying unit, followed by a
third instruction to retrieve the result. As Aiken commehténo longer does each line of coding
correspond to a single operation of the machine” [Aiken aongpér, 1946, p. 449].

Once started, multiplication was carried out by the deditatnit quite independently of the
main sequence mechanism. In general, this would take muagetdhan a simple operation to copy
a number from one register to another, and until the mutgpidon was complete the main sequence
unit would be idle. This was seen as a waste of computing respand the technique was adopted
of ‘interposing’ unrelated instructions between the imstions specifying a multiplication, thus
allowing the main body of the machine to perform useful wotkleswaiting for the multiplication
unit to finish.

Thus, despite Aiken’s emphasis on sequence control, agrofpr Mark | could not be read as
a straightforward sequence of the operations carried otlhdoynachine, and the parallelism in its
architecture was reflected to some extent in the way it wasao8lithough increasing the efficiency
of machine usage, however, the technique of interposinguicttons created problems in writing

and maintaining programs, as Richard Bloch, an early Marog§iammer, noted:

Although I tried to annotate my coding sheets thoroughlygas at times almost impos-
sible for an operator running a program to decipher exacligtwvas going on. Aside
from the fact that the logical flow of the program was at timegsibly difficult to fol-
low, the compaction of code made the task of analysing aw#titrg down the cause of
a sudden machine stoppage doubly difficult. [Bloch, 1998 7%).

Hardware parallelism was also a feature of the ENIAC. Thehimgcwas built around 20 ac-
cumulators which, like Mark I's storage registers, bothretiba number and carried out simple
operations on it. It also possessed several separate anitarfying out specialized tasks, includ-
ing multiplication. The ENIAC was not programmed by meansnstructions read from a tape,
however, but was physically reconfigured for each diffemoblem. Individual instructions could
be placed on accumulators, and transfer of information owicey out a multiplication were en-
abled by connecting units together in the appropriate wadye 3equencing of operations when
the machine was running was controlled by special ‘prograiegs’ that circulated round the ma-

chine. Depending on the configuration, any number of distoperations could be carried out
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in parallel, and the setup for a particular problem could bscdbed in a two-dimensional dia-
gram [Goldstine and Goldstine, 1946].
Like Bloch, however, the ENIAC team felt that the advantagfegarallelism were outweighed

by the complications it introduced into the programmingEakert explained in a lecture in 1946:

In thinking out the various operations of the machine, ifytkan be thought out in a
purely serial fashion, it is not necessary to worry about iamyevant timing between

the various steps. For example, if two steps A and B are beimg tlogether, A and

B start at the same time but do not necessarily end at the saraesince a different

length of time may be required to do each step. The human brain does not think
in several parallel channels at the same time: it usualljkththese things out step by
step. Therefore, in all ways, it is found exceedingly ddsedo build the machine so
that only single steps are performed at any time. The ENIAGsiglly used in this

way. [Eckert, 1946, p. 114]

As Eckert went on to note, the relay machine developed by #leT®lephone Laboratories
was programmed in a purely sequential manner [Alt, 1948]gu8stial, step-by-step processing
emerged in theDraft Reportas a fundamental design principle, there motivated by areldsi

minimize the amount of physical equipment used:

The device should be as simple as possible, that is, corddaweelements as possible.
This can be achieved by never performing two operations Isimeously, if this would
cause a significant increase in the number of elements egfjuifhe result will be
that the device will work more reliably.. It is also worth emphasizing that up to
now all thinking about high speed digital computing devibas tended in the opposite
direction: Towards acceleration by telescoping proceast® price of multiplying the
number of elements required. [von Neumann, 13855-7]

This principle was applied at all levels of the design. Nursheere no longer stored in separate
units with some processing capability, but in a passive mign#osingle arithmetic unit performed
all calculations, so the possibility of parallel executiohoperations was removed. Further, the
individual digits of the operands to an operation were hedhdlequentially, one at a time. As a
consequence of this, in the proposed code for the EDVAC tiseaestrict correspondence between
instructions and operations carried out.

Mitchell Marcus and Atsushi Akera have suggested that thehaisis on sequential processing
was motivated by the desire to increase reliability by usisdittle physical equipment as possi-
ble [Marcus and Akera, 1996, p. 23]. As shown by the quotaibave, some support for this
view can be found in th®raft Report However, many computer designs after the EDVAC rein-

troduced parallel processing in some areas: for examptehéiomachine built at the Institute of
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Advanced Studies, von Neumann and his collaborators peapleandling the digits of a number in
parallel [Burks et al., 1946]. This suggests that religdpivas not the only issue. In 1947, without
mentioning reliability, Mauchly articulated a view whicllanced the desire for efficiency with the
need to simplify programming, making it clear that parafiebcessing was acceptable as long as
program structure remained strictly sequential:
the machine should be kept serial as far as the operator egoed. That is, no two
instructions which the operator gives the machine are todsged out at the same
time. Any particular instruction which the operator giveswever, may involve the
simultaneous operation of numerous parts. [Mauchly, 1p4204-5]

The model that finally emerged, then, viewed a program asueseg of instructions each spec-
ifying a single operation which was carried to completiofiobe the next instruction was obeyed.
This approach was natural in machines whose design folldve®raft Reportin having a pas-
sive store and a single arithmetic unit: this virtually dileut the possibility of two operations
being carried out simultaneously. Although reliability svaitially a consideration, this model was
subsequently justified by reference to its role in simptifythe task of programming.

Two main approaches were adopted to the problem of spegifiim sequence of instructions in
a program. On machines which read instructions from aneatéspe, such as Mark |, the sequence
of instructions was simply defined by their order on the tapgeDraft Reportcopied this approach,
storing instructions in contiguous locations in memory:ewlan operation was complete, the next
instruction was automatically read from the following mesgntmcation. This approach introduced
an inefficiency on the delay-line storage that was commosbduat the time, however, as there
was no guarantee that the next instruction would be immelgliaivailable when it was required.
To avoid these delays, an alternative approach to codifgdad in every instruction the address
of the next instruction to be executed. As this could be amyrelin memory, by careful planning
it was possible to avoid delays by ensuring that the requimstfuction was available just as it
was needed by the program, an approach known as ‘optimumgiodh few machines adopted
this approach [Bloch et al., 1948], but as random access myerachnology became available the
practical advantages of optimum coding became less craoikequential placement of program
instructions in memory became the norm.

Ceruzzi has discussed the transition from “an architectioa¢ processed data in parallel to
one that processed data serially” [Ceruzzi, 1997]. Thisi@edias examined this transition from

the point of view of programming, and shown that it took soimeetfor the notion of instruction
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sequencing to reach a stable form. The concept that did enveag influenced by experience in

programming the new machines as much as by consideratianadfine architecture.

4.2 Transfers of control

It quickly became apparent that programs for automatiouaiors could not be a simple list of the

desired sequence of operations. In 1947, Mauchly desctitegoroblem and its solution as follows:

Calculations can be performed at high speed only if instvastare supplied at high
speed. Thus many instructions must be made quickly acéesdibe total number of
operations for which instructions must be provided will alyu be exceedingly large
... However, such an instruction sequence is never a randoneseguand can usually
be synthesized from subsequences which frequently rédaughly, 1947, p. 204]

All the automatic calculators shared this model, accordmgvhich a computation was built
up from a number of distinct subsequences of instructiongtnidlly, one sequence was thought
of as defining the structure of the entire computation: thmmeded therefore to be some way to
execute the other sequences when necessary and to causa afiuence to be repeated as often
as required. These requirements were met in different wayhfterent machines.

For example, Mark I's sequence control unit read instructifrom paper tape. Computations
were normally split across multiple tapes, each contaimingarticular instruction sequence, but
there was no mechanism for automatically transferring forma tape to another. Instead, the pro-
grammer had to leave detailed instructions for the opesapecifying what tapes should be loaded
on to the machine and when, among other pieces of informa#dken and Hopper described a
simple program for evaluating a polynomial, which consisiéa “starting tape”, which would read
initial data from cards, and a “main control tape”, which Wbcompute the value of the polynomial
for particular data values. The operator was instructeddtart the calculator after the starting tape
had completed, and then to run the main control tape “urdilcrd forF'(9.99) has been punched,
then press stop key” [Aiken and Hopper, 1946, p. 528]. Thetitipn of the instructions on the
control tape in this process was achieved by making the tapdléss” [Aiken, 1946, p. 156]: in
practice this was done by simply gluing the ends of the tagetteer, so forming a loop.

On the ENIAC, the high-level structure of a program was esged physically in the machine’s
hardware in a unit known as the “master programmer”. Thisisbed of devices known as “step-

pers”, which allowed a sequence of up to six distinct subseges to be defined, each of which
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could be repeated a specified number of times. By using mare dhe stepper, programs could
be constructed in which the subsequences themselves hadlar sinternal structure. The master
programmer contained a total of 10 steppers, thus allowangHe definition of highly complex
program structures [Goldstine and Goldstine, 1946]. By61®@dken recognized the need to supply
Mark | with multiple sequence mechanisms, and in 1947 a ‘sgisnce mechanism” was added,
which allowed the machine to be configured with more than aetruction tape, and provided the
ability to switch between them automatically [Bloch, 1947]

In the early machines, then, the logical structure of a magwas expressed physically in
some aspect of the machines’ setup. In the subsequence msroBaemployed by Mark | and
the Bell Labs relay machine, for example, transfer of cdntias effected by an instruction which
made explicit reference to the tape reader containing the subsequence to be executed. With
the adoption of the stored program design, in which a coragdedbgram was stored in a single,
uniform memory, a different approach to the question of thadfer of control became necessary.
The code defined in thBraft Reportmade use of the fact that instructions could be referred to by
the address of the storage location holding them. A geredliransfer instruction was provided
which had the effect of transferring control to the instioictat a specified address. Eckert explained

the distinction as follows:

The only big difference between this control on a relay maelsind the control in the
EDVAC is that the control words in the EDVAC are read from it$éernal memory,
and that some of the operations may send the control from ome o the memory
to another. In other words, the main routine tape in a relaghime may indicate that
the operations on a certain sub-routine tape are to be ddrik w the EDVAC there
may be a symbol in the memory which instructs the control tacganother place in
the memory and do what is indicated there. [Eckert, 194616] 1

The EDVAC included in its code an ordémvhich had the effect of connecting the control organ
to a specified memory location from which program executionbd continue [von Neumann, 1945,
§15]. This location could either be a previously executedrirttion, or the beginning of a distinct
sequence, so this single order supported both the exeaftiamew subsequences and the repeti-
tion of the current sequence. (Machines in which each oplegiied the address of its successor in
effect made unconstrained transfer of control the defaskthmnism, and their codes did not need a
specific transfer instruction.)

A significant aspect of transfer orders is that they allowfltv of control within a program to

be specified without making reference to particular featfethe machine on which the program
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is running. The stored program design therefore made gdessimore abstract understanding of
program structure, where an entire program, including ediessary subsequences of operations, is
thought of as a single sequence of labelled instructionss ifiturn made it possible to think of a
program separately from the machine it will run on. The galiwzd transfer instruction therefore
marks a significant step towards a complete logic of cordgrabtation independent of any particular
hardware configuration and capable of expressing both #émeegitary operations and also the order
in which they will be performed.

Two other points can be noted about the transfer instructkrstly, although it appeared in
conjunction with the stored program design, it does notireqti there is no reason in principle
why relay machines should not have labelled each instructioa tape, in the same way that certain
forms of data, such as function values, were already lathellde stored program design made it
easier to implement, however, as all instructions wereegtor a memory location and the address
of the current instruction was stored in the control unit.

Secondly, although more flexible than, and capable of remiad the effect of, any particular
machine design, the use of transfer instructions could nitdk&rder to perceive the structure of a
program. The use of subsequences and repetition of instinustquences were not made explicit in
the programming notation: by replacing both with a more galnéower level instruction, programs

became harder to read and understand.

4.3 Condition testing

The simple transfer instruction was soon found to be ingafiity expressive to define all common
computational patterns. In many cases, the future couraeafputation will depend on the results
obtained so far: a commonly cited example was where it wasssacy to carry out a sequence of
instructions until the results fell within a certain toleca, the precise number of iterations needed
to achieve this not being known in advance.

A variety of approaches were adopted to provide this caipalih Mark |, for example, counter
72 was known as the ‘automatic check counter’, and an ingrucode was provided which would
halt the computation if the last result calculated in thainter was less than zero. This was typi-
cally used to test whether a computed quantity fell withisidl limits. After halting, the overall
computation could be restarted manually by the operatat,tia@ conditions for doing this were

stated in the operating instructions provided with the prog[Aiken and Hopper, 1946].
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As originally designed, the ENIAC did not include any medkanfor testing the values cur-
rently held in the accumulators. This capability was predidapparently at a late stage in the
development, by adding a ‘direct input line’ to the mastagpammer. A signal on this line caused
computation to continue with the next defined subsequemrgmyrdless of whether the current se-
quence had been repeated the specified number of times. Bgctonmg the numerical output from
an accumulator to the direct input line, it became possiblese numerical data to trigger the master
programmer and thus affect the course of the computatiomdidsand Akera, 1996].

By 1945, then, experience had demonstrated the utility sifuictions which would enable the
course of a computation to depend on the result of a testdlpiof the sign or magnitude of a

number, applied to some data value. Von Neumann summaltieesituation as follows:

A further necessary operation is connected with the neea tablke to sense the sign
of a number, or the order relation between two numbers, amghdose accordingly
between two (suitably given) alternative courses of adtion Neumann, 194511.3]

The code defined in theraft Reportprovided this capability indirectly, however, relying dret
fact that in the stored program design instructions and #uElresses can be treated as numeric data,
and so, in principle at least, examined and modified just asbeus can. A basic operatios, of
the arithmetic unit was defined which would take four numperg, » andv as input; ifz > y the
operation would have as resultand ifz < y the result would be. Von Neumann argued that “the
ability to choose the first or the second one of two numbersdepending on such a relation, is quite
adequate to mediate the choice between any two alternativses of action” [von Neumann, 1945,
§11.3]. This was achieved by supplying the addresses of tatpuictions as, andv: once the
desired address had been selected by thetruction, it could be copied into the address field ¢f a
transfer instruction. When the modifiédnstruction was executed, control would be transferred to
whichever address had been selected, thus allowing theibehaf the program to vary according
to the outcome of a purely numeric test.

In the ACE report, Turing adopted a similar indirect approsx conditional tests. Rather than
providing a specific operation to choose between two numbensever, he suggested that the
destination address could be calculated using existingenigal instructions before being copied
into an unconditional transfer instruction [Turing, 1946]

By the middle of 1946, however, codes had been proposed wtitimot require program-

mers to construct alternative transfer instructions eihlj but instead included a single instruction
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to carry out a conditional transfer. Eckert and Mauchly'®dé A’ contained instructions which
would jump to a specified instruction depending on the resfudt comparison between two other
numbers [Eckert, 1946], and the code used by von Neumanaiggat Princeton had similar in-
structions which effected a transfer depending on the sigheonumber stored in the accumula-
tor [Burks et al., 1946]. Conditional transfer instructoof these or similar types were found in all
subsequent codes.

It is a striking fact that the utility of coding a conditionphttern of control such as “transfer
to instruction 53 if the value of the number at address 25@&@ative” as a single instruction ap-
pears not to have been obvious, the Bell Labs machine beigrly one of the early automatic
calculators to provide such an instruction [Alt, 1948, p—~3R Carpenter and Doran have com-
mented that “[i]t is strange that conditional branching wagumbling block to both von Neumann
and Turing, especially since the program for an abstradngunachine is just one large decision
table” [Carpenter and Doran, 1977, p. 271]. From a Whiggistsjpective, this presents a problem
requiring an explanation which does not seem to be immddifighcoming. However, it is bet-
ter seen as a piece of evidence of the potential difficulty akimg innovations that later come to
seem self-evident and of the extended process of explaratid negotiation that often accompanies

conceptual innovation.

4.4 Instruction modification

The stored program design raises the possibility of maatmg instructions programmatically, a
capability exploited by both von Neumann and Turing to pdeveonditional jumps, as discussed
above. As with other programming concepts, however, the alenodifying the instructions mak-
ing up a program as it progressed underwent considerablatiewobefore reaching a definitive
form.

In the Draft Report a rather complex chain of design decisions led to the pegposachine
possessing only a partial ability to treat program orderdadg. Von Neumann first considered the
desired memory capacity of the machine, and concluded than&mory units”, or binary digits,
would be sufficient to store a real number to an appropriatgedeof precision. He then wrote
that “[t]he fact that a number requires 32 memory units, makadvisable to subdivide the entire
memory in this way: First, obviously intonits, second into groups of 32 units, to be caltathor

cycles... It will therefore be necessary to formulate the standaders in such a manner than each
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one should also occupy precisely one minor cycle, i.e. 3&Upion Neumann, 1945,12.2].

No theoretical principle was invoked to justify treatinglers as data. Rather, a pragmatic deci-
sion was taken to constrain orders to be the same size as myritberder to make the engineering
of the memory as simple as possible. Underlining the distindetween the two forms of data,
von Neumann went on to write that “[m]inor cycles fall intodwlasses:Standard numberand
orders These two categories should be distinguished from eadr bihtheir respective first units
i.e. by the value of,. We agree accordingly thag = 0 is to designate a standard number, and
ig = 1 an order” [von Neumann, 194815.1]. Far from being treated in the same way, orders and
numbers were clearly demarcated and treated separately.

Nevertheless, there were two cases where this demarcatiée down. Firstly, when consid-
ering the orders needed to transfer numbers from memongthet@rithmetic unit, von Neumann
decided that “[i]t is simplest to consider a minor cycle @ning a standard number ...as such
an order per se” [von Neumann, 19435.3]. In other words, in certain contexts a hnumber would
be interpreted as if it expressed an implicit order. Seggrhen a number was transferred from
the arithmetic unit back to memory, the way in which this sfan was effected was to depend
on whether the minor cycle it was being transferred to heldiabrer or an order. In the first
case, the entire minor cycle would be overwritten with thes wata, but in the second case only
those parts of the order which held the address of the mindedyeing operated on would be
modified [von Neumann, 194%15.6]. This facility for ‘address modification’ was the onkay
provided by the code to modify the orders making up a progeard,was used among other things
to provide conditional jumps, as discussed above.

Turing defined the ACE’s memory in essentially the same wayasmsNeumann, as “minor
cycles” of 32 binary digits grouped into “major cycles”, amote that “[s]juch a storage will be
appropriate for carrying a single real number as a binarynalcor for carrying a single instruc-
tion” [Turing, 1946, p. 24-5]. When discussing the way in elhnumbers would be encoded in the
store he further stated that a minor cycle might contain siofieemation which would “distinguish
between minor cycles which contain numbers and those whactam orders or other informa-
tion” [Turing, 1946, p. 25].

However, the ACE report assumes that programs will have egstricted ability to modify their
own orders, using the same operations as are used on nurikbeexample, when describing how

to perform a conditional jump, Turing did not rely on a specftcility for address madification,
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but instead suggested performing arithmetical calculatidirectly on the minor cycles containing
the instructions. He gave the following example where ieguired to carry out instruction 33 or

50 depending on whether a certain difjitis O or 1.:

One form the calculation can take is to pretend that thetingtms were really numbers
and calculate
D x Instruction 50+ (1 — D) x Instruction 33

The result may then be stored away, let us say in a box whictrimgnently labelled
‘Instruction 1'. We are then given an order. saying that instruction 1 is to be fol-
lowed, and the result is that we carry out instruction 33 oa&€ording to the value of
D. [Turing, 1946, p. 35]

In the ACE proposal, then, Turing made use of an unrestriabdity to manipulate instructions
as numbers, and for a program'’s instructions to be constiluentd modified by the program itself as
it runs. This approach was also taken by several speakdre Maoore School lectures in mid-1946.
Mauchly mentioned the requirement to store instructiordsrammerical data in the same device and
the pragmatic reasons for doing so, but then stated that:

A much more fundamental reason for this requirement is tmatinstructions them-
selves can then be operated on by the use of other instractloshould be possible

to carry out such operations upon instructions by the us@efame instructions as
would be utilized when operating upon numbers [Mauchly,6l$4 455].

Calvin Mooers made this point even more bluntly, stating the modification of orders should
be “a simple arithmetic operation between numbers and girfidiooers, 1946, p. 470]. The actual
codes described by Mauchly and Mooers did not differentiat@bers and data in the way that von
Neumann’s EDVAC code did, but despite the generality of tatements above, made only rather
limited use of operation modification in copying bits fromeamord to another, to set up subroutine
parameters, and incrementing address fields in operatifigereas Eckert and Mauchly’s Code
A included a specific operation for doing this [Eckert, 1986,122], Mooers used straightforward
numerical addition, thus simplifying his code slightly.

Von Neumann and his collaborators gradually came to adopira nelaxed approach than that
of theDraft Report In the design of the Institute of Advanced Studies compihiey distinguished
“two different forms of memory: storage of numbers and sieraf orders” [Burks et al., 1946, p.
98] before observing that orders, suitably coded, couldtded in the same memory as numbers.
Orders and numbers were no longer formally distinguished,specific orders were defined to

rewrite the address field in an order. Functionally, the abefined was very similar to that in the
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Draft Report In 1947, however, von Neumann and Goldstine stated thataia@ould “modify any
part of the coded sequence as it goes along” [Goldstine amdNeaimann, 1947, p. 153].

Despite these statements of principle, however, the irapo# of instruction modification and
the range of its application was often limited to the modifara of addresses in individual in-
structions [Bloch et al., 1948, p. 293], [Bowden, 1953, p]. 28 good example of the power of
unrestricted modification is the “Initial Orders” writtery David Wheeler to load programs into the
EDSAC when it was started up [Wheeler, 1950]. This progractuthed such techniques as the use
of “ambiguous words”, which at different times were treadschumbers or instructions, and repeat-
edly formatted a “transfer order” which would carry out guitifferent tasks on different occasions
of use.

In summary, then, the first order code for a stored programhimacthat of von Neumann’s
Draft Report made an explicit distinction between numbers and ordadspaly permitted a limited
form of modification of orders for specific purposes. Grabjyalodes evolved which permitted
unrestricted manipulation of instructions as numericahdbut except in a few cases, this facility

was usually made use of only to modify the address contaimad brder.

4.5 Subroutines

It was universally recognized that certain computationatines were of general utility, and that the
programming task would be simplified if such routines cowdddused rather than being repeatedly
coded. From the Mark | onwards, programs were typically eiéwss containing a ‘master routine’
which invoked a range of subroutines which were not necidgsrecific to the problem being
solved, and computing installations aimed at having adlifprof subroutines which could easily be
applied to new problems.

As discussed in Section 4.2, subroutines, as reusablerssgpief instructions, were physically
distinct program tapes on Mark | and the Bell Labs machinee @msequence of this was that
every time a subroutine was called, exactly the same irtgtngcwere executed. On stored program
machines, however, subroutine instructions were stordideirsame memory as the master routine,
and the ability on such machines to modify program instamngiled to a much more flexible use of
subroutines.

Subroutines were not mentioned in tbeaft Report By contrast, they were central to the

approach to programming described by Turing in the ACE repor
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We also wish to be able to arrange for the splitting up of oji@ma into subsidiary op-
erations. This should be done in such a way that once we hattemaown how an op-
eration is to be done we can use it as a subsidiary to any gtleeation. [Turing, 1946,
p. 34]

This approach requires the ability to transfer control te bieginning of a subroutine and to
return to the calling routine on completion of the subroeitihe former task can be accomplished
by a straightforward transfer instruction, but the lattemiore complex because control will have to
return to different places at different times. Turing’swtmn was as follows:

When we wish to start on a subsidiary operation we need onkeraanote of where
we left off the major operation and then apply the first indfian of the subsidiary.
When the subsidiary is over we look up the note and contindke thie major opera-
tion. [Turing, 1946, p. 35]

The notes of the return addresses were to be “buried” inggr@nd a record kept of the most
recent one. On completion of a subsidiary routine, the ezt note would be “disinterred” and
control returned to that point. It is characteristic of Tigfs approach to programming that both
these operations were themselves to be performed by salysidiutines, known as BURY and
UNBURY.

A second problem with the use of subroutines in stored progreachines was that in general a
subroutine would be located at different places in the mgroardifferent occasions of use. How-
ever, subroutines typically make reference to addressemal to the subroutine: the commonest
occasion for this is when control transfers from one locatmanother inside the subroutine, some-
thing that would be necessary in all but the simplest cases.pfoblem then is how to reconcile the
need to provide a fixed address in the transfer instructidh thie fact that that address will vary in
different programs, depending on where the subroutinecestéal in memory.

Turing’s solution to this problem was to propose a two stagmgss of program assembly.
Instructions were to be written on cards in a “popular”, datigely human-readable, form and
identified by “group name” and “detail figure”, or line numbeithin the group. Transfer instruc-
tions would refer to their destination by group name andibfigmre. When a program was being
constructed, all the cards required would be collated, angéd by group name and detail figure.
The instructions would then be renumbered sequentiallgh,tha popular group name and detalil
figure references would be replaced by the actual binaryeadds used in the program. Turing
recognized that “[iJt would be theoretically possible totthis rearrangement of orders within the

machine” [Turing, 1946, p. 38], but did not propose to do thithe first instance.
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Goldstine and von Neumann considered the use of subroutirtegail in a report circulated in
1948 [Goldstine and von Neumann, 1948]. They describedhhages that would have to be made
to a subroutine when it was being used as a constituent of gprmlslem, and classified them into
those that would be made before the subroutine was used irtiautar problem, and those that
would have to be made while the program was running.

The first type of change was that already identified by Tumamely that a subroutine would
typically appear at different locations in memory on diffier occasions of use, and that references
to addresses internal to the subroutine would need to befimddiefore the subroutine could be
successfully used. Unlike Turing, Goldstine and von Neumzonsidered how this could be done
automatically. They proposed a procedure for subroutineeevhich involved loading the various
instruction sequences into the machine, and running aapgceparatory routine” which would
make the required changes to the code before the complajeapnavas executed.

The second type of change was due to the fact that a subrautiniel in general be called more
than once during the execution of a program. As well as théleno of returning control to the
correct place on completion of the subroutine, Goldstirg\an Neumann noted that subroutines
need to be supplied with parameters, or data which can varg fsne call to the next. Unlike
the first type of change, which was handled by the preparatmntine, the changes required by
parameters and return locations can only be dealt with whgogram is running. Goldstine and
von Neumann do not describe in detail how this could be douigit ks clear that they assume that
some form of instruction modification while the program iaming will suffice.

It is worth noting that this approach is in general less flexthan Turing’s proposal to store
return addresses separately, which permits recursive toedlubroutines. This difference is perhaps
accounted for by a different philosophy of program desigme¥éas Turing, as noted above, viewed
the use of subroutines as ubiquitous, Goldstine and von ldaangsonsidered subroutines which
performed significant amounts of computation, and seembeue in mind a hierarchical structure
in which the main routine would call subroutines, but refees between subroutines would be rare.

In 1949, once the EDSAC was operational, a detailed schembkafudling all these aspects
of subroutines was worked out by David Wheeler. Rather tleading the complete program into
memory and then modifying it, as proposed by Goldstine amdNeumann, Wheeler wrote a set of
“initial orders” which were loaded into the EDSAC when it wstarted, and which read a program

from paper tape and placed it in memory before executing hg@ler, 1950]. Rather than modify-
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ing a complete program, in the style of Goldstine and von Neum's preparatory routine, however,
the initial orders interpreted a coded version of the pnograad from the tape and constructed
the complete program in memory. Wheeler also invented gottiohniques for modifying the re-
turn addresses in subroutines and allowing parameteriataltd be used in subroutines. These
were later described in the textbook issued by the Cambmglgep, and became highly influen-
tial [Wilkes et al., 1951].

The adaptation of the familiar idea of a subroutine for usthemew stored program computers,
then, can be characterized by two main features. Firstlyrited out that subroutines could not be
reused without a stage of processing prior to executionyevtie required form of a complete pro-
gram including subroutines was constructed in some wayor&iby, in the complete program thus
constructed, the existing capabilities provided by trangistructions and instruction modification
were sufficient to make use of subroutines. In other wordsachine code, subroutines were not
marked syntactically in any way, and apart from certain eotional patterns of usage, were not

distinguished in any way from other code.

4.6 Machine code and program structures

Between 1945 and 1950, then, a widely accepted ‘standarelhuddrder codes for stored program

computers emerged. This standard model had three maintaspeicstly, each code defined a
number of basic instructions. The commonest of these dtedrthe transfer of data from one

location in the computer to another and the various aritfinggterations that could be carried out.
From the programmer’s point of view, the important progeriof basic instructions were that only
one could be executed at any time, and that they were atomibgisense that the execution of a
basic instruction could not be interrupted by any othericdion in the program.

Secondly, control instructions defined the order in whi@hlBsic instructions were carried out.
Some codes assumed that instructions would be executed setjuence that they were found in
memory, and provided an unconditional transfer instructmallow variations from this sequence.
An alternative approach was for each instruction to spesxlicitly the location of its successor.
In addition, conditional transfer instructions were pdgd to allow the sequence or orders executed
to depend on the current state of the computation.

Finally, instructions could be modified programmaticalithe course of a computation. There

were a number of standard situations in which this was knawhet necessary, but rather than
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provide special instructions for these situations, modesasimply allowed instructions to be treated
as numeric data, and placed no restrictions on the manipusathat could be performed on them.

Various extensions to this standard model had been propoBed example, at the Moore
School course in 1946, Mauchly presented a code which ieditfthdex counting instructions”
to make the control of loops easier [Campbell-Kelly and iafilis, 1985, p. 452], and Mooers
described a modification to the von Neumann design using &a®alled a “sentinel” and a
code which included “stop order tags” to facilitate the détan of boundary conditions in cer-
tain applications [Mooers, 1946]. Neither of these innmrad were widely, if at all, adopted,;
for example, the very influential EDSAC code was essentididit of the standard model outlined
above [Wilkes et al., 1951].

A striking feature of the standard model was that the faediit provided for controlling the
flow of a program did not coincide with the ways in which peoileught about computational
structure. For example, in the ACE report Turing stated ithgttuction modification and branching
were together sufficient to carry out all required compatati[Turing, 1946, p. 35]. In a lecture
given to the London Mathematical Society in 1947, howevergdbscribed a number of “tactical
situations that are met with in programming” [Turing, 1947,117]. These described the way that
a programmer thought about the overall structure of the caation that is being coded, and their
use predated the stored program computer and even autaroatfutation.

A fundamental computational structure was the subprognasuloroutine, a set of instructions
that could be written once and then executed whenever esjhbir the demands of the computation.
As described above, all automatic machines incorporatetesoethod for structuring a computa-
tion out of a number of subroutines. The standard model ofhmaccode contained no explicit
representation of subroutines, however: instead, thenesjbehaviour had to be implemented us-
ing the more primitive notions of transfer of control andtinstion modification.

Another key computational structure is the ability to rdpieatructions as often as required.
Turing describes this situation as being “like an aeropleingding over an aerodrome, and asking
permission to land after each circle” [Turing, 1947, p. 118his situation can easily be coded
using a conditional transfer, but this same instructiontmansed in quite different situations, such
as choosing between alternative courses of action, wheteapois involved. As this illustrates,
there was no simple correspondence between the high-levebwtational structures in terms of

which computations were planned, and the low-level insimas provided by standard machine
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codes. Programming textbooks explained how to implemertidih-level structures using machine
code [Wilkes et al., 1951], but this meant that it was not éagyrasp the structure and design of a

program simply by inspecting the code.

4.7 Machine code and logic

Turing and von Neumann both commented on the relationshipdes the new activity of cod-
ing for automatic computers and the existing disciplineahfal logic. Speaking to the London

Mathematical Society in 1947, Turing stated that:

| expect that digital computing machines will eventuallimatlate a considerable in-
terest in symbolic logic and mathematical philosophy. Téreglage in which one
communicates with these machines, i.e. the language ofigtin tables, forms a sort
of symbolic logic. [Turing, 1947, p. 122]

and Goldstine and von Neumann made a similar point:

Since coding is not a static process of translation, buteratie technique of provid-
ing a dynamic background to control the automatic evolutiba meaning, it has to
be viewed as a logical problem and one that represents a rawetbiof formal log-
ics. [Goldstine and von Neumann, 1947, p. 154]

However, Turing, von Neumann and Goldstine did not spellexatctly what the force of this
comparison was. As discussed in Chapter 2, one of the ach@us of logic had been to demon-
strate how important aspects of mathematical languagel t@utaptured by formal, or ‘mechanical’
rules. A possible link between order codes and logic, therives from the fact that the former were
defined in such a way as to be readable by machines, and so hitidefimechanical’. Machine
code programs and the instructions they contain beard@demblance to the sentences of proposi-
tional and predicate logic, however, so it is worth explgrim a bit more detail what was understood
by the analogy.

The terms ‘logic’ and ‘logical’ were used in discussions ofputers in a number of senses,
without necessarily implying a connection with mathenstiogic. For example, it was common
to distinguish the ‘logical’ from the ‘physical’ design ofraachine, the distinction being that the
logical design made no reference to specific circuits otrlai devices [Bloch et al., 1948]. From
this, however, it is only a short step to a consideration efrthtation in which the logical description

of a machine can be expressed, a transition exemplified ifollesving quotation:
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Babbage invented a new algebra with which to describe theememnts of the intercon-
nected parts of the machine—to evaluate thogjic to use the modern phrase [Bowden, 1953,
p. 17].

This emphasis on the activity of the machine echoes theeeanphasis that von Neumann
had placed on the sequencing of operations. Dtadt Reportdefined “[t]he logical control of the
device” to be “the proper sequencing of its operations” [M@umann, 1945, p. 2], and Goldstine
and von Neumann later wrote of an example program that §tgxitension will bring in a simple
induction, and thus the first complication of a logical netUiGoldstine and von Neumann, 1947,
p. 113]. An explicit distinction was made between the ‘arithical’ or ‘mathematical’ opera-
tions of a computer and its ‘logical’ operations: Goldstama von Neumann describe “arithmetical
operations and transfers of numbers” as being the “propadthematical (as distinguished from
the logical) operations of the machine” [Goldstine and varuhann, 1947, p. 115], and Edmund
Berkeley included among the logical operations those adaligtg a relation of inequality between
two numbers, and providing for conditional branching arg dlatomatic detection of the end of a
calculation [Berkeley, 1950].

The analogy between order codes and logic, then, appeamveoldeen based on an under-
standing of machine code as a formal language for definingahjgence of basic operations to be
carried out by a machine. The view of logic as the study of frlanguages was well established,
having been put forward in works such as Carnapgical Syntax of Languad€arnap, 1937], but
nevertheless formal languages of machine processes fmeedifin many ways from the traditional
logical calculi of deduction, and the question arises of wtlseemed natural at this time to widen
the denotation of the term ‘logic’.

On possible explanation is that something like the follgyvanalogy was being appealed to.
Just as deductive calculi provided rules of inference daiscy a formal relationship, that of en-
tailment, between sentences, so the ‘logical’ aspects ohina code described a particular formal
relationship, the order of execution, holding between thsidinstructions of a program. Support
for this interpretation is provided by the terminology ussdKonrad Zuse. His programming no-
tation, the Plankalkil, was named by analogy with the magdi calculus, oPradikatenkalkl in
German. Zuse is quoted as stating that his aim was “to pravigigrely formal description for any
computational procedure” [Giloi, 1997, p. 18], implyingatithe influence of logic was not to be
found in the details of any particular calculation, but eaxtim the properties that are common to all,

namely the ways in which computations can be organized.
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An alternative interpretation of the naming of the Plankhkas been offered by Bauer, who
states that thePlankalkil is an instrument for reasoning about programs — quite a mauataint of
view” [Bauer, 2000, p. 278]. This comment does not seem tcaltid if interpreted as meaning that
Zuse was concerned with proving or validating propertietisfprograms: unlike Goldstine and
von Neumann or Turing [Turing, 1949], Zuse never tried tarfalize properties of the data being
used in a computation, for example. Zuse was very interestiegjic, both at the level of computer
design and also as an application—for example, one of himpbaprograms was to check the
well-formedness of a formula in propositional logic—bus$ programming notation does not seem
to have been specifically related to more traditional ldgicaions of proof and reasoning.

The remainder of this chapter will consider in more detadl ways in which, drawing on the
analogy with logic, the metalogical categories that hadshlskeloped for formal logic were applied

to machine codes.

4.8 Syntax

Early automatic computers were thought of primarily as nueaé calculators, and the store was
correspondingly understood as a repository for numbergh e advent of stored program ma-
chines, however, instructions were also placed in the sidris was often described as a process of
coding the instructions as numbers, but this does not maheciexhe fact that numbers also had
to be coded before they could be stored. A variety of codifgses had been used, even on the
early relay computers [Booth, 1949]. A more accurate viewhefstore was as a neutral medium in
which different types of information could be representad whose “[w]ords may be interpreted
as numerical information or as instructions” [Huskey, 1951

The details of these coding schemes fall into the categorgyofax, defined by Carnap as
concerned only with the kind and order of symbols used in ttgressions of a language, the
symbols in this case being the individual digits held in tteres Accounts of specific machines
typically explained how numbers were coded, and gave aigéiscr of the machine’s order code
in the form of a table listing the basic machine operatiogspepanied by a more or less detailed
account of how an instruction to the machine to perform orth@$e operations would be coded.

The structure of a typical order code was extremely simpidividual orders contained a num-
ber of fields: one field specified the operation to be carriet] and other fields contained the

addresses of one or more locations in the store. In addisiome codes contained digits used to
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verify the data stored in a word or for other internal purgosk some cases the coded form of
an instruction did not correspond exactly to the word siz¢hef machine and some parts of the
word would be left unused. Alternatively, on some machin@gs possible to store more than one
instruction in a single word.

Order codes were often envisaged as existing in a varietymbslic representations. For
example, in theDraft Reportvon Neumann distinguished between “short symbols” usediifsr
cussing code and setting up problems for the device, ande“sgthbols”, which were the strings
of binary digits holding instructions in the machine [vonudgann, 1945§15.6]. Turing distin-
guished the “machine form” of the code both from the “pernmarierm”, used for example to store
subroutines for reuse, and also from a more readable “pofara” used when instructions were
to be listed [Turing, 1946513]. The input tapes used in the EDSAC programming system rep
resented addresses in decimal notation, not the binary fized inside the machine, and used a
single-character mnemonic representation of basic dpagfWheeler, 1950]. The various ‘pop-
ular’ forms represented only the functional details of aydgnoring for example the presence of
check digits in instruction words or the details of placingltiple instructions in one word.

Machine codes had little, if any, syntactic structure altbrecevel of the individual instruction.
The sequence of instructions making up a program was ussladlyn by listing actual or illustrative
memory locations and showing the instruction stored at.eatiese memory locations, however,
were those denoted by the addresses appearing in individiialctions: the overall program struc-
ture could therefore only be grasped by referring to an dspfebe meaning of the code, and not
through purely syntactic means. It was impossible, in otherds, to understand what a program
did by simple inspection of the instructions making it upwas also necessary to know where in
memory these instructions were stored.

There was very little theoretical analysis of the syntax athine code, a more pressing concern
being the best choice of basic operations for a code. Thewidsty discussed syntactic issue con-
cerned the number of address fields contained in a singleiatistn. Codes which contained three
addresses allowed a single order to express an instrugtmtaldd the numbers stored in locations
x andy and store the result in locatiafi. In a code which provided only a single address field, this
would require three instructions: “add the number storelb@ation z into the accumulator; add
the number stored in locatianinto the accumulator; transfer the number stored in theraota+

tor to locationz”. A further variant, to support optimum coding, allowed thedress of the next
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instruction to be stored explicitly in each instructioradiéng to two and four address codes.

There appeared to be no clear advantage, in terms of ovedaisize or execution time, between
one and three address codes, and both schemes were widpbg@ddd theoretical result to this
effect was published by Calvin Elgot in 1954; this is of iet&ras being an early application of
formal language theory to computer programs [Elgot, 19%4got’s proof involved the definition
of a formal language intended to represent the relevardrdifices between the two forms of code,
but did not, however, give a formal syntactical descriptiéra complete or realistic machine code.

The most notable application of logical syntax to compuggrghis time was made by George
Patterson, who explicitly drew on Carnap’s work to outlingemeral theory of “syntactical ma-
chines” [Patterson, 1949]. He described a class of machitesribed as “linguistic transducers”,
which accepted input data and transformed it into outpwd.ddy viewing this data as symbolic ex-
pressions, Patterson hoped to use Carnap’s approach togleM®gical theory of such machines.
Analogue computers were ruled out from this treatment, litctass of syntactical machines was
wider than just digital “calculating machines”, and Patter listed a number of other machines,
including cryptographic machines and switching systemsyhich his approach could be applied.

Patterson listed a number of problems whose solution hedelid be aided by a unified syn-
tactical approach. These included problems in maching/sisedind synthesis, as well as the design
of suitable order codes for machines and the coding of spgmifiblems. The applications de-
scribed in the paper were concerned with formalizing anédyieg properties of basic electronic
circuits for computer arithmetic, however, and Pattersescdbed no applications of his ideas to
the formalization of machine code or the construction ofjpams.

An interesting terminological difference between Patierand Carnap marks the shift to the
application of the ideas of logical syntax to a type of forfagiguage very different from conven-
tional logic. For Carnap, transformation rules are intehttecapture aspects of the consequence
relation between complete sentences. Patterson does piatithx describe a class of sentences
however, nor discuss relationships between sentencdsathde is concerned with a class of “nu-
merical expressions”, or numerals in a specified base, agives a recursive definition of a “quasi
successor” relation between numerical expressions. Tdfinition is subsequently referred to as
a “transformation rule”, a usage which clearly marks a breék logic’'s concern with truth and
consequence. A more subtle difference is that for Carnaysfivemation rules provided a way of

capturing non-recursive relationships such as logicabeqnence. In Patterson’s usage, however,
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the term is used as a synonym for a recursive definition, stiggethat in the context of comput-
ers, the only transformations of interest are those thatameputable, or definable by recursive

functions.

4.9 Semantics

Perhaps the most obvious interpretation of the meaning abgram is that a program denotes
the computation that it performs, or more concretely, thgueace of operations performed by a
computing machine when running the program. In 1947, Gioldstnd von Neumann elaborated a
sophisticated account of this notion of program semartticgther with a notation of flow diagrams
which expressed such meanings and could be used as a wayetdpiag a program.

They began by pointing out the complexity of the relatiopshetween the instructions in a
program and the mathematical operations performed wheastexecuted. This was due to cer-
tain features of the order code, such as transfers of cowtrh caused variations in the written
sequence of instructions, and address madification whicnirihat the sequence of instructions
itself could be expected to vary as the computation proakede

These observations highlighted two significant differenbetween the tasks of giving a se-
mantic account of predicate logic and of programs. In log@&anantics can be characterized as a
mapping from a stable, syntactic expression to some donfiaireanings. Because of the possibility
of a program modifying its own instructions, however, thaaiion with programs is more complex.
Executing a program can cause the program text itself togghaand the meaning, in the sense of
the operations subsequently carried out, depends on thdiedotéxt, and hence only indirectly
on the original program text. In other words, “coding is the technique of providing a dynamic
background [i.e. the changing instructions] to control #wtomatic evolution of a meaning [i.e.
the operations automatically carried out by the computigpldstine and von Neumann, 1947, p.
154].

Secondly, semantics for logic are typically compositiortiaé meaning of an expression can be
derived in a systematic way from a knowledge of the meanifgs constituent subexpressions and
the way they are put together. Machine code programs cotildenanderstood in this way, however.
Even in the simplest case of two adjacent orders it could aatdmcluded that the operations they
denote will be performed in sequence: even leaving asidedbsibility of instruction modification,

a transfer from elsewhere in the program might cause thendettobe executed independently of



CHAPTER 4. MACHINE-LEVEL PROGRAMMING AND LOGIC 114

the first.

Faced with the relative obscurity of the relationship betwerogram code and the operations
executed by the program, Goldstine and von Neumann dewetbode&agrammatic formalism to help
in the development of programs. The method they proposedtaatan first the course of the pro-
cess and the relationship of its successive stages to tiaigmng codes, and to extract from this the
original coded sequence as a secondary operation” [Gofdatid von Neumann, 1947, p. 84]. The
flow diagram notation they developed was therefore intertdgutovide a graphical representation
of the behaviour of the running program, the required secgi@h operations, a “schematic of the
course of C [the control] through that sequence”. In effdwa, flow diagrams were a technique for
expressing the semantics of a program, and Goldstine anteamann proposed a development
method which would derive from this a sequence of orders lwhibhen executed would result in
the required operations being carried out.

Flow diagrams as proposed by Goldstine and von Neumann vireeteti graphs in which the
nodes represented groups of operations that were alwagstegein the default, sequential order;
the arcs represented transfers between these blocks d@tiopst A node with two arcs leading
from it represented a block with two possible continuatj@msl hence a conditional jump, and loops
were represented by cycles in the graph. Because of thebgitgsf the dynamic modification of
instructions, however, the structure of the graph mighhgeaas the program ran, and in an attempt
to deal with this, Goldstine and von Neumann introducedated “variable remote connections”
into the flow diagrams. These were intended to show thatqudati arcs should be considered to
link different pairs of nodes at different times.

On top of this basic expression of structure, flow diagranmtained a lot of information about
the properties of the data being manipulated by the prograrstrict distinction was maintained
between the mathematical expression of the problem beidgd;alescribed in terms ghriables
and the actual data being manipulated, which was referrby teference t@torage locationsThe
operations required, and the numerical values stored htpznt of the program’s execution, were
described mathematically. A distinction was drawn betwigea and bound variables, the termi-
nology being explicitly linked with that of “formal logics[Goldstine and von Neumann, 1947, p.
91]; free variables were those whose value could be set fuaside the routine being considered,
and bound variables those which were considered ‘privat#ie routine. Unlike in logic, however,

where variables become bound by being used in a quantificatiere was no syntactic means of
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distinguishing free from bound variables in the flow diagnaotation, the distinction being purely
contextual.

Flow diagrams usedssertion boxeto state properties that were expected to hold at various
times during program execution. This formed a bridge betwmegramming and traditional log-
ical notations: an assertion could be any logical formul&kinause of the program variables.
These assertions could be understood by treating the ntappimveen program variables and the
corresponding stored values at the moment when the assesiue into effect as giving an inter-
pretation of the variables. The use of assertions was alsptad by Turing in 1949 as a method
for checking correctness of programs [Turing, 1949], battfaded from view until reemerging in
the mid-1960s. A third difference between programs and eatimnal logic can be noted at this
point, namely that whereas the meaning of a predicate lagiadla is given with respect to a sin-
gle interpretation, or mapping from variables to objedts, interpretation given to the variables in
a program changes as the program executes.

The flow diagram notation developed by Goldstine and von Neumtan therefore be viewed
in part as an attempt to assimilate machine code programtaiting theory and practice of conven-
tional logic. Flow diagrams are an attempt to create a fomeyadesentation of program semantics,
conventional logic in the form of assertions is built in te thotation and to the methodology of
program construction based upon it, and analogies are dwathnogic even in relatively minor
details of terminology, such as the distinction betweea &ed bound variables.

In later comments on this work, Arthur Burks described the afs"bound variables” in loops
as being related to the bounded quantifiers introduced lelJ@&spray and Burks, 1987]. This
observation derives from the fact that in many programsiaksbes are used to control loops by
counting the number of iterations that the program has mageigh the loop. In a similar way,
the variables in bounded quantifiers index all the integethe range of the quantifier. The use of
variables to control loops was a universally adopted prognang technique, however, and clearly
related to the variables used in interactive schemes fouaiamomputation. It does not seem likely
that this feature of programs needs to be explained by mefert formal logic.

A striking feature of the flow diagram notation is that it cbaged the freedom theoretically
available in programming for stored program machines. F@grams were well adapted to ex-
press high-level computational structures such as loogsanditional branching, but only permit-

ted the expression of a limited form of instruction modificat by means of the variable remote



CHAPTER 4. MACHINE-LEVEL PROGRAMMING AND LOGIC 116

connections. Itis not clear that an arbitrarily complichpeogram could be perspicuously depicted
in a flowchart. Furthermore, flow diagrams seem most suitlsledescribing the flow of control
within a single routine, and do not appear to have been ussdaw the high-level structure of a
program as a set of subroutines, or the calling relationsetpreen subroutines.

The flow diagram notation was widely adopted, but usuallysimapler form than that proposed
by Goldstine and von Neumann. For example, in 1949 Renwiekl fisw diagrams to explain an
example program for the EDSAC [Renwick, 1949]. However,dtagrams showed only operation
boxes and alternative boxes, and the connections betwean tho distinction was made between
program variables and storage locations, and assertioresnvee used. With the exception of Tur-

ing’s paper [Turing, 1949], these more ‘logical’ aspectshef notation were not on the whole taken

up.

4.10 Programs as metalinguistic expressions

As noted above, Arthur Burks later speculated on the relaligp between Goldstine and von
Neumann’s work and some of Godel's logical ideas, writihgtt“l think it likely that, in his
programming work, von Neumann was guided by his knowledg&adel's work, at least intu-
itively” [Aspray and Burks, 1987, p. 384-5]. In particul@urks saw in the ability of stored data to
refer either to a number or an instruction “an instance oftle¢alanguage versus object language
distinction” [Aspray and Burks, 1987, p. 385]. The situatie slightly more complicated than this,
however.

As discussed in Chapter 2, Turing adopted Godel's stratégyithmetization to encode ma-
chine tables as data which could be stored on the tape of tiversal machine, and the same
strategy is adopted by stored program computers. Ratherbiag an instance of thdistinction
between object and metalanguage, however, this means #tateal program can simultaneously
be viewed as belonging to the object language, when it ispodating numerical data for example,
and the metalanguage, when it is modifying its own instouni

The possibility that a language could express its own syloyareans of arithmetization initially
appeared paradoxical, and one result of Carnap’s work wstsaw that in the case of conventional
logic this gave rise to no problems [Carnap, 1937]. A progveinich is capable of modifying its
own instructions, however, seems to take a step beyond whaissible in logic, and to further

blur the distinction between syntax and semantics. For &argyntax was concerned only with



CHAPTER 4. MACHINE-LEVEL PROGRAMMING AND LOGIC 117

the classification and ordering of symbols in expressionspotaminated by any considering of
the meaning of the expressions. If the meaning of a progratorisidered to be the operations it
carries out, however, then instruction modification repnés an infection of the syntactic domain
by semantics: execution of the program is able to changeytitactic representation of the program
itself.

For many people in the late 1940s and early 1950s, the pliysidfi self-modifying programs
was an extremely significant feature of the stored prograsigde This was so for both practical
and theoretical reasons. The ability to change instructiddresses made the coding of iterative
programs much easier and more flexible than it had been oninegchuch as Mark I, but self-
modification was also invoked, for example by Turing, as ihgwhe potential to explain higher
cognitive functions such as the ability to learn.

This chapter has described the different approaches atitgptestruction modification in early
order codes, and it is striking that von Neumann consisteatbpted a conservative attitude towards
it. This conservatism can be understood as an effect of aqgpthe metalogical structure created
for conventional logic to the new ‘logics’ of computer codard in particular as an attempt to keep
separate the domains of syntax and semantics. Furthemeede support of this line of thought
will emerge in subsequent chapters, which describe thelsimaous emergence of programming
language theory modelled on metalogic and the eliminatfome ability to write self-modifying
programs.

Leaving aside the issue of instruction modification, theeremther programs which could
more straightforwardly be described as metalinguisti®uks suggested. Inlogic, a metalanguage
provides the capability to express the syntax and posslbtytae semantics of another language.
Programs do not make statements, and so cannot declaratpebesent syntax in the way logical
metalanguages do, but it would appear reasonable to desarfiyogram which can manipulate
syntactic representations of other programs as metafitigui

Examples of such metalinguistic programs appeared earlgherbest documented early exam-
ple perhaps being the Initial Orders for the EDSAC, a progwdrith translated input programs ex-
pressed as a mixture of letters and decimal numbers intoedyduinary form [Wheeler, 1950]. This
approach was quickly recognized as providing great beneffisogramming productivity: a num-
ber of systems defined ‘interpretative codes’ for variougppses such as floating point arithmetic,

for example. These enabled the programmer to write codedmotation which would be translated
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by an interpretative program into the machine’s native cddes approach was generically known
as ‘automatic programming’, and throughout the 1950s mank sodes were produced, gradually
evolving into what became known as programming ‘languagékis development is discussed in

detail in the next chapter.

4.11 Conclusions

The Draft Reportis widely recognized to have marked a turning point in thestigyment of com-
puter hardware. It represents a moment of closure, wherend&uof elements, largely present in
earlier work, were for the first time put together in a formtthacame a definitive model for most
if not all subsequent developments.

The role of the report in the development of programmingnépines is less dramatic, however.
This chapter has described the gradual evolution of the lzasicepts of machine code program-
ming from the late 1930s to about 1950, and it is apparentttigse is a much greater continuity
between the way in which Mark | and the EDSAC were programnsegl, than there is in their
hardware. The nearest analogue tolmaft Reportin the field of programming is perhaps the text-
book written by the EDSAC group [Wilkes et al., 1951]. Likeefbraft Report this summarized in
a particularly clear form the principles on which contengrgrprogramming was based, and served
as a model for much later work.

Although there was at this period little theoretical refi@eton order codes, a connection was
made between these codes and formal logic, particularlyusin@ and von Neumann. Awareness
of this connection inspired a certain amount of rather uesyatic research into the application of
metalogical ideas to machine codes. The most significaaingtt was that of Goldstine and von
Neumann to give a semantic account of programs using flows:HEne immediate influence of this

work, however, seems to have been rather limited.



Chapter 5

Programming notations as formal

languages

It quickly became apparent that the task of creating macboue programs was one that most
humans would find very taxing, and techniques for simpliyamd automating parts of this process
were soon developed. Symbolic abbreviations for operaiiales were frequently defined and some
programming systems, such as the EDSAC, provided speaglgmns to translate the symbolic
form into the internal machine representation automayical

These developments automated certain aspects of the pimdo€ machine code, but still re-
quired programmers to define the sequences of basic ogeatiaking up the program. A further
stage of automation was envisaged in which this task, dextis ‘programming’ to distinguish it
from the more mechanical activity of ‘coding’, would itséé performed by machine. Stanley Gill
expressed the goal as follows: “One might say that an idegjramming scheme would allow one
merely to state the problem to be solved ... existing systemstill require the user to specify a
series of steps to be performed by some conceptual com@#ir"1959].

This problem was first addressed in connection with mathieaiafiormulas. A number of
systems were developed which allowed programmers to irdiigorograms formulas written in
some approximation to standard mathematical notatiosgtf@mulas would then be automatically
translated into a sequence of instructions to perform tisget calculations. The most ambitious
and successful of these systems was Fortran, which firstrieeagailable in 1957 for the IBM 704
machine [IBM, 1956].

By the end of the 1950s many automated programming systeise@xmost designed for

119
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and implemented on a particular type of computer. A numbegrofips had discovered the ben-
efits of sharing programs, but the existence of many difteppagramming notations made this
difficult. This situation gave rise to a number of initiativaimed at developing a universal pro-
gramming notation; the best-known and most influential ahsdevelopments was the Algol 60
language [Naur et al., 1960].

This chapter examines these technical developments angatiadiel evolution in theoretical
accounts of programming notations. At the beginning of deigelopment, programming notations
were understood relative to a machine, whether real or inaagi at the end, they were thought of
free-standing notations, or ‘languages’, which could bdistd independently of any machine. Both
natural languages and formal languages were taken as nfodptegramming languages. Whereas
natural languages inspired developments in notationsdee for use in data processing applica-
tions, formal logic was taken as a model for programming leggs intended for mathematical and

theoretical uses, such as Algol and Lisp.

5.1 Automatic coding

At the beginning of the 1950s, the term ‘coding’ was used ferréo the process of translating
the instructions of a program into the coded form used inffigemachine. In some cases this
was carried out entirely by hand, but following the examgléhe EDSAC [Wheeler, 1950], many
installations devised a set of ‘initial orders’ which woutenslate instructions from a more human-
friendly form into machine code.

In simple cases, this translation required little more thaonrrespondence between symbols and
codes, but the use of subroutines made the task more contifdetkoroutines are to be reused freely,
it must be possible to place their instructions at diffetenations in the store in different programs.
However, this means, for example, that instructions in thiw@utine that refer to specific storage
locations or jumps to another instruction within the sultire) will differ from one occasion of use
to another. The EDSAC's initial orders automated the prooégalculating the required addresses,
so that subroutines were correctly translated dependinte&inlocation in any given program. A
further refinement was provided by an ‘assembly subroutirtéth calculated the location of each
subroutine in a program, so that the programmer would not badecide where in the store each
subroutine should be placed.

These and related techniques, such as ‘floating addreS§ekée§, 1953b], were based on ma-
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nipulating a program before it was run. From an input tapesisting of a master routine and
a number of subroutines, a complete translated machine madgam would be produced, and
then executed. An alternative approach made use of saicatiierpretive routines’. When an
interpretive subroutine was called, the processing to Inéechout was specified by a number of
‘pseudo-orders’, or instructions that in fact did not bg/da the machine’s order code. The job of
an interpretive routine was to read these pseudo-ordergmsute that appropriate code was exe-
cuted in response to each one. In contrast with the appreatdseribed above, the pseudo-orders
were not translated in advance into machine code; instbadinterpretation process was carried
out during program execution.

For example, the EDSAC subroutine library contained inttipe routines to facilitate calcula-
tions with complex and floating-point numbers. The codesrpreted by these routines bore a very
strong relationship to the basic machine code, being in @n@esformat and even using the same
code letters to refer to analogous operations in most cididef et al., 1951]. Presumably this was
intended to make the use of the subroutines as natural ableassprogrammers, as well as allow-
ing input of the interpreted codes without having to chamgsnitial orders [Campbell-Kelly, 1980,
p. 29]. More generally, interpretive routines raised thegtility of designing codes that were
adapted for specific purposes, and which would thereforergiivfurther from the underlying ma-
chine code. Wilkes and his collaborators give an exampleevtie instructions in the interpreted
code were so small that two orders could be placed in a singtshime word [Wilkes et al., 1951,
p. 162-164].

In the EDSAC system, the interpretive routines were intdniebe called as part of a larger
program, and the interpreted codes therefore formed omtygbehe complete program. In effect,
a single program could be written using an extended coderenthe basic order code was supple-
mented by the pseudo-orders handled by one or more intiprettines. An alternative approach
was to enable an entire program to be written in a singlepné¢ed code. The earliest such system
to have been implemented appears to have been the so-caled Code’, which first ran on the
UNIVAC in 1950 [Schmitt, 1988, p. 11].

Short Code evolved from a proposal made by John Mauchly i® 1®develop a “special code
chosen to simplify the work of the human programmer and thmowch of the tedious detail of
coding onto the computer” [Mauchly, 1949]. Mauchly’s argemhin favour of an interpreted code

was primarily economic: he identified a class of “small” geshs where the cost of programming
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far outweighed the cost, in terms of computer time, of rugriire program. He anticipated that the
use of an interpreted code would make programming easidrthemefore significantly reduce the
overall cost of such programs.

A disadvantage with interpreted codes was that the traosl&a machine code was performed
as the program was running, and therefore increased thetakea to run programs. An alterna-
tive approach was to perform the translation as a sepaegiebsfore running the program. Wilkes
described this approach as follows: “[tjhe programmereasriiown ‘orders’, here callesl/nthetic
orders, which the control circuits of the machine are inbéaf executing. The necessary ex-
pansion into sequences of ordinary machine ordersakes place once for all in advance of the
execution of the programme” [Wilkes, 1952]. Wilkes gave gareple of synthetic orders designed
for the EDSAC, but stated that the technique had not yet beed 10 any significant extent.

Related developments, associated particularly with GHagper, were being carried out on
the UNIVAC. Again motivated by a growing awareness of thet cbgprogramming, Hopper hoped
that “[tlhe programmer may return to being a mathematicigdpper, 1952, p. 244]. This was
to be achieved by what Hopper called “compiling routineshiet were “designed to select and
arrange subroutines according to information suppliedhgynhathematician or by the computer”
[Hopper, 1952, p. 248]. A series of such routines were d@eazlaand ran on the UNIVAC from
1952 onwards.

From 1950 on, then, a wide variety of schemes and tools werelafged to implement vari-
ous approaches to automatic coding. Interpreted and cechpithemes shared the property that
programs were not written directly in the code of the targathine, but in gseudo-codelt was
widely hoped that this would make programming easier argltiese-consuming, although poten-
tially decreasing the run-time efficiency of the machineisTthade-off was widely seen as having

overall economic value.

5.2 Virtual machines: the semantics of pseudo-codes

Machine codes were, naturally, understood as being notafior expressing, or specifying, the
behaviour of particular computing machines. Pseudo-chdesver broke the correspondence be-
tween instructions and machine operations, so a more canplderstanding of the meaning of
pseudo-code programs was required.

Syntactically, pseudo-codes were often very similar to@anachine codes: “[n]o example of
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a programme of interpretive orders need be given since ildvimok just like an ordinary pro-
gramme” [Wilkes, 1952]. In these cases, pseudo-codes weatetl as extensions of machine
codes: “the [interpretive] sub-routine executes the ‘sdin the list in a similar fashion to the
way that the machine obeys ordinary orders” [Wheeler, L982En simple subroutines could be
understood in this way: “[b]y deciding to place a closed sukine in the store, the programmer
effectively extends the order code of the machine so as terdibwve operation performed by the
subroutine” [Wilkes, 1952].

Unlike the EDSAC interpretive codes, Mauchly’s Short Codesvgyntactically quite distinct
from machine code. Nevertheless, it was initially undexdtmn a similar way, as a more powerful
code than that understood directly by the machine. Mauchbterthat a computer “may be made
to interpret and execute instructions given in the simplgetdMauchly, 1949], and in a similar
vein Wilkes and his colleagues stated that “the use of inéik@ routines effectively extends the
order code of the machine by increasing the complexity obfterations which may be performed
in response to a single ‘order” [Wilkes et al., 1951, p. 35].

An alternative interpretation was available, however, imclk an interpretive routine was un-
derstood as an extension or modification not to an order dndep the underlying machine itself.
Turing put this as follows “[a]n interpretive routine is omdnich enables the computer to be con-
verted into a machine which uses a different instructioneciodm that originally designed for the
computer” [Turing, 1951, p. 192]. These two interpretasiovere aligned by Earl Isaac: “[tlhe use
of subroutines permits the coder to think in terms of funddithat are complex combinations of the
elementary arithmetic and logical operations of the maehirhis is in effect a different structure
than that permitted by the basic machine” [Isaac, 1952].

The second interpretation gained some of its force from #sére to simulate on one machine
the hardware of other, more powerful machines. For exantpefloating-point interpretive routine
designed by Brooker and Wheeler simulates in the EDSAC’s ongra floating point accumu-
lator and the so-called ‘B tube’ developed in Manchesterlljaviis, 1951, p. 176], and permits
recursive subroutine calls, even though these capabilitiere not provided by the EDSAC’s hard-
ware [Brooker and Wheeler, 1953]. John Backus may have Iékirig of this case when he later
wrote that “[t]he purpose of the early systems was to prosidghetic machines which had floating-
point operations and often index registers (B-tubes) esihe real machines did not” [Backus, 1958,

p. 234]. Backus himself had designed an interpretive schfemthe IBM 701, introducing it in
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terms of the “synthetic” machine that it simulated: “[t{]H&@M 701 Speedcoding System is a set of
instructions which causes the 701 to behave like a threeeaddloating point calculator. Let us call
this the Speedcoding calculator” [Backus, 1954].

Compilers as well as interpretive routines were undersésotteating synthetic machines. Hop-
per later described the compiling routines by saying tHad ‘@ompiler. . . effectively converted the
UNIVAC from a single-address, fixed-decimal computer intbrae-address, floating-decimal com-
puter” [Hopper, 1959, p. 167]. The introduction of later pde-codes was commonly explained or
motivated by an appeal to the notion of a synthetic machinar. eikample, Laning and Zierler,
whose system is described in more detail below, wrote thite [effect of our program is to create
a computer within a computer.” [Laning Jr. and Zierler, 1954, p. 1], and in a later desdoiptof
programming the DEUCE, the descendant machine of TurinGE ARobinson wrote that “it is con-
structive to look upon [three interpretive schemes] asetlateernative machines” [Robinson, 1960,
p. 115].

Pseudo-codes, then, came to be understood in the same waghmencodes, namely as being
the instruction codes of particular computing machinese Machine corresponding to a given
pseudo-code would usually not have been built, howeverwouidd be simulated on an existing
machine. When a pseudo-code program was run, the job oftdmpiater or compiler was to ensure
that the same results were produced that would be obtairtbé isynthetic’, or virtual, machine
assumed by the writer of the pseudo-code had been opelatioddahe pseudo-code program run
directly on it.

As noted above, Turing was an early advocate of this pointiex,vand the idea of an inter-
pretive routine enabling one machine to simulate anottier llecame associated with the universal

machine concept:

the founder of [the field of automatic programming] was the ¥ M. Turing, who. . .
first enunciated the fundamental theorem upon which alietuof automatic program-
ming are based. . it states that any computing machine which has the minimwpear
number of instructions can simulate any other computinghim&¢ however large the
instruction repertoire of the latter. All forms of autontapirogramming are merely
embodiments of this rather simple theorem [Booth, 1960]

It is debatable whether this ‘theorem’ was in fact stated byiny, however. Turing demon-
strated the existence of a universal machine within a cedkss of machines which shared the

same physical structure. He only argued informally, howetlat the machines he had defined
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were capable of simulating all forms of computational maehy, commenting for example that a
two-dimensional grid of data values could be representea ame-dimensional tape.

A number of the linguistic features of pseudo-codes of thietare worth noting. Firstly, the
idea of self-modifying code lessened in importance, oradtibecame something that the program-
mer no longer had to worry about explicitly. For example, IBeclisted as one of the features
of Speedcoding that it provided “automatic address modifioa [Backus, 1954] handled by the
interpreter and not by the programmer.

Secondly, the idea of pseudo-codes extending machine atrdeliced a rather vague notion
of subroutines existing at different levels. Sometimes thas simply a question of whether one
routine called others, or was itself written purely in maehcode, but more ambitious proposals
were also put forward. For example, Hopper described thie lsasnpiling routines as being of
‘Type A, and described more sophisticated routines whigpeared to be capable of writing new
subroutines: “the mathematician ... sends the informalifining the function itself to the UNI-
VAC. Under the control of a ‘compiling routine of type B’ . .hdé UNIVAC delivers the information
necessary to program the computation of the function andeitvatives” [Hopper, 1952, p. 244].
Higher levels were also envisaged: “[tlype B routines aspre include linear operators. ... It
can scarcely be denied that type C and D routines will be fdonekist adding higher levels of
operation” [Hopper, 1952, p. 249].

Thirdly, the job carried out by interpretive routines andngilers was frequently described
as one of translation. For example, in 1951, Jack Good askesther anybody had “studied
the possibility of programme-translating programmes, gé&ven machines\ and B, to produce
a programme for machin& which will translate programmes for machiBanto programmes for
machineA” [Good, 1951]. Translation is usually conceived as a megupireserving relationship
between expressions in distinct languages. Applying thypher of translation to interpretive rou-
tines encouraged people to think of programming codes gsigayes in their own right. In 1952, a
group at Manchester described their work on developing a tmh new machine in precisely these
terms: “[w]e are. .. developing a scheme which will enable us to test the new progres on the
old machine and this will be done by means of an interpratdgic] scheme which translates the
new routine from the new code back into the code of the exjstiiachine” [Bennett et al., 1952],
and in the same year Earl Isaac offered the general opinairi[ttjoding for digital computers is a

process of translating from one language to another” [lsB2&62].
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Towards the end of the 1950s, Gill summarized the way in whggtudo-codes were understood,
explicitly bringing together the notions of translatiordarirtual machines: “[tlhe net effect may be
looked on either as a translation of the original progranglege into that required by the machine,
or as a way of making the machine imitate another machinehwigicognizes the original language

directly” [Gill, 1959, p. 111].

5.3 Formula translation

In some ways, programming in a pseudo-code was a similariexpe to machine code program-
ming. Problems had to be broken down into small steps whicidcoe expressed as individual
instructions in the code being used, whether or not it wasdde of a real machine. This low-level
coding soon became seen as a routine and rather unrewaaghdtt one for which there was an
increasing demand as applications of computers becamewigdespread. One strategy to address
this situation was to make programming more interesting acakssible by using programming
notations that were more related to the problems that usemns trying to solve.

In the 1950s, this approach was applied with consideratdeess to the specific task of evalu-
ating mathematical formulas. A basic step in many calooatiis to use values already calculated
to compute the value of a new variable. Such steps can be ligadaas equations of the form
z = F(y, z,...), wherez is the variable to be computed a#tis a formula expressed in terms of
known values. Many such formulas can be interpreted as ssipige algorithms, specifying what
arithmetical operations have to be carried out and in whdgrorRather than translating this algo-
rithm into code by hand, it seemed that it should be possibfeve the computer itself generate the
coded instructions. In addition to the perceived econoriuefits of using interpreted codes, this
raised the possibility of allowing mathematicians to pesgrcomputers directly using a familiar
notation, thus reducing the demand for skilled coders.

Automatic formula translation seemed more challengingrieally than the interpretation of
pseudo-codes. Earl Isaac broke it down into two steps, tiamstation of grammar” producing a
sequence of instructions coding the operations requirgetiorm the calculation, and the “trans-
lation of words” generating machine code, for example byagpg variable names by machine
addresses. He noted that the translation of grammar apptabe the harder problem and one on
which little progress had been made [Isaac, 1952].

Developers of formula translation systems in the early $9%@de different decisions about
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the ‘grammar’ of formulas. Some assumptions were widelyreshafor example that formulas

should resemble standard mathematical notation as farssthe using the four basic arithmetical
operations and, where necessary, parentheses to cortaidér of evaluation, and that it should be
possible to include standard functions, such as trigonooreatd exponential functions, in formulas.
Systems varied greatly in detail, however, partly as a teduhe different ambitions and goals of
their authors, and partly because of technical difficultieasovered while writing a program to

translate formulas.

For example, a program written in the UNIVAC’s Short Codegisted of a number of state-
ments, such aX’ =Y + ZW [Schmitt, 1988]. The interpreter associated numericalesiwith
variables, and a statement allowed these values to be usatttdate a new value. Initially, expres-
sions could use the only the four basic arithmetical opesadod parentheses, but other operators
and functions were soon added. Equations were transététat hand and presented to the inter-
preter in coded form; the interpreter would then scan theesgion, replacing variables by their
current values and calling the appropriate subroutine et&mnan operator or function was encoun-
tered. Multiplication was expressed by the juxtapositibaasiables, presumably with the intention
of making the code resemble conventional notation; in ggnapwever, the behaviour of the in-
terpreter had to be taken into account when writing expoessito ensure that the expected value
would be computed.

A later system, developed by Laning and Zierler at MIT, akboha more natural use of math-
ematical notation, interpreting equations as complex as1 — zxz2/y(y — 1) correctly, although
the system was limited to four levels of nested parenthdsasiig Jr. and Zierler, 1954]. A wide
range of functions were predefined as subroutines and spitestvariables could be used. This
system went beyond the evaluation of single expressiormkcartain systems of differential equa-
tions could be solved automatically. For example, the systg, /dt = yo + 1, dya/dt = —y1
could be solved by writing the following two equations in agram:

Dy|'=y[*+1
Dy =-y/

The different formula translation systems proposed in ®t&0%, therefore, varied considerably
in what grammatical forms they interpreted. At one extrethe,autocode for the Pegasus com-
puter permitted only one operator to be written in each fdamit was argued that this made the

code very easy to learn [Felton, 1960]. Other systems, likedf Laning and Zierler, went beyond
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the evaluation of functional expressions in various waysr éxample, formula translation sys-
tems were based on the fact that mathematical formulas eralgdrithms which can be translated
into machine code. A number of authors pointed out, howdkeat,an ‘implicit’ formula such as
y — 2 = 3z encodes an algorithm for working out the valueygfust as clearly as the equivalent
‘explicit’ formula y = 3z + 2. There seemed to be no reason in principle why translatark co
not be written to generate machine code from implicit forasuland techniques for doing this were
proposed [Cleave, 1960].

By contrast, later programming languages show much lesstyasupporting little if anything
more than functional expressions written using arithnaétiperators, parentheses and calls to sub-
routines. This ‘standard form’ first appeared in the Fortearguage: the next section will describe

this, and offer an explanation for the subsequent succabssdbrm.

5.4 Fortran and the definition of expressions

Fortran’s definition of expressions can be characterizetiyfeatures. Firstly, the language only

supported ‘explicit’ equations:

A FORTRAN arithmetic formula resembles very closely a conventionighmetic for-
mula; it consists of the variable to be computed, followediby- sign, followed by an
arithmeticexpressionFor example, the arithmetic formula

Y = A-SINF(B-C)

means “replace the value of y by the value of a-sin(b-c)” [|BI56, p. 12].

This definition distinguishes two aspects of the formulanaly the specification of the calcula-
tion to be performed and the identification of the storagatioa that is to hold the resulting value.
A number of writers appear to have found this distinction teptial source of misunderstanding,
because of the possibility of writing formulas suchras- n + 2. Viewed from the mathematical
point of view as an identity, such an equation is meaninglesst least has no solution. From
the computational point of view, however, it defines a stayward procedure, as the Fortran

definition explains.

The = sign in an arithmetic formula has the meaning “is to be regalaay”. An arith-
metic formula is therefore a command to compute the valubefight-hand side and
to store that value in the storage location designated bleftiband side. [IBM, 1956,
p. 16]
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This computational interpretation of an apparent equatiowever, rules out the possibility of the
system handling implicit equations suchias 2 = 3z.

The second significant feature of Fortran’s definition ohfatas is the way in which the syn-
tactic form of expressions was specified. Unlike many otlystesns, the Fortran manual gave a
recursive definition of expressions which is very similastgle to the definitions of the terms of
formal languages given in logic texts. Constants, varilaled subscripted variables are first de-
fined, and then the following definition of expressions isegivnote that expressions could be of
either fixed or floating point mode, but this does not affeetdiscussion.

Formal Rules for Forming Expressiomy repeated use of the following rules, all per-
missible expressions may be defined.

1. Any fixed point (floating point) constant, variable, or satipted variable is an
expression of the same mode. Thus 3 and | are fixed point esipnss and AL-
PHA and A(l,J,K) are floating point expressions.

4 If E is an expression, then (E) is an expression of the samtiras E. Thus (A),
((A), (((A))), etc. are expressions.

5 If E and F are expressions of the same mode .. .then

E + F
E - F
E x F
E / F

are expressions of the same mode. ... The charag¢ters « and/ denote addi-
tion, subtraction, multiplication and division. [IBM, 185p. 14]

The influence of formal logic seems clear here; the definiioexpressions and their translation
into machine code was largely the work of Peter Sheridanrj@de 1959], who before joining IBM
had completed a Masters degree in logic [Weiss, 1993]. ltrilsirey that the recursive definition
is given in the manual intended for programmers to read: lifesight a level of precision to the
definition of programming notations that was at the time uals

An important feature of this definition is its generality:etk is no question of restricting ex-
pressions to a fixed number of operators or levels of parsathdn one respect the syntax diverges
from normal mathematical usage: whereas other systemsealoultiplication to be represented
by juxtaposition, as itX'Y’, in Fortran it must be represented explicitlyXas Y. Both these proper-
ties are consequences of the recursive definition, and dhigests that in some respects the desire
for formal consistency was taking precedence over othelsgsach as preserving conventional

notation.
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This raises the question of why this particular definitione@pressions turned out to be so
influential. It is tempting to answer this question by paoigtito the success of Fortran and the
consequent adoption of many of its features in later langsilagrhe explanatory power of this
answer is limited, however: many other features of Fortraramot so influential, and the language
has subsequently changed in many ways, incorporatingrésatierived from later languages and
research. What was special about the definition of formulangy Fortran that might account for
its differential success and persistence?

One possible answer is that it was precisely the use of Ibgitdgave rise to the success of the
Fortran definition. Although a number of writers had peredia general similarity between logic
and programming, this was the first time that techniques fimmmal logic had been applied to a
relatively mundane task like syntax definition. As well asyiding a concise and general definition
of expressions, this suggested a general approach to tigndesprogramming languages, one
which made use of the authority and established resultsesnhiques of the discipline of logic.

At around this time, a reciprocal interest in programmingations was developing among lo-
gicians. The Summer Institute for Symbolic Logic, held atr@&l University in 1957, included a
number of papers on computer-related topics, includingqamming notations, formal represen-
tations of computing machines, and mechanical theoreminovl hese included a short talk by
Sheridan describing the Fortran system [Sheridan, 1957].

Fortran’s use of logical techniques was limited to defimitmf expressions, however, and the
syntax of the remainder of the language was not given a rieewtefinition. In other respects, too,
Fortran occupies an intermediate position between pseades and formal languages: despite
being described as a language, it was viewed as an integtalfigawider system whose role was to
“transform ... the 704 into a machine with which communi@attan be made in a language more
concise and more familiar than the 704 language itself” [IBM56, p. 2]. This description situates
Fortran firmly in the semantic tradition of 1950s pseudoespdas described above. Furthermore,
the design of many of the features of the language was infatenot by logic but by the desire to

produce object code that was as efficient as possible [Bakai$ieising, 1964].

5.5 Universal languages

By the end of the 1950s, a large number of automatic progragnsystems had been developed,

and surveys showed that the overwhelming majority of themewely available on a single type of
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machine [Bemer, 1959]. Atthe same time, user groups forqudat machines were discovering the
advantages of being able to share programs and were begtoniistribute routines among the user
community. For example, the group SHARE was started in 1958 ‘@ooperative programming
group for IBM 704 users” [SHARE, 1958a]. As the name choserttie group implies, one aim
of the group was to enable users to benefit from the work ofrgthegrammers. For example,
in 1958 “SHARE agreed to accept for distribution self-camgd routines in BRTRAN language.
However, since appropriate conventions were not agreed, upwas decided to defer distribution
of subroutines for the time being” [SHARE, 1958b].

This last comment indicates recognition of the fact thatfmte to be easily shared between dif-
ferent groups, common languages and standards had to lagv@ereas mathematical formulas
provided a standard notation for encoding simple comparnatiprocedures, traditional mathemat-
ics defined no universally accepted method for expressiagséiguencing of operations in more
complex algorithms. Machine code programming did providgracture for expressing computa-
tions, but both machine codes and the later pseudo-codes higitly machine specific. Fortran
marked a significant step forward: it was initially only dehie for the IBM 704, but by the early
1960s Fortran compilers had been written for a wide variétpachines.

A number of machine-independent programming notationsiméaict been defined. Many of
these originated in Europe, in circumstances suggestatdabk of easy access to a actual working
machine was a factor in encouraging more theoretical waskekample, as early as 1948 Zuse had
published a short description of Hdankallil notation, based on work he had carried out immedi-
ately after the war [Zuse, 1948]. These proposals do notagpdrave influenced the development
of programming notations, however, in part because theldawot be used on contemporary tech-
nology.

By the latter half of the 1950s, however, it had become féasibexperiment with new notations
by writing an interpreter, and in some cases this even ledhe¢ocbnstruction of new machines
based on the order code suggested by the new notation. @fesg experimental proposals were
explicitly related to logic. For example, in 1957 Charlesdin observed that formula translation
schemes were only necessary because of the obscurity ofrreamide, and reasoned that a better
solution would be to design a machine whose basic operatiens better adapted to the needs of
programmers. He viewed this as “primarily a problem in aggpliormal logic” [Hamblin, 1957, p.

135], and proposed using an adapted version of a notatioodinted by tukasiewicz, which he
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dubbed ‘reverse Polish’ notation. As presented by Hamittiis, notation had the properties that
every symbol could be viewed as denoting a machine operationthat an expression could be
evaluated by performing the specified operations in the saaer as the symbols were written in
the expression. After being used in interpreted form on tE&JOE computer [Hamblin, 1958],
Hamblin’s ideas for a so-called ‘zero-address’ computervimplemented in the architecture of a
later computer, the KDF9.

Another factor leading to diversity in the field of progranmginotation was the perception
that different notations were required for different apgtion areas. Fortran was the first language
to be implemented on more than one computer, and it becadeefactostandard for scientific
programming. It was felt that the language was too matheadbtioriented for business users,
however, whose primary concern was data processing, anchbarof proposals were made aimed
specifically at such users. Specialized requirements weeefaund in the new area of artificial
intelligence, where programs needed to handle memory wéhtegr flexibility than in scientific
applications. Again, this led to the development of sp&mdl programming notations.

Against this background, there were a number of calls fodtwelopment of ‘common’ or ‘uni-
versal’ languages. For example, following a conferenceéibl the German/Swissesellschaftiir
angewandte Mathematik und Mechanik (GAMAd}ablished a committee to define a common for-
mula translation language. In 1957, members of this coremitirote to the AmericaAssociation
for Computing Machinery (ACM)roposing a conference with the aim of fixing on a common for-
mula translation language [Bauer et al., 1957]. This led toegting in Zurich in 1957, attended
by four delegates each from ACM and GAMM. The result of thistitgy was a language proposal
known officially as the International Algebraic Languaghl() [Perlis and Samelson, 1958]. In the
light of subsequent developments, this language is oftemresl to as Algol 58.

Following extensive discussion of this proposal, a furtbenference was held in Paris in
January 1960, resulting in the publication of a report whigfined a new language, Algol 60
[Naur et al., 1960]. Unlike other languages of the time, Al§®was not designed as part of a pro-
gramming system for a particular type of computer, but weenited as a universal language for the
expression of algorithms. There was considerable ingtitat support for this proposal: for exam-
ple, even before the publication of the Algol 60 report @@mmunications of the AClkad started
a “new editorial department . . . to publish algorithms csetiisg of ‘procedures’ and programs in the

ALGOL language” [Wegstein, 1960]. Initially algorithms were fished in Algol 58, but following
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the publication of the Algol 60 report, the required langeiagas changed to Algol 60.

The details of Algol 60 will be considered in more detail i thext section. The definition of
a single programming notation was not the only way to tadkéegroblem of diversity, however.
An alternative approach was suggested by the UNCOL projekad already been noted that “the
scope of activity for SHARE was expanded with the advent eflBIM 709 and with the univer-
sal acceptance of Fortran as a language common to both thantlthe 709” [SHARE, 1958a].
At a meeting in February, 1958, discussion took place on Saaydevelop a universal language
for the computing field” [SHARE, 1958b], and over the comireay a sub-committee of SHARE
developed proposals to address this need.

The UNCOL project distinguished between machine-oriefdeduages and problem-oriented
languages. Rather than defining a single problem-oriersadulage, like Algol, the idea was to
define a single machine-oriented language which would be tesenplement a variety of problem-
oriented languages (POLs). This was seen as promising twefite firstly, problem-oriented
languages would be better tailored to the needs of prograsymed could be expected to make the
task of programming quicker and easier. Secondly, it wagipated that the implementation of
a new POL would require only a POL-to-UNCOL translator to béten, not a full compiler for
every machine that the POL ran on. It would therefore be mooa@mical to develop new POLs
using the UNCOL approach [Steel, 1961]. It proved impossiidl the time to develop a practical
system based on these proposals, however, and Algol be@anas the most promising and fully

developed proposal for a universal programming notation.

5.6 Algol 60 as a formal language

Subsequent chapters describe the influence of Algol 60 osuteequent development of program-
ming and programming notations in the 1960s. This influesc®metimes attributed to the way
in which the language was defined rather than its practicadess. Unlike most, if not all, of its

predecessors, Algol 60 was consciously presented as alftaimgaiage; for example, in 1959 Puyen

and Vauquis wrote of the emerging Algol definition in an manrey reminiscent of Carnap:

Pour ce langage unique, il faudra, tout comme pour les syestade programmation,
commencer par en définir les éléements: d'abord les syesbelementaires et leurs
divers roles, ensuite les régles de formation d’agsélatces symboles pout obtenir des
termes, enfin des regles de construction d’expressiorata gdes termes ou a partir
d’expressions plus simples. |l semblerait que I'expérgedes auto-programmations
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actuelles puisse accélérer I'etude purement logiquéadgage en tant que systeme
formel. [Puyen and Vauquois, 1960, p. 134]

By the end of the 1950s, the relationship between progragmitations and formal languages
was increasingly being commented upon, Woodger for exaaigiming that all order codes were
formal languages [Woodger, 1960]. Woodger described adblamguage as one defined by rules
specifying its syntax and semantics; most order codes watrtully defined in this way, however,
and relied for their semantic definition in particular onamrhal descriptions of the behaviour of a
machine or interpreter. By contrast, the Algol 60 definittnade a significant step forward in the
explicit formalization of programming languages. Thistemt describes the method of language
description adopted for Algol, and the next section dessribome of the ways in which logic

influenced the features included in the language.

The alphabet

Tarski's first criterion for formal languages concerned #e¢ of symbols used for constructing
expressions in a language. Order codes and pseudo-codsly aslopted a subset of the characters
provided by the available input devices as the alphabetedfiiguage, and it was some time before
the concept of a set of symbols became abstracted from th&gahygymbol set provided by the
hardware.

The case of Fortran illustrates the difficulties experighicemoving to a more abstract defini-
tion. In the original programmer’s manual, a “table of Fantcharacters” was given [IBM, 1956,
p. 49], comprising the 48 characters available on the IBM to@#ther with the various ways they
were coded on different media. There were two distiret symbols: both could appear in data
presented to a program, but only one of them could be usediragm code, while the other was
the only one to appear in program output. The ‘¢’ symbol, magale, could only be used in a
program within textual data that was to be output.

Sheridan later explicitly specified a Fortran “alphabet& dxcluded one of the-’ signs and
the ‘$’ symbol, despite the fact that it could appear in the & Fortran programs, but included
a symbol 4’ which was “not a character explicitly indicated in anpRTRAN statement, serving
solely as a statement endmark on the executive level” [8aefil1959, p. 11], or in other words, not
a symbol of the Fortran language at all. Both these defirgtitien, failed to define exactly the set

of characters that could appear in legal Fortran programs.
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The Algol 58 group recognized that these difficulties woultlyde exacerbated in the case of

a language intended to be used on many different machines:

There are certain differences between the language usedbiicgtions and a language
directly usable by a computer. Indeed, there are many diffags between the sets of
characters usable by various computers. Therefore, it weisleld to focus attention
on three different levels of language, namelReference LanguagandPublication
Language and severaHardware RepresentationfPerlis and Samelson, 1958, p. 9]

Of these, the reference language was the “defining languatjeé publication language had
to ensure “univocal correspondence” with the referencguage, but would allow for the use of,
for example, subscript and superscript notation, and rdiffenational conventions for represent-
ing such things as the decimal point. Each implementatioAlgbl 58 would require a differ-
ent hardware representation, depending on the capabitfithe target machine, but “[e]ach one
of these must be accompanied by a special set of rules fosliterating from Publication lan-
guage” [Perlis and Samelson, 1958, p. 10].

The basic symbols of the reference language comprisedex tatterogeneous set of individual
characters, such as letters and digits, some digraphs,asutk’, a range of mathematical and
logical symbols, including a subscripted”, and a number of words and phrases, suchbagiti
or ‘go td, all of which were considered to be indivisible, atomic dyois.

The picture that emerged from this account was rather aesoh#. By allowing different phys-
ical representations of the alphabet, the Algol 58 repodearibapparent that, even in the reference
language, the choice of physical symbols used was arhitfahg alphabet of the language was
therefore considered to be something more abstract thanod clearacters. In 1959, commenting
on the Algol 58 report, members of the Applied Programmingt&ws group at IBM put the point

in the following way:

The preliminary report on AcoL defines the basic symbols of the language. A subset
of these can be represented externally (now) only as worglsge to, do, if, etc. Nev-
ertheless, they stand for single characters which will lsamvee internal representation.

A good processor translates this external representatiinernal. The dictionary used

in making this translation should be flexible enough to allwitrary changing of the
external representation of an internal symbol. We can theresay that the processing
of internal symbols can be independent of the external laggu[Green et al., 1959]

In this respect, Algol differed from traditional accountsfarmal languages which treated the

expressions of a language as concrete sequences of chafdarski, 1933]. The variety of repre-
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sentations considered focused attention on the abstractisie of expressions rather than a partic-
ular representation, and this structure could be seen asrdgthe expression: “the syntax of the

language will have to be the same for all levels” [Puyen angais, 1960, p. 134, my translation].

Object and metalanguage

One of the best-known features of the Algol 60 report is itsafsa formal notation, now commonly
known asBackus-Naur fornfBNF), to specify the syntax of the language.

In a procedure reminiscent of Carnap’s “syntactical Go#lyimbols” [Carnap, 1937, p. 15],
the Algol 58 report defined letters to represent syntactiegraries, and used a mixture of informal
definition and schematic templates to give syntactic déjimst For example, the set of digits is

defined by:
Figures( (arabic numerals 0, ... , 9)
and the set of integers as follows:

Strings consisting of figures only represent theppsitive integersG (including 0)
with the conventional meaning.

Based on this, numbers are defined as follows:

Form: N~ G.G;(+G where each Gis aninteger as defined above. [Perlis and Sam#&p58,
p. 11]

Backus, however, was not satisfied with this semi-formaraggh, and in 1959 argued that if

the language’s goal of supporting a variety of implemeatetion different machines was to be met,

There must exist a precise definition of those sequencesnabag which constitute

legal IAL [i.e. Algol 58] programs ... For every legal prograhere must be a precise
definition of its ‘meaning’, the process or transformatiohiet it describes, if any ...

Heretofore there has existed no formal description of a inaeimdependent language
(other than that provided implicitly by a complete tranisigtprogram). [Backus, 1959,
p. 129]

Backus provided a formal metalanguage sufficient to defiaasyntax of Algol 58. The syntac-

tic metalanguage was explained as follows:

To begin with, we shall needhetalinguistic formulae Their interpretation is best ex-
plained by an example:
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(ab) := (or [ or (ab)( or (ab)(d)

Sequences of characters enclosed(}fi fepresent metalinguistic variables whose val-
ues are strings of symbols. The marks":and “or” are metalinguistic connectives.
Any mark in a formula, which is not a variable or a connectidenotes itself (or the
class of marks which are similar to it). Juxtaposition of ksaand/or variables in a
formula signifies juxtaposition of the strings involved. ushthe formula above gives
a recursive rule for the formation of values of the variaalp). It indicates thatab)
may have the value “(" or “[" or that given some legitimate walof (ab), another may
be formed by following it with the character “(” or by followg it with some value of
the variable(d). [Backus, 1959, p. 129]

Backus’ notation was used by Peter Naur in the Algol 60 refidaur et al., 1960]. By the
time the Algol 60 report was produced, this notation had tastapted slightly with “::=" replacing

u: E" and “

" replacing ‘or”. In addition, it was made explicit that “the symbols used distin-
guishing the metalinguistic variables (i.e. the sequentebaracters appearing within the brackets
()...) have been chosen to be words describing approximdtelgature of the corresponding vari-
able” [Naur et al., 1960, p. 301]; this was intended to prevash “immediate link between syntax
and semantics” [Naur, 1981]. In the final notation, the d&éiniof the syntax of integer constants
appeared as follows:

(digit) ::=0]1|2|3|4|5|6[7/8|9

(unsigned integer::= (digit) | (unsigned intege(digit)

(integel ::= (unsigned integer| +(unsigned integér| —(unsigned integer

The background to the invention of BNF is rather unclear.iBadater claimed that he had been
inspired by lectures given by Martin Davis on the work of ERylst [Backus, 1980, Backus, 1981].
Davis, however, has stated that the only possible date fosach lectures was after the invention
of BNF, and so they cannot have been the immediate sourcepiféion [Davis, 1988]. There was
some awareness within the computing community of Post'«wmwever: Rosenbloom’s textbook
of 1950 [Rosenbloom, 1950] contained a chapter on “The GéSsmtax of Language” which was
largely an exposition of Post’s results, and this textboals wited in some more theoretical com-
puting papers [Elgot, 1954, for example]. Other partictpan the Algol development have sug-
gested, however, that awareness of techniques for forimgizntax and their advantages was rather
widespread, at least among the European members of the tm@ifiauer, 1981, Samelson, 1981].
Whatever the origins of the notation, however, the Algol @firdtion made explicit use of the

logical distinction between object and metalanguage, tliawing attention to the importance of

giving unambiguous syntactic definitions of programmingglaages. The specific formal notation
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introduced for syntactic specification was highly influahtind widely emulated, even being applied

to existing languages such as Fortran [Rabinowitz, 1962].

Syntax

The syntax of Algol 60 was defined by means of a large numberNf Broductions. In a few

cases, the productions gave an informal characterizafiarspntactic class, for example
(string) ::= (any sequence of basic symbols not containing or’

where the ‘metalinguistic variable’ on the right hand siglenly a description of the intended set of
string and does not appear on the left-hand side of any ptioduclTo a much greater extent than
any previous language, however, the Algol report formaldfirted which texts were legal Algol
programs.

Various subformulas of the language were classified inteetinajor categories, depending on
their semantic role Expressionsavere subformulas that denote values; like Fortran, Algdingel
algebraic formulas as expressions which denote numbersidhuded in the same category boolean
expressions, denoting one of the valtreg andfalse and designational expressions, which denoted
program labels. Statementsvere subformulas describing the basic operations perfriyethe
program, such as the assignment of a value to a variable |smtha structure of compound actions
involving for example iteration. Lastlyleclarationswere subformulas which defined entities to be
used elsewhere in the program, such as variables and suaprag

The definitions of the formulas of the language were mutuatursive in various ways. For
example, ‘compound statements’ were defined which grouppstjaence of statements within the

‘statement bracketd¥iegin andend:

(statemert::= (basic statemept (for statemerjt| (compound statement (block)
(block) ::= (block headl ; (compound tajl

(unlabelled compound:= begin (compound tajl

(compound tajl ::= (statementend | (statement; (compound tajl

(compound statement.= (unlabelled compound (labe) : (compound statement

As the definition above shows, compound statements coulgdde@ny other statements, includ-
ing further compound statements to any level of nestingtHéamore, declarations could include
expressions, for example in defining the size of an arraystatéments could include both expres-
sions and declarations: for example, a ‘block head’ is aofisteclarations that come into effect in

a particular compound statement.
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It was argued above that one innovation of Fortran, probaidpired by logical examples,
was to give a recursive definition of the structure of arittioa expressions. The Algol definition
extended this recursive approach to all the syntactic osdtegjof the language. Thus an Algol pro-
gram could potentially have a complex, recursive struotuiige different from the simple sequence

of instructions that characterized programs in Fortranathdr autocodes.

The identification of programs

One seemingly trivial property of the formal languages usedgic is that a ‘top-level’ category
of expressions is identified. These are the expressionshvdaio be used to perform the speech
acts of interest: the predicate calculus, for example, anguage primarily designed to formalize
assertions, and the category of well-formed formulas isyddfiaccordingly.

In programming languages, the members of the top-levebstintcategory are not declarative
sentences but programs. A formally defined programminguageg, therefore, should therefore
define in purely structural terms what constitutes a progréiis approach took a while to evolve,

however. The Algol 58 report gives the following explanatio

Sequences of statements and declarations, when appebpri@imbined, are called
programs. However, whereas complete and rigid rules fostcocting translatable
statements are described in the following, no such rulesbeagiven in the case of
programs. Consequently, the notion of program must be deresd to be informal
and intuitive, and the question whether a sequence of statismmay be called a
program should be decided on the basis of the operationahingeaf the sequence.
[Perlis and Samelson, 1958, p. 10]

In other words, the question of whether a given text was arprogwvas considered to be a
semantic, not a syntactic, matter. However, no attempt wadento spell out a sufficient set of se-
mantic properties for qualification as a program, and byithe tf the Algol 60 report the semantic

elements of this definition had been dropped. In Algol 60,

A program is a self-contained compound statement, i.e. gpoamd statement which
is not contained within another compound statement andhwiigkes no use of other
compound statements not contained within it. [Naur et 8601 p. 300]

Semantics

When defining the syntax of Algol 58, Backus had written thiae*formal treatment of the seman-

tics of legal programs will be included in a subsequent gajigackus, 1959, p. 129]. No such



CHAPTER 5. PROGRAMMING NOTATIONS AS FORMAL LANGUAGES 140

paper appeared, however, and in the Algol 60 report the sizaasf the language were defined
informally.

The three syntactic categories, of expressions, statsnagck declarations were distinguished
by their differing semantic roles. An arithmetic expressivas defined to be “a rule for computing
one real number by executing the indicated arithmetic djggrs on the actual numerical values
of the constituents of the expression” [Perlis and Samelk@68, p. 13]; presumably other types
of expressions, such as boolean expressions, were urmtkrisidhe same way, though this was
not stated explicitly. Statements were defined to be “[e€tband self-contained rules of opera-
tion” [Perlis and Samelson, 1958, p. 13], and declaratiataté certain facts about entities referred
to within the program” [Perlis and Samelson, 1958, p. 17].

A very similar approach was adopted in the Algol 60 reporticivtstated that “[tjhe purpose of
the algorithmic language is to describe computational gsses” [Naur et al., 1960, p. 300]. Many
syntactic categories were accompanied by an descriptisgheo§emantics of the formulas of that
category, suggesting the intention to produce a compasitieemantic account of the language.
The description of the semantics were, however, informdlary similar in style to those given
for Algol 58.

Although the informal semantics were largely stated in seahthe effect that a given formula
would have on the execution of programs containing it, trexige nature of the virtual machine
on which Algol 60 programs could be considered to run was migaily made explicit. This was
probably a consequence both of the machine-independemnatémms of the language, and also its
complexity, particularly in the area of the recursive deiom of compound statements. The details
of the ‘Algol machine’ were largely worked out in the courdeniting compilers for the language,
and for a number of years the complexity of Algol compilerswéen remarked upon, and in some

cases made the basis for criticism of the language.

5.7 The influence of logic on Algol

The previous section has described how Algol was presestad@mal language, using the meta-
linguistic framework developed for formal logic. Logic alappears to have influenced the design
of some of the features of Algol itself. For example, as wekhdthmetic expressions, Algol defined
a category of boolean expressions similar to those of pitipal logic. The two truth values were

defined, and a range of boolean operators defined. Algolfgreracluded an implementation of
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Boolean algebra which allowed conditions to be defined maceinctly than in previous languages.
Fortran, for example, originally only allowed conditiongish compared the magnitude of a number
with zero.

The designers of Algol also appear to have been influencethdoyatation and concepts of
the predicate calculus, and in particular by the ideas oftdution and of quantifiers as syntactic
devices which bind variables. This section describes hagaheatures were treated as Algol

evolved.

‘Quantifiers’ in Algol 58

In Fortran, conditional execution of program statements eantrolled by means of a conditional
jump statement which differed little from the kind of statmhavailable in machine codes. In Algol
58, by contrast, any statement could be preceded b statement, which made the execution of

the statement depend on the truth-value of a given condiEonexample, in

if (@>0);c:=at2] xb124,

the assignment to ¢ would only take place if the value of a waatgr than zero. Thé statement,
and others such as ttier statement which had a similar syntactic role, were callegftifiers’.
Presumably this terminology was chosen because, like thetifiers of predicate logic, these state-
ments are prefixed to other statements and affect theipirition in some way. However, there is
a significant syntactic difference between the two: wheeeasantified formula in logic is a single
formula formed by prefixing a quantifier to a subformula, tixaraple above is not treated as a
single statement in Algol 58, but rather as two consecutiggesients. This lead to a rather clumsy
definition of its semantics: “If the value of [the conditioig| true, the statement following thi
statement will be executed. Otherwise, it will be bypassadl @peration will be resumed with the
next statement following” [Perlis and Samelson, 1958, §j. 14

By contrast, because of the recursive definition of the syofastatements in Algol 60, the

equivalent construct,

ifa>0thenc:=at12xb712,

was a single statement whose effect when the conditioneésgrthat of the substatement following

then, and the description of its meaning does not refer to theespent statement in the program.
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In Algol 60, however, the conditional part of the statemend longer thought of as a prefix, and

the terminology of ‘quantifiers’ is no longer used.

Substitution

The substitution of an expression for a variable as a meaggmérating new formulas from old
was widely used in logic and the-calculus. Algol 58 defined a mechanism for substitutiorhi t

do statement, which had the following form:

dOLl,LQ (S*)_>I,...,S*>_>I).

Herel, and L, are labels identifying a sequence of statements, and teath@ses define a number
of substitutions whereby an identifiéwould be replaced by an almost arbitrary string of symbols
S_,. The effect was defined to be the same as that of executingetiudting code in place of the
do statement. In Algol 60, thdo statement was removed, but the notion of textual substitutias

preserved in the ‘call by name’ mechanism described below.

User-defined subroutines and parameter passing

Subroutines had been a prominent feature of machine codgaoning, and the methodological
advantages of splitting a large program into a number ofpaddent and reusable components
were well understood. Integrating the subroutine conceftit autocodes and formula translation
languages proved not to be straightforward, however. Tiggnat version of Fortran, for example,
allowed a predefined set of library routines to be called feofortran program, but there was no
way within the language to define a new subroutine [IBM, 1956]

In 1958, both Fortran Il [IBM, 1958] and Algol 58 introduceldet possibility of defining sub-
routines in the high-level language. In Fortran 1l, it wasgible to compile subroutines separately
from a program, and combine the resulting machine-code tfileseate a complete program; this
of course made it easy to reuse subroutines in more than ogeapn. Algol 58, being an unim-
plemented language proposal, did not go into such detdilit also included the ability to define
functions and procedures within the language.

One issue in the design of a subroutine facility in a languag¢eedecide how data is to be passed
from the main or calling program to the subroutine. Forttadid not specify the mechanism for this

in detail, but assumed it was possible to pass both constaatathd variables, including arrays, to
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subroutines, and that changes made by the subroutine tathdeld in variables would be visible
to the main program on return from the subroutine.

By contrast, Algol 58 defined two mechanisms for passing tatsubroutines. In one-line
function definitions, the formal parameters could only nitifiers, and the report implies that data
would be assigned to these variables before the functiorceléesd. This mechanism, later known
as ‘call by value’, fits the mathematical notion of a functishere parameters are treated as input
data which, from the point of view of the calling routine, cahbe changed by the function.

The second method of parameter passing used textual stibstitas defined independently by
thedostatement. The effect of calling a subroutine would be thexecuting the statements making
up the subprogram, after textually substituting the aqtashmeters for the formal parameters. The
do statement was dropped in Algol 60, but substitution renththe default method for parameter
substitution in subprogram calls, the technique being knaw/‘call by name’.

Thus Algol 60 defined two interpretation of the process okpag parameters to subroutines,
call by value and call by name. It is a striking coincidencat these correspond closely to the two
interpretations traditionally given to quantifiers in logiwith call by value resembling the tradi-
tional ‘objectual’ interpretation and call by nhame the ‘stitutional’ interpretation (re)introduced
to the logical literature by Ruth Barcan Marcus [Barcan Mard962], but there appears to be no

evidence that this work influenced the details of the paranssing mechanisms of Algol.

Blocks and variable binding in Algol 60

A characteristic feature of quantifiers in logic is that thegd variables, in a sense making them
inaccessible from outside the quantified formula. An analsgproperty of subroutine definitions
was noted by Strachey and Wilkes, who in 1961 described ttmealoparameters of subroutines
as “bound variables” and other variables occurring in thdybaf a subroutine as “free variables”,
commenting further that “the formal parameters in a functiefinition are strictly bound variables
(that is, local to the definition)” [Strachey and Wilkes, 19§. 489]. The use of the term ‘local’
here makes a connection between variable binding and tha Adgion of ‘block’.

The definition of statements in Algol stated that a sequefictatements enclosed within the
special bracketdegin andend was acompound statementA block was a compound statement
which additionally contained some declarations. Theseamul at the start of the block, before the

statements contained in the block. The Algol 60 report thated:
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Any identifier occurring in a block may through a suitable digifbn be specified to
be local to the block in question. This means (a) that theyentipresented by this
identifier inside the block has no existence outside it, d)diifat any entity repre-
sented by this identifier outside the block is completelcamssible inside the block.
[Naur et al., 1960, p. 9]

The following artificial example shows one block nesteddesanother.

OUTER:begin integeri, j ;
ji==5;
INNER: begin integerj, k ;
j:=3;
ki=2xj;
=]
endblock INNER
endblock OUTER

Blocks implied a particular mechanism for the allocatiorstoirage to variables. In the example
above, storage will first be allocated for the variables i pimdthe outer block. On entering the
inner block, storage will be allocated for the variablesd &rdeclared there. Crucially, the variable
j in the inner block will be allocated a different storagedtion from the variable j in the outer
block. At the end of each block, the storage allocated wilhgeain deallocated and any values in
the variables of that block will be lost.

The outer block has no access to the variables declared inrtke block, but the inner block
can access the variables of the outer block, as the assigmongndicates. Further, variables in the
inner block are distinct from and ‘hide’ any variables witletsame name in outer blocks: thus in
the example above k is assigned the value 6. On completidmedhnher block, i and j in the outer
block have the values 3 and 5 respectively.

The local variables in a block, then, share some of the ptigigenf bound variables in logic, in
that they are inaccessible outside the construct in whiep #éine defined, and they can, for example,
be systematically renamed within such a construct withbahge of meaning, subject to the famil-
iar restrictions on avoiding name clashes. Procedure iddidas also bound the variables appearing
as formal parameters, a process explained by invoking dtitics block” in which variables corre-
sponding to the parameters were defined [Naur et al., 196I2]pAs the quotation from Strachey
and Wilkes indicates, the interpretation of blocks as \@eidinding mechanisms was made soon
after the publication of the Algol report, and by 1980 it waparently a commonplace, Mark Wells
writing that the concept of block structuring “appearedtfinsALcoL 58-60, although it is related

of course to the idea of bound and free variables of logic”I[§y&980].
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5.8 Lisp and recursive function theory

The last two sections have argued that both the design of ltha language and the way in which
it was presented were in many ways influenced by the exisiample of logic, and that Algol was
conceived of as a formal language in the sense in which thait weas understood in logic. This
was not the only direction in which programming notationgedeped, however. In the area of data
processing, for example, it was believed that the use ohamyresembling even elementary math-
ematical notation would be unacceptable to users, and égyagudesigned for use in this application
area such asLOwW-MATIC [Taylor, 1960] and its successor Cobol took their inspirafrom natural
rather than formal languages.

Algol did not even represent the only way in which the resesirof logic could be applied to
the task of designing programming languages. In 1960, Ishoefore the publication of the Algol
60 report, John McCarthy published the first descriptiorheflanguage Lisp [McCarthy, 1960]. As
this section explains, Lisp just as much as Algol could bediesd as being ‘based on logic’, but
with very different results.

Lisp was developed in response to the demands of programamiifigial intelligence applica-
tions. Experience had indicated that a particular requérgrof programs in this area was to be able
to handle data structures which were of unpredictable sidanich might vary in size throughout
the time a program was executing. In 1956, Newell and Simeeldped the ‘Logic Theorist’, a
program intended to discovered proofs in propositionalctothey observed that “machine code,
although suitable for communicating with the computer, as at all suitable for human thinking
or communication about complex systems” [Newell and Sini®&6, p. 62]. They therefore de-
veloped a pseudo-code designed specifically to supportgéeations required in this application.
Initially known as the “logic language” (and, incidentaltlescribed as a “formal language”, though
without being defined in a particularly formal manner) thislged into a family of notations known
collectively as ‘Information Processing Language’ (IPNgjvell and Tonge, 1960].

The key data structures for this class of problem became kraslists. “IPL-V allows two
kinds of expressiongdata list structureswhich contain the information to be processed, snd
tines which define information processes” [Newell and Tonge, 0196 205-6]. The system was
conceived of as a virtual computer, the “IPL Computer”, vhiiccluded memory suitable for stor-
ing list structures and a set of primitive processes, amaledo the basic orders on a conventional

computer, defining basic operations on lists. Programs therewritten by combining these prim-
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itive processes in a similar manner to conventional inttgul pseudo-codes.

Lisp itself combined the data structures used in IPL withatgebraic approach adopted by For-
tran and was characterized by McCarthy as an “algebraipi@tessing language” [McCarthy, 1981,
p. 174]. Whereas IPL, like a machine code, only permittediseges of the basic list operations
to be written, McCarthy’s approach would allowed complegressions to be formed, analogous to
the conventional algebraic expressions supported bydfortr

Although Lisp later became described as a programming kgeguit was originally referred to
as a “programming system . . . based on a scheme for repragéimdi partial recursive functions of a
certain class of symbolic expressions” [McCarthy, 196Q,84]. McCarthy’s initial presentation of
Lisp in many ways echoed the details of the logical work on potability carried out in the 1930s,
as the following summary indicates.

Firstly, McCarthy defined some mathematical notation farcd®ing partial functions. As well
as the conventional means of forming new function from oldubng substitution and definition
by recursion, a new notation faonditional expressionvas introduced, allowing ‘definitions by
cases’ to be given by means of a single, formal expressionurddis A-notation was used to
represent functions, and a new construct ‘label’ was intced to bind names in function defi-
nitions [McCarthy, 1960, p. 186].

McCarthy then defined the data objects that were intendec tind objects of computation,
namely the class afymbolic expression®r S-expressionsS-expressions were based on a set of

atoms represented by strings of upper-case letters, and wergeddsiy the following two rules:

1. Atoms are S-expressions.

2. If e; ande, are S-expressions, so is (- e3).

Some notational abbreviations were then introduced soatmabre convenient list notation could
be used. In particular, the list{, as, ...a,) was defined to be the S-expressian ((as - (... (an
-NIL) ...))), where NIL is a distinguished atom representthg empty list.

Having defined S-expressions and lists, the next step wasftoedsome specific functions to
manipulate them. McCarthy defined five elementary functioasnelyatom eq, car, cdr andcons
which tested whether an S-expression was an atom and whethatoms were equal, and allowed
non-atomic S-expressions to be constructed and their twpoaents retrieved. All other functions
over S-expressions were defined from these basic functising the methods specified earlier for

the construction of recursive functions.
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A class of meta-expressionsor M-expressionswas defined to represent functions over S-
expressions. These were distinguished from S-expresbipuasing lower-case letters and different
forms of punctuation. For example, the function ‘ff’ retimg the first atomic symbol in an S-

expressions could be defined by the following M-expression:
ffix] = [atom[x] — x; T — ff[car[x]]]

By this point McCarthy had defined a class of data, the S-asgas, and a class of func-
tions over these data elements, or S-functions, reprasént®l-expressions. These two notations
were distinct: individual S-expressions could be represkiy meta-notation in M-expressions.
However, McCarthy's next step was to describe a method faresenting M-expressions by S-
expressions, “in order to be able to use S-functions for ngpkértain computations with S-functions
and for answering certain questions about S-functions”Qlsithy, 1960, p. 189].

Although McCarthy did not make this explicit, this was a foohGodelization. Godel had
showed how expressions denoting functions over naturabeusicould be encoded as natural num-
bers, and in exactly the same way, McCarthy encoded M-egjores which represented functions
over S-expressions, as S-expressions.

The purpose of this representation was to enable the defirofi“a universal S-functioapply
which plays the theoretical role of a universal Turing maehand the practical role of an inter-
preter” [McCarthy, 1960, p. 184ppplyis universal in the following sense: “if f is an S-expression
for an S-function f. .. then apply[f; args] and[frgl; ...; argn] are defined for the same values of
argl, ..., argn, and are equal when defined” [McCarthy, 186Q89]. apply, therefore, is capable
of ‘simulating’ every other S-function, given an encodirfgt@as an S-expression, in the same way
that the universal Turing machine can simulate the behawibany other machine, given a suitable
encoding of its machine table.

The Lisp programming system itself was based on a programbXR¥ich implemented the
universal functiorapply. ‘Lisp programs’ are S-expressions representing the fomgtto be com-
puted, and these S-expressions are then evaluated by ABBRpYan therefore fairly be described
as a programming language which to a large extent is basedamnawrk in formal logic. Unlike
Algol, however, Lisp is not presented as a formal language.

As noted above, Lisp is described by McCarthy as a progragnsiystem’, not a language.
The purpose of the system is to compute functions of S-egjmes; these functions are denoted by

M-expressions, but these must be translated into S-expnssiefore they can be submitted to the
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machine. In the context of the description given, it is ingible, and probably inappropriate, to
single out either of these notations as ‘the Lisp programgntanguage’. Furthermore, the technical
apparatus associated with the definition of a formal languagnissing from McCarthy’s paper.
Despite their name, M-expressions are not a metalanguathe sense of Tarski and Carnap, and
only an informal presentation of the legal forms of M-exgies is given.

This is not to say, of course, that a description of Lisp asrenéb language could not easily
be given, nor that McCarthy was unaware of the importancewhél languages; the discussion
of alternative formalisms, such as “linear Lisp”, at the efidhe paper is evidence to the contrary.
Rather, Algol and Lisp should be viewed as embodying two difgrent visions of how program-
ming language development could be rooted in logic. Rath&n seeing existing programming
notations as examples of a new type of logical formalism, &ty emphasized the continuities
with existing notations, showing how expressions direoigresenting recursive functions over a

given class of data items could be executed by a machine.

5.9 Conclusion

This chapter has traced one path through the developmenbgfgmming languages in the 1950s,
and argued that the desire to automate parts of the progmammi coding, process led, through
the development of systems for formula translation, to afeustanding of programming notations
themselves as being formal languages, a view made mostigiplithe Algol 60 proposal. Sec-

tion 5.6 argued that Algol was explicitly defined as a fornaduage, in the same way as logical
notations, and Section 5.7 described the way in which spde#itures of Algol were influenced by
logic.

This was not the only approach that was taken, however. Sangages, particularly those
intend for data processing applications, such as FLOW-NAGmd Cobol, emphasized instead the
extent to which programming notations could be made to rekematural language, as a means
of generating naturalness of expression and readabilithird approach, originating in the needs
of artificial intelligence, used the resources of mathecaatogic, but in a very different way from
Algol.

However, it was the Algol proposals that caught people'sraitbn, and largely inspired the
developments in programming languages in the followingadec These developments are the

subject of the following chapters.



Chapter 6

The Algol research programme

Compared to some other early programming languages, Alyuole® not particularly successful in

practical terms. Fortran and Cobol were very widely usedh@irtrespective application areas and
many systems using these languages are still in operatiotheaefforts made to update software
before the year 2000 revealed. Lisp has also had a long yig$os major implementation language
in the field of artificial intelligence. By contrast, the talp of Algol 60 was widely regarded as

disappointing, even by advocates of the language.

At the same time, however, Algol 60 is widely considered teehbeen of great importance in
the development of programming languages. In the prearoltieet published proceedings of the
1978 ACM conference on the history of programming languafpgsexample, it was described as
“an obvious landmark” and it was stated that “[m]ost theioedt and much practical, language and
compiler work since 1960 has been based on ALGOL 60" [Wea&lil981, p. xviii].

The conjunction of these two facts presents something ofzalpuhow did a language which
was a relative failure in practical terms later come to beuli@ty described as the most influential
of early programming languages? This question is madeatdbut not answered, in a detailed
history of the development of Algol 60 published by Bemer 8#69; in the introduction Bemer
gquoted a comment made by Ershov, that “the reading of thisryis. . does not enable the beginner
to understand why ALGOL, with a history that would seem madsapipointing than triumphant,
changed the face of current programming” [Bemer, 1969, f].15

This chapter suggests an answer to this question. What etahg face of programming, it
will be argued, was not Algol 60 itself, but rather a coherantl comprehensive research pro-

gramme within which the Algol 60 report had the status of aagmmatic achievement, in Kuhn’'s

149
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terminology. This research programme led to significanetigyments in the design and theoretical
understanding of programming languages, and also to patgposncerning the process of software

development, the subject of the next chapter.

6.1 Algol 60 as a concrete paradigm

The creation, publication and subsequent developmentgdlAhvolved a large number of people
in both Europe and the USA, and the language has a rich anddeslimented “politico-social
history” [Bemer, 1969]. The language acted as a catalysthi®rformation of many new groups
and initiatives, some of which are described in this sectidbhere were earlier examples of so-
cial groups forming around particular computing techn@egnotably the SHARE group formed
by users of the IBM 704 computer as a vehicle to enable therghaf code examples and work-
ing practices [Akera, 2001]. Algol in 1960 was not a fully dped technology, however, but a
partially implemented language proposal, and the grougisftiimed round it had rather different
purposes and trajectories.

Following the publication of the Algol 58 report, a numbercoimputing centres in Europe be-
gan projects to create implementations of the languagearly €959, representatives from these
centres met in Copenhagen and agreed to start a newskedtehtGOL-Bulletin”, to enable contin-
ued collaboration and communication; the first bulletin wiasulated in March 1959 [Naur, 1959].
As well as information about the development of “generaforgranslating ALGOL into machine
language”, the subject matter of the bulletins was expettidaclude discussion on aspects of the
language that were found to be unclear in the published repith a view to informing the subse-
guent description of the language.

The publication of the Algol 60 report was followed by a fluafijournal articles [Bemer, 1969,
p. 219-234]. Three topics were particularly prominent is therature. First was the issue of im-
plementation: unlike Fortran, which had been made publithenform of a working system, the
definition of Algol preceded any implementations, and ih&d out that many new techniques were
required in order to create Algol translators. A seconddapas discussion of the language it-
self: there were many proposals for changes to the langaagethe question of how such changes
should be approved while maintaining the hoped-for unaléysof the language proved to be dif-
ficult to settle. Finally, the form of the language descdptiand in particular the use of a formal

metalanguage to describe the syntax, gave rise to a lot@ishson [Floyd, 1964].
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Algol turned out to be rather controversial, and never seded in gaining universal support,
particularly in the United States where as early as 196 twvass a perception that the language had
failed. SHARE withdrew support for the language, and worlaoriBM translator stalled. Support
was much stronger in Europe, where the first translator had bempleted in 1960.

Despite these practical problems, the first institutiongdp®rt for work on programming lan-
guages emerged at this time, supported by the Internatieeddration for Information Processing
(IFIP). In 1962 IFIP formed a technical committee on progming languages (TC-2), with the
responsibility to look both at “general questions on fortaaguages, such as concepts, description
and classification” and also the “study of specific prograngrianguages” [Bemer, 1969, p. 197].
Atthe same time, a sub-committee, known as “Working groaf\2/G2.1)", was established to “as-
sume responsibility for the development, specificationrafidement of ALGOL” [Bemer, 1969, p.
198]. This strongly suggests that Algol had played a sigaifigart in focusing interest on a more
systematic approach to the study of programming languages.

At the same time, computing conferences and symposia begtaké a greater interest in
issues related to programming languages. In 1962, for ebeantipe general conference orga-
nized by IFIP was described as being “[i]n virtually all resfs . .. a programming-oriented confer-
ence” [Bemer, 1969, p. 202]. More specialized events sobbowied: a symposium on “Symbolic
Languages in Data Processing” was organized in 1962 by tieenational Computation Centre
in Rome [International Computation Center, 1962], and i64L9C-2 organized a working confer-
ence on “Formal Language Description Languages” [Ste@l6]L9As the name of this later event
suggests, attention was focused not only on programminguiges themselves, but also on the
metalinguistic techniques used to describe them. Theyt@table of Algol in this explosion of in-
terest in programming languages was commented on by, ambarspEdsgar Dijkstra, who wrote
that “through its defects [Algol 60] has induced a great nandf people to think about the aims of
a ‘Programming Language™ [Dijkstra, 1962b, p. 537].

By the middle of the 1960s, then, the study of programmingl@ges, and in particular an
approach treating programming notations as formal langsiagias sufficiently well established
to have attracted considerable institutional support @adgnition. The Algol 60 report played
a crucial role in this development as a “concrete paradigm’Kuhn's sense of an exemplary
achievement which is “sufficiently unprecedented to atteacenduring group of adherents” and

“sufficiently open-ended to leave all sorts of problems Far tedefined group of practitioners to re-
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solve” [Kuhn, 1962]. In recognition of its importance, thierase ‘the Algol paradigm’ or ‘research
programme’ will henceforth be used to refer to the traditidrwork on programming languages

inspired by the Algol 60 report.

6.2 Normal science in the Algol paradigm

In Kuhn'’s account, acquisition of a paradigm marks the niaguof a scientific field, and enables
a transition to ‘normal science’ in which effort is focused the solution of well-defined problems
using standard techniques. A comprehensive and highlyeintiial description of the problems and
methods of normal science in the Algol research programmneegiven by John McCarthy, who in
the early 1960s outlined a programme for the developmennadthematical theory, or science, of
computation, stressing the relationship between thisqeeg theory and mathematical logic: “[i]t
is reasonable to hope that the relationship between cotguiand mathematical logic will be as
fruitful in the next century as that between analysis andsmsyin the last” [McCarthy, 1963a, p.
69].

For McCarthy, the central problem that a theory of compatetiad to solve was a practical one:
“we would like to be able to prove that given procedures sgiven problems” [McCarthy, 1962,
p. 21]. The ability to do this would radically change the matof programming: “It should be
possible almost to eliminate debugging ... Instead of dgimgga program, one should prove that
it meets its specification” [McCarthy, 1962, p. 21]. This boas restated in 1965: “The prize to
be won if we can develop a reasonable mathematical theorgrapatation is the elimination of
debugging” [McCarthy, 1965, p. 219].

However, the existing theories of computability and finitécenata were oriented towards the
proof of general theoretical results, such as unsolvglihiéorems, and were unsuitable for applica-
tion to more concrete and practical problems. McCarthyettoee listed some of the specific results
and techniques that would be required, such as the abilitsatsform “an algorithm from a form
in which it is easily seen to give the right answers to an egjaivt form guaranteed to give the same
answers, but which has other advantages such as speed” {MgCED61, p. 225].

A prerequisite for the development of a theory of the destyge was the existence of con-
venient notation for describing the “entities with whichngouter science deals”, namely “prob-
lems, procedures, data spaces, programs representingdpres in particular programming lan-

guages, and computers” [McCarthy, 1962, p. 22]. For Mc@artis notation should take the
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form of a universal programming language, thus ruling oebtbtical notations on the one hand
and machine-specific languages on the other; Algol was itbescas “being on the right track but
mainly lack[ing] the ability to describe different kinds data’[p. 225] [McCarthy, 1961]. As a
preliminary, McCarthy described in detail a formalism danito Lisp, based on tha-calculus,
which included ways of recursively defining functions corgile on the basis of a given set of
primitive functions, and methods for defining new data spanderms of old ones. This notation
was not presented as a candidate for the universal langbagklcCarthy believed that the design
of programming languages could be systematized and im@royepplying the results of a theory
of computation to the task.

This chapter and the next consider in detail these two deagtpects of McCarthy’s programme.
This chapter examines how the problems of describing progriag languages and defining new
ones were approached in the Algol research programme, ahd following chapter the project of

replacing debugging with proof is examined.

6.3 The description of programming languages

As described in Chapter 1, a distinction between syntax anthatics had been described for logic
by Tarski and Carnap in the 1930s. This distinction was drapon by Backus in his treatment
of Algol 58 [Backus, 1958], and this approach was followedthy Algol 60 report. Syntax was
explicitly distinguished from semantics, and a formalizaedtalanguage was used to specify the
syntax, while the semantics were described in stilted EhgliThe success of this approach pro-
vided a powerful motivation for exploring further the aaliion of these metalogical notions to
programming languages.

The link to the earlier work on the formal language of logicswaade explicit by a number of
people, such as Saul Gorn who, as part of an extended regwajehbt into the “theory of mechan-
ical languages” [Gorn, 1962], produced a glossary of furglzal terms in the area [Gorn, 1961].
Gorn applied Morris’s threefold division between pragmstisemantics and syntax to the study of
mechanical languages, but gave slightly revised defirstiohich reflected the fact that program-
ming languages were intended to be processed by machines Wihile Morris had characterized
pragmatics as being concerned with “the relation of signistewpreters” [Morris, 1938, p. 6], Gorn
glossed this as follows: “We will ‘interpret’ the wordsser andinterpreterto have a mechanical

sense, i.e. to mean ‘processor” [Gorn, 1961, p. 337].
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The application of Morris’s scheme to programming langsageovides a clear example of
‘bridging’, in the terminology of Pickering’s scheme forrmeptual innovation discussed earlier.
However, the differences between programming languagddaic meant that the subsequent
phase of ‘transcription’, the application of moves in thé dbmain to the new, was not as straight-
forward as might have been hoped. This section examines sbiie issues that arose in this

process.

The role of syntax

According to the traditional view, the role of syntax was &fide the set of sentences comprising a
language by means of purely formal or ‘structural’ ruleg skemantics would then assign a meaning
to each of the sentences defined by the syntax, which couldftiie be understood as specifying
a class of ‘meaningful’ sentences. The role of syntax anchttare of the relationship between
syntax and semantics came under some discussion at the Rormpesium in 1962, however, and
there were signs that this distinction could not be applegdrogramming languages without some
refinement.

In the semantic account given by Tarski for first-order lpgie/as impossible to have a syntacti-
cally correct sentence to which the semantics do not assigeeaing. It was assumed, for example
by Gorn, that this property would hold also for programmiagduages. Christopher Strachey be-
lieved that this was the ideal situation, arguing that wheatalled the “integration” of syntax and
semantics would make it “impossible to make a statementtwiBisyntactically correct but seman-
tically meaningless” [Strachey, 1962, p. 102]. Howeverdithat this ideal could not be achieved
for programming languages: “For nonsense program | meathahenakes the machine work indef-
initely for example ... if you want a language powerful enlotg . .. specify all the programs that
you want to run, then we must allow the possibility of a largideing misused” [Strachey, 1962,
p. 103]. Strachey here describes a situation where thexsgiita programming language permits
‘nonsense’, or non-terminating, programs to be writtert, dny attempt to modify the syntax to
outlaw the offending programs would leave a language in lvini@any desirable and meaningful
programs could no longer be expressed. Although the extewhich this is seen as a problem
depends on the contestable semantic judgement that noiméging programs are to be treated as
meaningless, it does at least point to a significant diffeedmetween the formal languages used in

programming and logic, and suggests that the work of trgstgmm might not be straightforward.
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A more radical assault on the conventional metalinguistiese was made by van Wijngaarden
and Dijkstra, who introduced a notion of “syntax-free laages”, or more precisely, languages for
which syntactical rules did not have their conventionalction: “The main idea in constructing a
general language, | think, is that the language should nditubgened by syntactical rules which
define meaningful texts” [van Wijngaarden, 1962, p. 409].

Dijkstra later gave an account of the philosophy underlyimg view, in which meaning is inex-
tricable from the act of communication: “the reaction of riggdner determines what my utterances
mean” [Dijkstra, 1963, p. 33]. It follows, according to Ddjika, that to know the meaning of an ut-
terance is to be able to predict the reaction of a listenes @dnnot be done precisely if the listener
is a human being, and Dijkstra describes conversationsdegiliumans as devices which provide
feedback enabling one to improve one’s predictive abilityhe listener is a machine, however, as
in the case of programming languages, its responses carmtiegly predicted. The semantics of a
programming language can then be specified by “the desmmiptia machine that has as reaction to
an arbitrary process description in this language the bekagution of the process” [Dijkstra, 1963,
p. 34], the point being that in the case of programming laggaawve can tell from the text alone
what process will be executed.

Given such a description, “syntax does not have a definingtium’ [Dijkstra, 1963, p. 34].
The semantic description will tell us what the machine wal id response to any program text
presented to it, so syntactical rules are no longer needddfioe a set of meaningful expressions.
It may still be found useful to formulate such rules, but théil have only a practical value, to
illustrate structural relationships that exist betweemgpam texts and the machine’s responses, or

to make it easier to formulate texts that elicit a particuéponse from the machine.

The meaning of programs

As with syntax, the differences between programming laggeand conventional logic meant that
there was considerable debate about how the meaning of aapmogpuld be characterized, and
what form a semantic definition of a programming languagddcctake.

An early idea was to extend Backus's notation to deal witheriban just the syntax of a lan-
guage. Edgar Irons described a technique for “syntax @idecompilation” of an object language
such as Algol into a target language, typically machine cadd pointed out that a compiler “also

serves todefinethe object language in terms of the target language” [Ir@881, p. 51]. The
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technique adopted was to extend the syntactic productites mith clauses which described the
meaning of the expressions defined by a rule by specifyingaityet language expressions they
would be translated into. In general this would be expressed function of the meanings of the
subexpressions of an expression. Later work based on thisagh made the link with semantics
quite explicit. Feldman, for example, described the tatlgeguage in this scheme as a “seman-
tic meta-language” and described his overall system asgjiai“formal semantics” of the object
language [Feldman, 1966, p. 3].

This work forms a distinctive approach to the problem of fyety programming language se-
mantics, rooted in the practical problem of writing comgsléor the large number of new high-level
languages that were being developed. The hope was that le ogipiler-compiler’ could be
written which would automatically generate a compiler fareav language from its formal specifi-
cation. Two characteristic features of the approach dérdra this orientation. Firstly, the meaning
of a program was taken to be its translation into some othgyuage, often an idealized machine
code. A semantic definition of a language was therefore ataeapon of how to carry out this
translation in the general case. Secondly, the method drethieexisting work in syntax, struc-
turing the semantic definition according the formal ruleBrileg the syntax of a language. This
strategy therefore guaranteed a compositional semaiktecthiat developed for mathematical logic
and also preserved the traditional role of syntax as defithiaget of meaningful expressions.

As discussed above, however, the appropriateness of thasiacof syntax in the case of pro-
gramming languages was questioned, and the view that siesaohsisted primarily in transla-
tion also came under direct attack: at an ACM workshop on aeichl languages in 1963, Mc-
Carthy stated that “to describe semantics by means of alataorsrule is an incorrect thing to
do” [McCarthy, 1963b, p. 134], and similar views were expezb by Ken Iverson and Maurice
Wilkes.

An alternative approach was related to the existing practiescribed in the previous chapter,
of specifying the meaning of machine codes and pseudo-doglaetescribing the real or virtual
machine which interpreted the code. This technique wasexppd the new programming lan-
guages of the 1960s, but with a new emphasis on giving a fodefahition of the interpreting
machine. McCarthy hinted at this approach, stating thatafrlee goals of a mathematical theory
of computation was “[tjo represent computers as well as edatjpns in a formalism that per-

mits a treatment of the relationship between a computatimhthe computer that carries out the



CHAPTER 6. THE ALGOL RESEARCH PROGRAMME 157

computation” [McCarthy, 1961, p. 225], and both van Wijngkem and Dijkstra described abstract
machines which were, according to Dijkstra, “suitable nssfan the formulization of the semantic
definition of an algebraic language” [Dijkstra, 1962a, vaijngaarden, 1962]. McCarthy had him-
self explained the meaning of Lisp programs by giving thergkin of the ‘apply’ function which
evaluated them [McCarthy, 1960]. Although ‘apply’ was definn the same formalism used for
the Lisp language, it was the description of a mechanicalge® for evaluating Lisp expressions, a
‘Lisp machine’ in effect.

The machine-based approach to semantics was further gedetiuring the 1960s. In 1963,
Gilmore described a “Lisp-like” language, stating thaft‘js our belief that important purposes
can be served by defining the semantics of a programming éasghby defining an abstract com-
puter for which the programming language is the machinedagg” [Gilmore, 1963, p. 73], and
a year later Elgot and Robinson described a class of “ranalceass stored-program machines”,
emphasizing that thereby “a basis is provided for endowigm@mming languages with seman-
tics” [Elgot and Robinson, 1964, p. 365]. This general apphowas adopted in a project to define
the semantics of the programming language PL/I, about whialas stated “[tlhe method used
for the definition of a programming language is based on tfi@itien of an abstract machine de-
scribed by the set of its states and its state transitiontifumc[Lucas and Walk, 1969, p. 105]. By
the end of the decade, this general strategy was being edftoras theoperationalapproach to
programming language semantics [Lucas, 1972, Wegner]1972

However, in 1962 McCarthy had proposed a more abstract apprio which the details of the
computation performed dropped out of the semantic acctesting just the relationship between
the initial data presented to the program and the resultsadyzed. In general terms, he wrote,
“[tihe meaning of a program is defined by its effect on thesst@tctor ... In the case of ALGOL we
should have a functiofl = algol(r, &) which gives the valu¢’ of the state vector after the ALGOL
programm has stopped” [McCarthy, 1962, p. 27]. This approach was ekéed in a later paper
for a small subset of Algol, where it was explained that tlagestector included “the value currently
assigned to each variable and also the statement numbdrtatimiexecuted” [McCarthy, 1964, p.
3]. In this paper McCarthy also asserted that his approaskerantics “corresponds to the notions
of Tarski, et al, that are current in mathematical logic” [McCarthy, 19646p

It is interesting to note how this account of semantics dedtt the non-terminating programs

that Strachey wanted to describe as being meaningless. elnabe of non-termination there is
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no final state, so the semantic function is undefined for swolgrams. For some, this was an
objection to McCarthy’s semantic account: because it @higny account of the actions performed
by programs, it could not distinguish between, for exampl®, non-terminating programs which

were nevertheless performing very different computatiphsCarthy, 1964, p. 10].

In giving this account, McCarthy appears to have been trianglign programming languages
with established recursive function theory, much as he e ¢h the definition of Lisp. The syn-
tactic form and machine-based interpretation of prograntariguages like Fortran and Algol made
them appear quite different from traditional notationshsas theX-calculus, but at the semantic
level McCarthy suggested they were in fact similar, beirgg new ways of defining recursive func-
tions of their input data. McCarthy also suggested a stydimgdealing with Algol-like languages,
whereby a program would be translated into a single exmmestéfining the function computed by
the program [McCarthy, 1964].

This strategy was developed in greater detail by Peter lnanaio described a form of “Ap-
plicative Expression” (AE) based on thecalculus, together with an abstract machine which would
evaluate AEs [Landin, 1964]. This was soon followed by anliekpproposal for a program-
ming language based on AEs [Landin, 1966]. The semanticki®fldnguage were given an op-
erational definition by describing a machine which wouldcete AEs. For Algol 60, however,
Landin adopted McCarthy's proposal, arguing that Algolgseans could be translated into se-
mantically equivalent AEs; in fact, in order to deal with iemptive features of Algol, such as
assignment, an extended form of ‘Imperative AEs’ were uséth a suitably extended abstract
machine [Landin, 1965a, Landin, 1965b].

Landin’s work therefore combined two approaches to semsintihe meaning of an Algol pro-
gram was to be given by translating it into the language of AlEsthe resulting AE program was to
be understood in the traditional way by describing a mactumeterpret AEs. Christopher Strachey
proposed to go one step further, doing away with the needffabatract machine in explaining the
semantics of a language and describing “even the imperativts of a programming language in
terms of applicative expressions” [Strachey, 1964, p. 20hjs required some deviation from the
techniques used in conventional logic, however. For exapthe meaning of an expression in the
predicate calculus is built up in a strictly bottom-up wagrfr the meanings of its subexpressions.
In an assignment statement, however, variables are ietegpdifferently depending on whether

they are on the ‘left’, in which case they denote assignatatations in the store, or the ‘right’, in
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which case they denote storable values. This distinctiohdegn made explicit in connection with
the programming language CPL [Barron et al., 1963], and deioto get a compositional seman-
tics for programming languages, Strachey found it necgdsamake use of this idea, describing
how a subexpression could have an “L-value” or an “R-valuggehding on its context in a larger
expression.

Strachey developed his ideas further in the following yéais a comprehensive programme
that became known atenotationalsemantics [Tennent, 1976]. Although it had its roots in theai
of translating Algol programs into AEs, Strachey developatistinctive view of the role of syntax
which helped differentiate denotational semantics fromiexaaccounts of semantics as transla-
tion. Strachey felt that an emphasis on the syntactic digfirstof existing programming languages
obscured important, and as yet ill-understood, semangiasidand rather than describing a fixed
language he preferred to discuss “basic” or “fundamentaticepts [Strachey, 1967]. Following
McCarthy, he viewed details of syntax as essentially v, and worked instead with ‘abstract
syntax’, chosen to articulate clearly what he considerdzbtthe important semantic concepts. This
concern that the syntactic structure of a programming laggiclearly reflect its semantics was
shared by others in the field of programming language deaggythe following sections describe.

To summarize, then, the application of the metalogicalrisbn between syntax and semantics
to programming languages resulted in the early 1960s inéieldpment of at least three distinct
approaches to the problem of giving the semantics of progriaign languages. The translation-
based account was from the beginning associated with tlotigabtask of writing compilers, but
despite occasional proposals “to define languages by tbeipiters” [Garwick, 1964], became less
frequently referred to as an approach to semantics, compétk the operational and denotational
techniques, in part because of the “inscrutable” naturd@fsemantic description that a compiler

embodied [Rochester and Goldfinger, 1964].

Pragmatics

Compared with syntax and semantics, the semiotic notiorrafrpatics was rather underdevel-
oped in mathematical logic, and did not establish a veryratientity in the field of programming
languages. One contributory factor in this may have beeentsiaty as to whether it concerned
the relationship between programming languages and hus&s,as implied by Morris’s original

definition, or mechanical processors, as in Gorn’s refoatiuh. This ambiguity is reflected in the
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papers presented at an ACM conference in 1965 on “Prograghiranguages and Pragmatics”:
some sessions were devoted to topics in the machine progesfsianguages, such as ‘translation’
and ‘interpretive assembly’, while others considered #wirements for programming languages
that were to be used in specific application areas, such &timeaapplications and information
retrieval [ACM, 1966]. In an overview paper, Heinz Zemanisiteld four specific areas as being
relevant to the pragmatics of programming languages—densphardware and operating systems,
intended application areas and human users—but commédnatetiie are very far from any formal
treatment” [Zemanek, 1966].

One widely discussed aspect of pragmatics concerned tratiguesf whether different pro-
gramming languages were required for different applicaioeas. Distinctions were commonly
drawn, for example between so-called ‘scientific’ langsagech as Fortran and Algol, and lan-
guages such as Cobol which provided facilities for data rijgsuan that were felt to be necessary
for commercial applications. The perception of such défferes had implications for the design of

new programming languages, as the next section discusses.

6.4 Different philosophies of programming language design

Investigation into new programming language concepts,thadlevelopment of new languages,
continued throughout the 1960s. Conflicts between the lagsiemptions made by different groups
led to a more general debate on the principles that shouttedanguage design.

One approach is illustrated by the ‘New Programming LanguédPL), later to be known as
PL/l, whose development was started by IBM in 1963. The aiftissolanguage emphasized conve-
nience and usability: it was intended to be used by programime very wide range of application
areas, to be usable by both novice and expert programmetstatake a simple approach which
would permit a natural description of programs so that fexererwould be introduced during the
transcription from the program formulation into NPL’ [Radind Rogoway, 1965, p. 9].

NPL was intended to be a language that would be easy to prdgrdtshould not be necessary
to know every detail of the language before making prodeatise of it, and the language specifica-
tion should not place obstacles in the way of programmers gpecific design criteria suggested
a route to this goal. FirstAnything goeslf a particular combination of symbols has a reasonably
sensible meaning, that meaning will be made official” [Raatid Rogoway, 1965, p. 9]. Secondly,

‘modularity’ would allow programmers to remain in ignoranof aspects of the language which
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were not appropriate for their current task or level of ekiper “one cannot get a compile error by
leaving something out” [Radin and Rogoway, 1965, p. 10]. dwerall impression gained is that
NPL was intended in many respects to emulate natural, notdhrlanguages: the programmer,
or ‘speaker’, was allowed a great range and flexibility ofresgion, and it was assumed that the
interpreter had a considerable degree of sophisticatiahlig it to make out the intended meaning.

The desire to produce a language usable in different apiplicareas and the concern showed
for the experience of programmers working with the langusigggest that the NPL project was
primarily influenced by pragmatic concerns, as defined abdwecontrast, in accordance with
McCarthy’s overall goal of eliminating debugging, the Allgesearch programme placed more em-
phasis on the avoidance of errors in programming, and ed@weapproach to language design that
was more rooted in semantic issues.

In 1965 Dijkstra wrote a paper which considered how a “lonegpammer” could have con-
fidence that the results of a program were in fact those ie@iiDijkstra, 1965]. In some cases,
the results of a program can be directly checked, but in atbees this is not feasible. Dijkstra
considered the example of a program which tests the priynafiitarge integers. If such a program
generates purported factors for a large integer, thistreanlbe checked by direct calculation. If on
the other hand the program reports that there are no fatterprogrammer has to decide how much
credence to put in this report. In its general form, this ispistemological question. Very many
programs function as potential sources of knowledge, varatbncerning the primality of integers
or the size of a gas bill, and Dijkstra asked in what circumsta we can place confidence in the
knowledge generated by such programs, and what we can dorease this degree of confidence.

Dijkstra proposed an answer to this question which was besezh analogy between mathe-
matical proofs and computer programs. He considered matiieahproof to be the best available
model of how to gain confidence in the correctness of asssttiand planned to apply the lessons

learnt from proof to the task of programming:

In spite of all its deficiencies, mathematical reasoning@nés an outstanding model
of how to grasp extremely complicated structures with arbefiimited capacity. And
it seems worthwhile to investigate to what extent these gmawnethods can be trans-
planted to the art of computer usage. [Dijkstra, 1965, p. 5]

This analogy was to be exploited by adopting what a stratégyivade and rule’, whereby a com-

plex artefact is treated as an assemblage of simpler ones.
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The analogy between proof construction and program cartgiruis, again, striking.
In both cases the available starting points are given (axiand existing theory versus
primitives and available library programs); in both casesdoal is given (the theorem
to be proved versus the desired performance); in both cheesmplexity is tackled
by division into parts (lemmas versus subprograms and groes). [Dijkstra, 1965, p.
5]

It seems clear from this that Dijkstra thought of the acivaf programming as largely text-
based: a programmer should examine the source code of aaprpgnd arrive at a conviction of
what the program is doing in much the same way as a mathearatieads a proof and comes to
accept the truth of the result that is proved. The applicatibthese ideas to program development
are considered in the next chapter, but this approach aldcahzonsequence for programming
language design: designers should identify the charatitariof programming languages that help
or hinder the efficacy of programs as documents which engarmiwiction, and design languages
which gave programmers the best chance of writing correagrams.

This issue came to prominence in the debate within WG2.1tadbsuccessor language to Al-
gol 60. The dominant tendency within the group was towardsria fof generalization known as
‘orthogonality’, where “all possible combinations of two more independent concepts were al-
lowed” [van der Poel, 1986]. Given even a small number ofdasncepts, this approach would
quickly lead to a large and complex language; the altereatias “only to insert those possibilities
in the language as were seen fit for some purpose” [van dey Pag6]. The orthogonal approach
formed the basis for the language Algol 68, while an altéveatiew was put forward in a paper
by Hoare and Wirth, who described the characteristics oihguage that would be suitable for

Dijkstra’s purposes:

The perspicuity of programs is believed to be a property abéenefit to their read-
ers and ultimately to their writers . .. [A language’s] povaead flexibility should derive

from unifying simplicity, rather than from proliferationf @oorly integrated features
and facilities. As a consequence, for each purpose thetebwikexactly one obvi-

ously appropriate facility, so that there is minimal scopedrroneous choice and mis-
application of facilities, whether due to misunderstagdimadvertence or inexperi-
ence. [Wirth and Hoare, 1966, p. 414]

The next two sections describe how this principle was agghiepractice in the two areas of
control and data structures. This work formed a basis fonaigd approach to programming known
asstructured programmingwhich had a great influence on programming and program kgeu

design, as discussed in the following chapter.
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6.5 Logic and the design of control structures

The debate over program language design became partjchieaked over the design of control
structures, and in particular a controversy about the rbthejumps in programming. It had been
always been recognized that the conditional execution @ @nd the repeated execution of a block
of code were essential coding patterns, but in machine doeketwere implemented using jump
instructions to navigate around a program. In Fortran atet languages, unconditional jumps
were provided by means of a special statement, the so-cgliéal statement.

In addition to a primitive jump statement, programming laages gradually introduced spe-
cialized statements, or control structures, which endapesii these common patterns of control.
For example, Fortran'®0O statement provided a basic iteration facility [IBM, 195@jdathe con-
ditional expressions of Lisp made the conditional executibcode explicit [McCarthy, 1960]. Al-
gol 60 included both $or statement for writing loops, and aihstatement for conditional execu-
tion [Naur et al., 1960].

The supposed benefits of specialized notation for desgrithia flow of control had been com-
mented on by a number of people. For example, Hamblin hadewrihat “Control transfer’
instructions represent the biggest problem in this kind aftion ... there are some hopes that
control transfer may be unnecessary in other cases if a isuffig flexible system of conditional
instructions can be found” [Hamblin, 1957, p. 138-9], and®dcthy wrote of traditional notations
for recursive functions that “controlling the flow in this wé less natural than using conditional
expressions which control the flow directly” [McCarthy, 196. 237]. It was Dijkstra, however,
who brought the issue to prominence and linked it with theengemeral issue of the readability of

programs:

| have done various programming experiments and compaedltiGOL text with
the text | got in modified versions of ALGOL 60 in which the gattatement was
abolished and the for statement ... was replaced by a premigipetition clause. The
latter versions were more difficult to make: we are so familih the jump order that
it requires some effort to forget it! In all cases tried, hoem the program without the
goto statements turned out to be shorter and more lucickgidg, 1965]

The explanation that Dijkstra gives for the increase inigldnas specifically to do with the
termination properties of programs. Failure to terminatesually caused by faulty iterations: if
iteration is consistently expressed throughout a prognamdingle control structure, rather than by

a number of unstructured jumps, it is plausible that it wil dasier to tell from an examination of
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the program text whether or not it terminates.

Dijkstra’s comments about the benefits of programming withjomps raised the question of
whether it was in fact always possible to eliminate gotoestegnts. In 1966 Bohm and Jacopini
published a technical result on normal forms in an artifiimhchart language which was widely
interpreted as showing that it is possible to write a progfamany algorithm using only condi-
tional and iterative control structures, and hence as siptie dispensability of the goto state-
ment [Bohm and Jacopini, 1966].

The theoretical possibility of doing without goto statersedid not directly address Dijkstra’s
requirement for lucidity, however. As he later pointed dbgre is no a priori reason to suppose
that a goto-less program produced by means of Bohm and idéisapethod will be any more
comprehensible or convincing than one using goto statesn@ijkstra expanded on his argument
in a famous letter to the editor of the Communications of ti&VA which appeared under the
strap-line “Go To Statement Considered Harmful”:

More recently | discovered why the use of the to statement has such disastrous
effects, and | became convinced that gweto statement should be abolished from all
“higher level” programming languages (i.e. everythingeptc perhaps, plain machine
code). [Dijkstra, 1968b]

Dijkstra gave two distinct arguments for this recommeradatiThe first was related to a com-
ment made by Wirth and Hoare claiming that “[t]he notatiosialicture of programs expressed in
the language should correspond closely with the dynamictsire of the processes they describe”
[Wirth and Hoare, 1966]. Dijkstra made the same point a®¥adt “we should do ... our utmost
to shorten the conceptual gap between the static progranthendynamic process, to make the
correspondence between the program (spread out in tex¢)saiad the process (spread out in time)
as trivial as possible” [Dijkstra, 1968b, p. 147].

This argument is related to the requirement that a compasitistyle of semantic explanation
should be given for programming languages, with the canplfhat languages should not contain
statements which do not permit of such an explanation. @ensior example, a control structure
that defines an iteration. The meaning of this statemenhesénse of the computational processes
it gives rise to when a program is running, is determined leysyntax of that single statement: in
order to understand what controls the number of times thmatitem will take place, for example,
it is not necessary to look at any statements before or dftefdr statement itself. This can be

contrasted with a goto statement, which specifies a labettwimay be anywhere in the program:
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without knowing the location of the labelled statement,sitirnpossible to give the operational
meaning of the goto statement. The use of goto statemeetgfbine, suggests that the meaning of
a program can only be given globally.

Dijkstra’s second argument for the abolition of jumps wasatesl to interest in the relation-
ship between programs and proof that was generated by, éon@e, papers by Floyd and Hoare
[Floyd, 1967, Hoare, 1968]. This work is considered in ddtaithe following chapter; in 1968
Dijkstra made relatively informal use of it, arguing thatuderstand a program, we must be able
to interpret the values of the variables in it. However, “va@ interpret the value of a variable only
with respect to the progress of the program” [Dijkstra, 1968 147]. In order to do this, Dijkstra
claimed that it was necessary to be able to specify “textudites to the dynamic process”, or in
other words properties of the program text which will enaldeto characterize the point that the
dynamic process has reached when the program is running.

For example, in a program without jumps, the statementsdcbalnumbered, and the state
of the dynamic program could be given by simply stating thenber of the currently executing
statement. The numbering scheme needs to be made more gampdepe with iteration constructs
and subroutine calls, and Dijkstra demonstrated how thigddoe achieved. If a program includes
goto statements, however, the graph of potential pathsigiwvahe program becomes arbitrarily
complex, and there is no possibility of identifying the staf an executing program by any number

of textual indices. This argument was later summarized lisfs:

Investigating how assertions about the possible computgijevolving in time) can be
made on account of the static program text, | have concludatdadherence to rigid
structuring disciplines is essential ... sequencing gshbal controlled by alternative,
conditional and repetitive clauses and procedure caliserahan by statements trans-
ferring control to labelled points. [Dijkstra, 1969b, p.-&6]

Eliminating the goto statement did not, however, settlegihestion of what control structures
should be provided by a language. On the basis of practigareence and on Bohm and Jacopini’'s
theoretical result, it was accepted that programmers methdemeans to express the sequencing of
statements, and conditional and repeated execution ehstaits, but there were many ways to do
this, with a wide variety of control statements being defimedontemporary languages.

Initially, rather informal arguments were given for and iaga various constructs. For ex-
ample, Dijkstra referred to thior statement in Algol 60 as being “pompous and over-elaborate”

[Dijkstra, 1965], and Wirth and Hoare wrote that:
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The purpose of iterative statements is to enable the pragearto specify iterations in
a simple and perspicuous manner, and to protect himself fhenunexpected effects
of some subtle or careless error. ... Itis notorious that®th€OL 60 for statement

fails to satisfy any of these requirements, and thereforastid simplification has been
made. [Wirth and Hoare, 1966, p. 415]

For Dijkstra, a more principled way to evaluate differenhirol structures was to consider
their proof-related properties. The choice of control giuees should be subordinated to the need
to produce convincing arguments for the correctness ofrprog containing them, and not made
by appealing to their ‘power’ or the ‘usefulness’ they had ffwogrammers. In 1969, Dijkstra
made this point by stating that he had “focused [his] attenti.. on the questions ‘for what pro-
gram structures can we give correctness proofs without eitaloour, even if the programs get
large?™ [Dijkstra, 1969b, p. 85]. The same point is made enexplicit in his monograph on struc-
tured programming, published in 1972 but widely circulatedore that: “Why do | propose to
adhere to this sequencing discipline? ... For all threesygalecomposition—and this seems to
me a great help—we know the appropriate pattern of reasbfidikstra, 1972, p. 20]. Hoare
made a similar point: “there is a theory that a high-leveblzage feature should also simplify the
task of proving the correctness of programs expressed ilatigeiage” [Hoare, 1972a, p. 336].

In order to reason about conditional statements, Dijkgtealed to what he called “enumera-
tive reasoning”. In order to prove a given property, it migbtnecessary to consider a number of
different cases which together exhaust all the possslitilf the desired result follows from each
case individually, then it is proved by appeal to a theorerthefform(b > p A =b D p) D p. For
example, suppose it is desired to show that execution ofdlfmning statements will preserve the

truth of the relatior) < r < dd [Dijkstra, 1972, p. 7]:

dd:=dd/2;
ifdd<rdor:=r-dd

There are two possible cases, depending on whether or natldiion dd < r holds after
execution of the first statement, and Dijkstra showed thatith case execution of tifestatement
will leave the desired relationship true.

In order to reason about iterations, Dijkstra made use ohematical induction in conjunction
with a very simple form of statement, tiéhile statement, which repeats a statement so long as a
specified condition remains true. Suppose that a progran exasnine a sequence of valugs

whered; = D andd; = f(d;_1), and locate the first valug, which satisfies a given properpy-op.
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By a proof based on induction over the number of times thestantd := f(d) has been executed,

Dijkstra showed that the following statements will achiéwe required effect [Dijkstra, 1972, p. 8]:

\?vr}ne? non prop(d) dod := (d)
Dijkstra also provided a proof that the loop terminatesréfie kth iteration.

Dijkstra also gave an example of how enumerative and indeicdiasoning can be used to prove
the correctness of a small program [Dijkstra, 1972, pp. 42-The proof was presented in a style
typical of informal mathematical reasoning, consistingegplanatory text in English interspersed
with formally expressed propositions and pieces of progtext, but nevertheless Dijkstra pro-
fessed himself “infuriated” by the length and complexitytibé proofs obtained in demonstrating
the correctness of even extremely small program fragmemis,recognized the impracticality of
such proofs being carried out as a normal part of softwareldpment.

The solution proposed to this problem was the idea thatiogpt@gram structures should ac-
quire the status of theorems. For example, Dijkstra sugdesiat the conclusion proved about the

loop above could be considered as the “Linear Search Thépasm claimed that

when a programmer considers a construction like [the loawelbas obviously cor-
rect, he can do so because he is familiar with the constructigrefer to regard his
behaviour as an unconscious appeal to a theoreknbers although perhaps he has
never bothered to formulate it; and once in his life he hasiooed himself of its truth,
although he has probably forgotten which way he did it [Qiij&s 1972, p. 10].

In summary, then, this section has shown how specific prdgpésathe design of control struc-
tures in programming languages were strongly influencechbyldgical orientation of the Algol
research programme. A general desire to align the synt@oticemantic structure of program texts
prompted a move away from goto statements to more spedatiapetrol structures, the specific
form of which was motivated by a desire to make the correstmeegrams accessible to logical

reasoning, even if programmers made only informal and seband use of the logical results.

6.6 Logic and data structures

As well as the flow of control, the manner in which programniangguages enabled the description

and manipulation of data was extensively investigated en1t®60s. To a greater extent than with
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control structures, it was believed that the requirememtsléta representation differed in different
application areas. In the period around 1960, at least tistiact approaches can be identified.

Firstly, the so-called scientific languages such as FodrahAlgol 60 were acknowledged to
be rather weak in their support for different kinds of dataiththeir emphasis on numerical cal-
culation, scientific languages distinguished betweemgertand floating-point numbers, but textual
data was poorly supported. The only widely available datacgire was the array, which could
store a fixed-size collection of numbers: arrays enablethemadtical structures such as vectors and
matrices to be modelled.

However, the development of non-numerical programs in #ld bf artificial intelligence had
revealed a class of applications which manipulated syrobaliher than numerical data, and in
which the amount of data that a program would need to handbkthee structure of that data, could
not be predicted in advance. Languages were thereforeapmaklwhich enabled programmers
to define data structures of arbitrary size and complexhy: lhest known were the list structures
present in languages such as IPL [Newell and Tonge, 19601 aspdMcCarthy, 1960].

Finally, commercial data processing applications weraustcaned to handling files of data,
consisting of a set of records, each of which was in turn mgwefia number of fields or data
items which could be in a variety of textual or numeric formatanguages designed for these
applications, such as Cobol, provided the means to giveadlel@tdescription of the structure of the
files that would be manipulated by a program.

Attempts were made, both in practice and in theory, to urhifse different approaches. Prac-
tical proposals included a number of ad hoc suggestions dorfiorate the features from one
area into a language of a different type; for example, prajsosiere made to add support for
strings and lists to Algol 60 [Green et al., 1959], and somappsals for new languages, such as
NPL [Radin and Rogoway, 1965], attempted to include featfn@m all areas.

The general problem was summarized by Douglas Ross in theextonf a computer-aided
design system which needed to be able to model the propefti@svide range of objects: “be-
fore anything else we must provide for a completely generthiod of storing and manipulating
arbitrarily complex information from any source, and a pdwielanguage facility for describing
data forms and the desired manipulations of data” [Ross amlifiez, 1963, p. 306]. Ross's
solution envisaged “problems as being composed of inteectiedn-component elements of a

general type” [Ross, 1961, p. 147]. Ancomponent element provided a way of grouping together
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an arbitrary number of symbolic and numeric data items teigen“a single unit of information
about a problem, which specifies in each of its componentsatinibute or property of the ele-
ment” [Ross and Rodriguez, 1963, p. 306]. Elements weravaliato refer to each other, and the
resulting network of linked elements was described by Resspdex Ross viewed plexes as sim-
pler in general than list structures, in which each elemeutdthold only two data elements, and as
providing a way of uniting the manipulation of both symbdadied numerical data.

The integration of these ideas into Algol-like languages wansidered by Wirth and Hoare.
Their proposal for a successor to Algol 60 introduced thecephof arecord which could be used
to “represent inside the computer some discrete physicaboceptual object to be examined or
manipulated by the program” [Wirth and Hoare, 1966, p. 41f]s was essentially the same as
Ross’sn-component element, but the change of name made an expiikitd the terminology
employed in the field of data processing. With each recorddefised an associated value known
as areferencewhich uniquely identified that record: by including in oneaed references to others,
complex data structures equivalent to Ross’s plexes cailtbhstructed.

Unlike arrays, records could be created as required wheogaigm was running, thus providing
programmers with the ability to create data structures wisoze could vary dynamically according
to the requirements of a program. Thus this single mechapisnided a way of unifying the three
distinct approaches to data structuring found in programyntanguages.

Records with a common structure intended to capture “theralatlassification of objects under
some generic term, for examplperson town or quadrilateral’ [Wirth and Hoare, 1966, p. 417]
were considered to be grouped into equivalence classegjnkasrecord classesBy defining the
class of each record explicitly in a program, in the same vgayuemeric variables were declared to
hold integers or floating-point numbers, it was proposetittteacompiler could detect programming
errors that might be caused by mistaking the structure af@dandicated by a particular reference.

These proposals about records and record classes werpdratad into the Pascal language
[Wirth, 1971b]. Pascal defined a numberszfalar types, representing atomic data values such as
numbers, characters, user-defined symbols and referasatlesi(‘pointers’ in Pascal), and a number
of structured typesdy means of which data values could be combined to create owmplex,
structured data values. Structured types were definetyfmy expressionsand the form of these
type expressions, and by extension the data structureeddfinthem, were strongly influenced by

theoretical work on data structures that had been carriethqarallel with the practical language



CHAPTER 6. THE ALGOL RESEARCH PROGRAMME 170

developments.

An early theoretical proposal was made by McCarthy. As weelseen, McCarthy viewed
computation as the definition of computable functions oveeryclasses of data, but he pointed
out that the theory of data was not as well developed as thairoputable functions: “Procedures
operate on members of certain data spaces and produce nseofilather data spaces ... A num-
ber of operations are known for constructing new data spoes simpler ones, but there is as
yet no general theory of representable data spaces conpapathe theory of computable func-
tions” [McCarthy, 1962, p. 21]. McCarthy sketched the begigs of such a theory by identifying
data spaces with sets, arguing that data spaces could bedibfirrecursive equations which used
the primitive operations of Cartesian product, direct narémd the formation of the power set. For
example, the equatiofi = A @ S x S could be interpreted as defining “the set of S-expressions on
the alphabet A’ [McCarthy, 1961, p. 231-2].

This approach was further developed by Hoare, who develapkdory proposing that types in
programming languages could be understood as denotingfdéta values. Given a number of
basic types, defined by enumeration, further types couldefieatl by means of a range of opera-
tors, in the manner proposed by McCarthy. The link with sebtli was made explicit: “The types
in which we are interested are those already familiar to pratiticians: namely, Cartesian Prod-
ucts, Discriminated Unions, Sets, Functions, Sequencg@®anursive Structures” [Hoare, 1972b,
p. 93]. Some of these operations corresponded to existitagadiaictures: records, for example,
were understood to be elements of the Cartesian producedf/fies of their components. Others,
such as the set of subsets of a given set, corresponded tg mathematical operators which had
not been implemented in practical languages.

Pascal drew upon this theoretical work by defining a numbstrattured types many of which
were based upon the set theoretical operators describecc@aivhy and Hoare [Wirth, 1971b, p.
37]. For example, record types could be defined which cooredgd to the Cartesian product of
the types of the record components, and a “powerset steiafefined a type whose elements were
sets of elements of a given type.

It proved impossible, or impractical, for Pascal to impletielly Hoare'’s theoretical account.
For example, the powerset structure was limited so that polyersets of certain small scalar types
could be formed. Also, Pascal did not provide a data strectarresponding directly to the dis-

criminated union operation of set theory. Instead, recgpgd could include a number wériants
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identified by tags; by this means, a record type could reptesigher a Cartesian product or a
discriminated union.

Another area of difficulty was presented by the pointersetgrences, used to construct linked
networks of records. In Pascal, pointers were themselves \ddues, represented as values of
pointer types. A pointer could be stored in a record, sagwatlg structures analogous to Ross’s
plexes to be constructed. However, there is no obvioushgetrétic analogue to pointers: in set
theory, there is no intrinsic connection between one ddtaevand another, and no obvious way of
interpreting the computer-based notion of one data valamtimg to’ another. Instead, McCarthy
and Hoare had defined plex-like structures by means of reeusge definitions.

A recursive type definition would model a relationship bedwelata values andb by including
a copy ofb in a. By contrast, a Pascal representation would include a@otot) in a. However,
the semantics of these two representations are differemambe seen by considering the situation
where the value df is updated. With pointers, this update is immediately Wstb a, as it contains
only a pointer to the now updated valueboiWith a recursive type, however,now contains an out
of date copy ob, and clearly it may take significant programming effort tokexaure that this copy
is kept consistent with the changing valuebof

Despite these shortcomings and inconsistencies, howieascal’s type system was a product
of a collaboration between theory and practice similar #® ¢hse of control structures. In both
cases, the design of certain central aspects of programiamggiages was profoundly influenced

by theoretical considerations drawn from logic and setiyeo

6.7 Modelling data for information retrieval

At the beginning of the 1960s, the development of the twosacéascientific and data processing
programming systems were carried out largely indepengeMEvertheless, logic and set theory
played a significant role in the development of informatietrieval systems as well as in program-
ming languages oriented towards scientific applications.

The assumption underlying the design of the so-called sfielanguages was that programs
were written to perform particular computations, to geteegaset of results from a given set of input
data. This assumption lay behind McCarthy’s proposal, rifesd above, to model the semantics of
programs by their input-output functions. Data structusesh as variables and arrays were defined

as required in the program itself, in the blocks containimg ¢ode that manipulated that data, and
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it was assumed that it would be a relatively straight-fodvask for a program to read in the data
that it required for a particular run.

A different model was assumed in the field of data processpmi@tions: “an information
retrieval system consists of a file structure to index and laflormation . ..[and] a body of pro-
grams for performing the various processing tasks” [Gollhd Sams, 1962, p. 11]. Thus many
programs might be written to process the same set of datahwihérefore had to be understood to
exist independently of any particular program. This diffgrphilosophy of data had implications
for programming language design: in Cobol, for example,dbscription of the structure of the
external files and other data used by a program was placeddista division’ which was separate
from the ‘procedure division’ containing executable sta¢ats [Sammet, 1962].

Cobol encapsulated a model where data was thought of as ¢peinged into a number dies
each consisting of a set ofcords Elementary item records were ‘atomic’ pieces of data, and
records could be given a hierarchical structure in whichrestdirds at various levels could be defined
to enable a number of elementary items to be handled as & sin@jl However, from the beginning
of the 1960s proposals were also made to treat data in a msteaetoway. For example, Lionello
Lombardi objected to the separation of “descriptive” ange'aitable” statements, and proposed a
“boolean algebra of files” which would enable these two aspetinformation retrieval systems to
be better integrated [Lombardi, 1960].

A more comprehensive attempt along the same lines was tipesabfor an “information alge-
bra”, published in 1962 by the Language Structure Group@fX®DASYL Development Commit-
tee [Bosak et al., 1962]. This group had been establishe@58 fo study and make recommenda-
tions on the languages to be used for data processing agglisaThe information algebra aspired
to provide a theoretical foundation for information systerbased on “the concepts of Modern
Algebra and Point Set Theory”, which would guide the develept of future programming lan-
guages. The report enumerated various shortcomings itirexkilanguages, and hoped to address
them largely by defining a declarative rather than a proadramework.

The report gave the following general definition of how amimnfiation system should deal with

those aspects of the world relevant to a given application:

An information system deals with objects and events in tla werld that are of in-
terest. These real objects and events, called “entitieg”represented in the system
by data. The data processing system contains informatgn fvhich the desired out-
puts can be extracted through processing. Informationtadgarticular entity is in



CHAPTER 6. THE ALGOL RESEARCH PROGRAMME 173

the form of “values” which describe quantitatively or quatively a set of attributes or
“properties” that have significance in the system. [Bosadid.etl962, p. 190]

The designer of an information system for a particular aaibn should begin by defining all
the relevant properties of the entities involved in the eyagiion. With each property was associated
avalue setFor example, the value set associated with a propertyseptiag the salary of employ-
ees in a company might be the set of natural numbers. pféygerty spaceof the application was
defined to be the Cartesian product of the value sets defimedeawarious properties.

Entities were represented by points in this property spac@) other words by a ordered set
(or tuple) of values. This implies that each entity was associatetl witctly one value from the
value set for each property. Special null values were defioetbal with properties that might be
irrelevant for given entities.

The information algebra itself provided a way of definingugye of data points and operations
on these groups. This was intended to provide a means to dbfindata processing functions
required by a typical application.

It is interesting to compare the approach taken by the inddion algebra to that of researchers
interested in the application of mathematics and logic mgptmming. The same areas of math-
ematics were used to model data in both areas, namely sey thed abstract algebra, but in one
respect the approach taken by researchers in the Algolrebspeogramme differed from a purely
algebraic approach.

In the formal presentation of the information algebra, isvstated that “[tlhe Algebra is built
on three undefined concepts: entity, property and value5@Baet al., 1962, p, 191]. However, the
concept of an entity played little part in the subsequenmntdrdefinition of the algebra, referring
instead to the external objects being modelled. A methajcdd principle in constructing a prop-
erty space for a given application was that each entity shbalrepresented by a unique point in
property space.

A model constructed using the information algebra, thesgfoontained no direct representation
of the entities being modelled. An entity was representéglysas the collection of the values of its
properties at a given time. A consequence of this type ofeaptation is that, over time, a given
entity would be represented by many different points in propspace, as the values associated with
its various properties changed. The model itself providedepresentation of the fact that these are

properties of thesameentity at different times.
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This approach requires that care be taken in the selectidheo$et of properties to be used
in a given information system to avoid the situation whereearthan one entity is represented by
the same point in property space. For example, a payrolesyshat used only the properties of
‘employee name’ and ‘salary’ would be unable to handle theatibn where two employees had
the same name and salary. An information system designerenssre that different entities will
always have different values for some subset of the praseiti use. This was usually achieved by
defining properties such as ‘employee payroll number’ wiigkvould be guaranteed to be distinct
for each entity modelled by the system.

As discussed in the previous section, Ross had proposeceaaditgchnique for modelling data
about an arbitrary collection of entities using “plexes”“afcomponent elements”. Rather than
being based on an abstract data space, however, Ross'ssalapas based on an abstract view
of a computer’s memory, in which data about distinct erttitihich happened to share the same
properties could easily coexist at different locationshia store. They would be distinguishable by
the fact that the values referring, or pointing, to them wldog distinct. Thus, in contrast with the
information algebra, Ross’s proposal made use of datagiaitm of references, that was not part
of the application being modelled.

The distinction between these two approaches was maidtéater in the 1960s as more con-
crete proposals for database systems emerged. It wassimgefelt that even a file-based model
like Cobol’s did not recognize the centrality of data in mamplication areas. Particularly in large
commercial organizations, the data that was held could ligniisant economic asset and have a
lifetime much longer than that of the programs which mardfmiit. The same data set might need
to be processed by many different programs, for differemp@ses. An alternative perspective was
required, one which made data independent of programsayiafioit to take on a life of its own.
As Charles Bachman, a database researcher, put it in 197 &dke from files to database could
be viewed as a kind of Copernican revolution, challengirggérceived centrality of programs and
proposing a new model of computation in which programs wéseved as satellites of a central
data repository [Bachman, 1973].

A number of different database models were put forward,lmyt shared a number of character-
istics. Firstly, like the information algebra and Coboltatsmses were based on a model consisting
of files and records, with each record consisting of a numberimitive data items. However,

unlike the Information Algebra, which defined a single ufatiéntiated property space to cover all
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the data in an application, and Cobol, which assumed a tiolieof independently defined files, a
database is conceived of as a structured collection of dgg@eous files whose interrelationships
are specified by means of a single overarching databasma

Secondly, as databases are assumed to be independenti@flpagrograms, programs using
databases cannot in general access data items based dadhtdim in computer memory. Entities
can only be identified in a database by looking at the actualhddues stored for each. For this to be
possible, records must have some unique attribute digsihigng them from all other records in the
file. Entities often do not have this property: for example,aannot assume that the individuals in
a group of people will be uniquely identified by their names.g&t round this problem, the records
in a database typically include an attribute or attribukeswn as &ey, whose value is guaranteed
to be unique within the file.

Finally, a database schema will normally record informatout significant relationships be-
tween the entities. This is done by associating in some wakely values for related entities. The
key for one entity might occur in the record for another, olgipular record might store only the
key values of related entities. For example, one field in anckfor an employee may be the key
attribute for a file of departments within a company. The gaifithis field in an employee record
would enable a particular department record to be located, modelling the fact that the employee
works in a particular department.

A prominent proposal for database design at the end of thesl®@s for ‘network’ databases,
based on earlier work by Charles Bachman and formalized &yCBDASYL committee which
also maintained the definition of the Cobol languages [CODABata Base Task Group, 1969].
Network databases are based on two primitive concepts,|¢éhanfi the ‘set’. Sets are the vehicles
for representing relationships within a network databaséthe records which are related in a
particular way to a given record, such as the set of emplotyetavork in a particular department,
constitute a set of records, explicitly linked together lbyngers into a chain of records.

Bachman described the way a programmer worked with netwatbdses as “navigation”
[Bachman, 1973]; a similar metaphor was used by others,asdhy Earley who referred to “access
paths” through data structures [Earley, 1971]. Prograrmessing the data have various notions of
a ‘current location’, and by means of commands embedded imogrgamming languages such as
Cobol can update the current location and thereby move frata idem to data item within the

database. For example, suppose a program has to procdss edhployees working in a particular
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department. The relevant records are physically linkethéndatabase as part of a set; the program
will record the current position within this set, and a pagming operation is provided to move to
the next item in the set. This can be repeated until everyrddoahe set has been processed. Thus
programs access such databases ‘from the inside’, as it weeeord at a time.

An alternative model, the ‘relational’ model was introdddsy Ted Codd in a paper published
in 1970 [Codd, 1970]. There were two main differences betvithe relational and network model.
Firstly, the relational data model was based on a singletstring concept, the relation. This is
basically the set-theoretical concept of a relation, oit€3an product of sets, used here as a formal
model of records. No special data structure, such as CODASatE, was used to model rela-
tionships between entities. Rather, relationships werdatied by pairing up the key fields of the
related entities, and storing these pairs in a furtheric#laiSo whereas network databases had two
primitive concepts, files and sets, corresponding to tharinél notions of entity and relationship,
relation databases have one primitive concept, the ralatidiich models both. One advantage
claimed for this was that it kept the logical structure of ttada was independent of its physical
representation, thus making updates and modificationsetgttirage strategy easier, because they
would not necessarily imply changes to the application o using the database.

Secondly, data manipulation in the relational model dodspnaceed by means of record-at-
a-time navigation through the database. Rather, a numbdgghflevel operations on relations are
provided, the most significant of which is perhaps the ‘joen\ operation whereby two relations
can be combined into one. These operations are defined toomanhole relations, rather than on
individual records, and return new relations as their tesurhese resulting relations are logical,
rather than being physically stored in the database, bua@sdiructures they are identical to the
relations defined in the database schema. This means tlyatahebe used as the input to further
operations, thus enabling data manipulation to be defineddans of the repeated application of a

small set of powerful operations.

6.8 Conclusions

This chapter has discussed the use of logic and algebra iputemscience in the 1960s in the areas
of programming language design and the development ofetieal models for databases. It was
argued that the publication of the Algol 60 report catalytiesl formation of a coherent research

programme aimed at using logic as a foundation for undedsignand developing programming
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languages. This proposes an answer to Ershov’s implicitatieimquoted at the beginning of the
chapter, for an explanation of the influence of Algol 60 giitsrrelative lack of practical success.

Even in the context of this research programme, howeveruseeof logic was not simply a
case of applying theoretical results and drawing straigivfird consequences for programming
languages. Even fundamental concepts, such as the rolgstaksand semantics, could be con-
tested and significant amounts of work were required to kstahow logic could be applied to
programming languages. Nevertheless, significant readte obtained: in particular, an influen-
tial tradition of program language design was formulategkelol on the idea that the syntax of a
language should as far as possible reflect its semanticsléaaand unambiguous way.

Logic and algebra were also used to investigate the pregerfidata structures, both in the so-
called scientific languages and the field of data procesgiptications. In this area, the concepts
of syntax, semantics and proof turned out to be less usedul ttie tools of set theory and abstract
algebra, but nevertheless there are structural siméartietween the issues raised in both areas.

Perhaps the most striking of these can be described as a maydram a step-by-step approach
to computation to one which made greater use of high-levetaiprs described in terms of their
overall effect. In the area of control structures, this cansken in the introduction of control
structures, embodying frequently occurring patterns afijgatation, in place of the goto statement.
In the database world, the relational model with its set ofegal algebraic operations would in the
coming years supersede the network model with its reliancgawigation from record to record in
the database, a procedure in itself reminiscent of a jumpatipe.

However, this transition was incompletely carried out ingmamming languages themselves.
For example, Pascal incorporated a ‘network’ model of dathe form of records and pointers, and
despite Hoare’s attempt to provide a theoretical modelH@ in the form of recursive definition
of data types, later programming languages have preserfecmnaof programming which relies
on ‘navigation’ between data items. These developmentseitonsidered in Chapter 8; the next
chapter considers a different aspect of the Algol researogramme, namely the introduction of

logical ideas into the process of program development.



Chapter 7

The logic of correctness in software

engineering

This chapter describes the impact of the Algol researchrprome on the practice of software
development. The aim was to improve the quality of softwageetbpment and to ensure that
systems that met their users’ expectations and were coedpltonomically and on schedule.
This concern came to prominence in the mid-1960s in resptimseperceived ‘software crisis’
widely discussed at a NATO conference which brought the teoftware engineering’ to promi-
nence [Naur and Randell, 1969].

The approach of the Algol paradigm to these concerns wastdoFirstly, a particular notion
of “correctness” was defined for software, namely the eristeof a particular type of consistency
between a program and its specification. This was claimed tthé most important property of
a software system, and was characterized in such a way aski® ptausible the possibility of
applying a type of proof to software development.

Secondly, practical programming techniques were propegadh would increase the likeli-
hood of correct programs being developed. Some of thesaitpas drew upon the work on desir-
able properties of programming languages that was desciibine previous chapter, but from the
beginning of the 1970s this work was increasingly presemedway that made it accessible to the

software industry and not solely to researchers.
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7.1 Checking computations

The use of large-scale automatic computers raised theigaesgthow the correctness of the results
produced could be guaranteed. The meaning of ‘correctiresisis context changed as computing
and programming technology evolved and brought differssues to prominence. With the earliest
machines, whose reliable functioning could not be takergfanted, the problem was taken to be
that of checking the computation performed by the machinesek if a correct answer had been
produced. So, for example, Aiken and Hopper wrote of Markat tlof paramount importance in
the design of a sequence control tape, are the checks onrtiputation” [Aiken and Hopper, 1946,
p. 525].

Aiken and Hopper identified three distinct sources of efffanstly, errors could be made in the
mathematical formulation of the problem being solved. Bharsors did not differ in principle from
those that had been made in the context of manual computhievever, and familiar mathemati-
cal checks could be applied to detect them. Secondly, ezoasl be introduced by malfunctioning
hardware. These raised issues of reliability, but werdivelg easily dealt with by electrical engi-
neering methods for ensuring the reliability of circuits.

A third and novel source of error was introduced by the preegsnvolved in transferring the
mathematical solution of a problem onto the computer. Aiaad Hopper classified these as hu-
man error: “two major sources of human error, incorrect gwitettings and incorrect plugging, are
perhaps the most serious of all” [Aiken and Hopper, 1946,2b],5as in the absence of a feasible
mathematical check on the final results of a computationetleesors could easily go undetected.
The precautions required to avoid such errors were destabémeticulous precision of the oper-
ator’s part and careful checking of all manual operatiodsk¢én and Hopper, 1946, p. 525].

With the advent of stored-program machines, the manuaktipes involved in setting up the
machine to perform a particular calculation were no longguired, and the importance of the
design of the sequence of operations to be carried out was magiicit. At the conference held in
Cambridge in 1949, J. C. P. Miller discussed the errorsragisiom “[p]Jrogramming and coding the
[mathematical] solution for the machine” [Miller, 1949].

‘Programming’ here refers to the design of a suitable algorito perform a calculation, and
programming errors correspond to the mathematical erdmstified by Aiken and Hopper; it is
noteworthy that they did not identify the coding processerby the algorithm was translated

into machine code instructions, as a separate source akerEyrors in coding were only grad-
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ually recognized to be a significant problem: a typical eadynment was that of Miller, who
wrote that such errors, along with hardware faults, coulddxpected, in time, to become infre-
quent” [Miller, 1949]. Two years later, however, Maurice Ikdis and his colleagues reported that
“such mistakes are much more difficult to avoid than might kgeeted” [Wilkes et al., 1951, p.
38], and similar comments were made by others [Brooker £18h2, for example].

Programming and coding errors are design errors: unlikdwene errors, they are not caused
by mechanical or electronic failure, and so cannot be rechdweincreasing the reliability of any
device. A variety of techniques for preventing such erroeserconsidered, including the inspection
of programs to reveal common mistakes, the inclusion oftexidil code to check the results being
obtained, and the automation of the programming procesi$. itthe use of library subroutines was
also found to reduce errors: as these contain reusable eofbgrping various common tasks, they
were used frequently and were found more likely to be fremfesrors than new code.

During this early period much emphasis was placed on thedamoe of error by uncovering
mistakes before a program was executed, and there is ligigion of testing, understood as the re-
peated execution of a program with particular data values/fich the expected results are known,
as a technique for identifying errors. The scarcity and egp@®f machine time appears to have ruled
out such an approach: Aiken is reported as having had “vitlg fiatience for an error-infested trial
session” [Bloch, 1999, p. 97], and Wilkes refers to the amadfimachine time that could be lost
running erroneous programs.

Initially, then, the notion of correctness was applied galie to the computations carried out
by an automatic computer. Correct computations were takdse tthose which produced correct
results, although it was not always easy to tell which theseew”It cannot therefore be assumed
that if a program apparently operates correctly it is givimgrect results, and careful numerical
checks must always be applied” [Wilkes et al., 1951, p. 4h Toding process gradually emerged
as a significant source of errors, and the desirability oficady the number of coding errors was
recognized. Correctness was understood to be a productmyf faetors, however, including the
algorithm used, the coding of it for a particular machiney #brary routines utilized, and the
physical machine itself: as Miller put it[d]ll stages must be fully checked if a satisfactory solution

is to be obtained” [Miller, 1949].
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7.2 Debugging and testing

In the 1950s, increased experience of programming, andriicpiar of the problems of developing
larger software systems, led to the development of new teaba and approaches to the problem of
program correctness. Increasing machine reliability ¢eshore emphasis being placed on mistakes
“arising because the orders or data presented to the maahéneot those required to obtain the
results sought” [Gill, 1951]. Initial optimism had given w#o a belief that such errors were not
“a temporary evil, due to lack of experience”, and “somerdite has, therefore, been given to the
problem of dealing with mistakes after the programme hasibg and found to fail” [Gill, 1951].

Gill did not feel that detecting that an error had occurreds wee significant issue: at least
for programs performing computations, “[i]f its presensenot immediately apparent, it will be
detected by the arithmetical checks which must be incotpdrim every calculation” [Gill, 1951].
Rather, the immediate issue was to locate and correct the erprocess that came to be known
asdebugging Standard test tapes were used to diagnose faults in thatmpeof the machine
itself, and a variety of techniques for diagnosing programnore were introduced, such as push-
button operation in which the program was run manually, osériction at a time. Many of these
techniques had severe disadvantages: push-button aperir example, was exceedingly slow
and expensive, and prevented a machine from being usedhiier wbrk.

A promising direction of research was to investigate apgiea which used the machine itself to
assist in debugging. As with automatic coding, programmen® quick to realize that the repetitive
aspects of their work could be carried out by machine. Gilediged different “checking routines”
in use on the EDSAC, the most useful of which interpreted gnarm line by line and printed out
the function letters of the orders being executed, thusvaiip the programmer to trace the history
of the program execution. Similar approaches were adogtethar computer installations. For
example, Ira Diehm described how the SEAC computer of théoNaltBureau of Standards in the
USA was used to analyze coding errors by means of techniqugsas the use of “breakpoints”
at which program execution could be interrupted, and anofaonitor” checking routine, among
others [Diehm, 1952].

The development of large systems raised further unantaiparoblems, and in 1956 Her-
bert Benington described the lessons drawn from experigaiteed on the SAGE air defence sys-
tem [Benington, 1956]. Benington described a process ®fphoduction of a large-program sys-

tem” which surrounded the coding activity with a prelimipatage of preparing specifications, and
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a subsequent stage of testing the program produced agaisgecifications. The detection of er-
rors was no longer felt to be the unproblematic activity ored by Gill: the tests to be carried out
were themselves planned and specified, and a clear distinetas drawn between the detection of
errors in a testing activity, and their location and coiiatin debugging. Debugging itself was, as
on other systems, partially automated by means of a systegrgm known as the “checker”.

At the same time, Benington felt that there were limitationthe use of testing as a method of
ensuring correctness. It was, he wrote, “debatable whetlgogram ... can ever be thoroughly
tested—that is, whether [it] can be shown to satisfy its gipations under all operating conditions

. one must accept the fact that testing will be sampling onl many sad experiences have shown
that the program-testing effort is seldom adequate” [Bgioin, 1956]. Like debugging, the testing
process could be automated by programs which performetiftstsumentation” using simulated
live inputs.

It was widely expected that the development of automatigmammming and the use of pseu-
docodes would reduce the frequency of programming erroriehrd believed that “[t]he trend
toward automatic performance of the clerical parts of thdirap process should reduce the num-
ber of coding errors” [Diehm, 1952, p. 19] and Gill wrote thgjt is to be hoped ... that many
of the tiresome blunders that occur in present-day progresnmill be avoided when programmes
can be written in a language in which the programmer feelserabhome” [Gill, 1953, p. 291].
This expectation was soon found to be ill-founded, howewsie early programmer recalled that
“[t]he only place where we made a mistake ... was believiag When FORTRAN came along we
wouldn’t make any mistakes in coding”, and cited a surveychhindicated that Fortran programs
typically had to be compiled up to 50 times before they wereem [Bemer, 1984].

The increasing use of pseudocodes raised the question dbésito carry out debugging: ini-
tially, debugging efforts were directed towards the maeltiode generated from the pseudocode, but
it was recognized that it would be more convenient if a progveritten in a symbolic pseudocode
could be debugged by examining that code rather than theingachde. Katz discussed the issues
raised by debugging programs written in pseudocode; afseussing various tools for perform-
ing “symbolic debugging” of pseudocode programs, howelierrestated the belief that a much
lower frequency of programming errors would obtain whemipdling techniques are sufficiently
improved and our pseudo-codes are completely natural amglesito use” [Katz, 1957, p. 21]. By

the end of the decade, Gill was suggesting a two-level apprtathe debugging problem, where
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“experts” would want to debug machine code and “novices” @aquire debugging information
presented in terms of the “hypothetical machine which igaliged by the user” [Gill, 1959].

With increasing reliability of hardware, then, the codiray, programming, activity became
widely recognized to be the most significant source of elirocemputer programs, despite repeated
expressions of optimism that improvements in the desigmdés would remove this problem. Cor-
rectness became understood more as a property of the prégaarof the overall computation, and
testing and debugging were identified as the key techniquegléntifying and locating errors in

programs.

7.3 Proof and program development

One of the goals of the Algol research programme was to atitie resources of logic to increase
the confidence that it was possible to have in the correctoeasprogram. As McCarthy put it,
“[iinstead of debugging a program, one should prove thatdets its specifications, and this proof
should be checked by a computer program” [McCarthy, 196222). McCarthy thus envisaged
using the computer to automate the routine or mechanic# pathe proof-checking process, as
was already being done in the areas of testing and debugging.

The limitations of testing that had been pointed out by Betuin were further articulated, by
Dijkstra in particular, and developed into a more genemgiarent for the necessity of stronger tech-
nigues to demonstrate the correctness of programs. Théhtetch computer passes an acceptance
test, according to Dijkstra “only says that in these spedtdst programs the machine has worked
correctly” [Dijkstra, 1962b, p. 537], and does not permitagonclude that the machine will work
correctly when presented with other programs. In its stmgctthis is similar to an argument against
induction, the point being that from a finite set of obsevagi nothing can be inferred about future
or unobserved events. Similarly, when a program fails a te&t can be taken as evidence of an
error in the program, but passing a test only demonstraeoitectness in one particular case. As
Dijkstra later put it epigrammatically, “Program testingncbe used to show the presence of bugs,
but never to show their absence!” [Dijkstra, 1969b, p. 85].

In 1966, Peter Naur described it as “deplorable . .. thatdébalar use of proof procedures ... is
unknown to the large majority of programmers” [Naur, 19663p0]. In Naur’s view, an algorithm
performed a transformation on some data, and the role ofa pras “to relate the transformation

defined by an algorithm to a description in some other terragally a description of the static
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properties of the result of the transformation” [Naur, 1966 311]. To incorporate proof into
the program development process, Naur proposed a metlgydadoich would start with a static
description of the properties of the algorithm, then “camstan algorithm ... using examples and
intuition to guide us” [Naur, 1966, p. 311], and finally protheat the algorithm had the required
properties.

One difficulty in the way of constructing proofs of programgsas from the semantic differ-
ence between the assertions that describe the transformairied out by an algorithm and the
imperative program code that describes how the algorithlinpeiform the transformation. Naur
described this as the problem “of relating a static dedonpif a result to a dynamic description of
a way to obtain the result” [Naur, 1966, p. 312]. Observirgg ttme way to follow the execution of
an algorithm was to look at “snapshots” describing the datd im the variables at different times,
he proposed a technique of “General Snapshots” which wantldiescribe individual data values,
but rather define predicates which the program data showyal satisfy at specific points in the
execution of the program. By appealing to properties of tlogmam code, it could be established
that the general snapshots would always be true when a gipnagram reached them. The snap-
shots would therefore give a static description, in prapmsal form, of the transformation carried
out by the program. This could then be related to the spetiditéo demonstrate the correctness of
the program.

A similar approach was proposed by Robert Floyd, who put &@dn‘'the notion of an inter-
pretation of a program: that is, an association of a projposivith each connection in the flow of
control through a program, where the proposition is asdddéold whenever that connection is
taken” [Floyd, 1967, p. 19]. The correctness of a progranmdcthen be obtained “by an induction
on the number of commands executed” [Floyd, 1967, p. 19]blema proofs of propositions of
the form “[i]f the initial values of the program variablestiséy the relationR;, the final values on
completion will satisfy the relatiolR,” [Floyd, 1967, p. 19]. Floyd made the issue of semantics
explicit, referring to his technique as a way of “assigningamings to programs”.

The technique of using propositions to make assertionstgivoperties of program executions
had, by 1966, quite a long history. For example, Richard Bldescribed his practice in program-
ming Mark | in 1944 as follows: “I carefully annotated the eodsing mathematical symbolism
pertinent to the problem being solved. | marked the quastibeing transferred as well as the loca-

tion of partial results in order to assist in tracing the fldithe program, and | maintained a dynamic
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series of ‘snapshots’ of the storage register contentseapribgram progressed” [Bloch, 1999, p.
94].

Similarly, von Neumann and Goldstine, as part of their témpia of flow diagrams for pro-
gram development, had observed that “[iJt may be true, tHangver [control] actually reaches
a certain point in the flow diagram, one or more bound var@bldl necessarily possess cer-
tain specified values, or possess certain properties, @fysatrtain relations with each other”
[Goldstine and von Neumann, 1947, p. 92]. Such propertie® wecorded in speciassertion
boxesat various points in a flow diagram and used to argue for theectress of the algorithm
depicted. In a paper delivered in 1949, Turing adopted vouniNgn’s notation and made the
connection with program correctness explicit, writing]fiv can one check a routine in the sense
of making sure that it is right? ... the programmer should enakiumber of definite assertions
which can be checked individually, and from which the cdmess of the whole programme easily
follows” [Turing, 1949]. However, despite these suggawioit was only in the context provided
by the Algol research programme in the mid-1960s that theofisessertions was systematically
researched and serious attempts made to apply it to prograppractice.

The use of general snapshots, or assertions, to prove trectmss of programs required that
arguments could be made about the effect of individual stateés on program data. Naur made such
arguments informally: “suppose thdfi] > Alr] is true. Then clearlyA[s] is the greatest among
the elements up td[:]. Changingr to: as is done in the assignment then makes it again true to say
that A[r] is the greatest” [Naur, 1966, p. 324]. To formalize such argnts required a definition of
program statements in terms of their effect on the asserfiveceding and following them. Such
definitions could act as axioms and rules of inference inttoatng proofs of programs.

A first attempt to give such rules was made by Floyd, who deffoedach type of statement a
condition “guarantee[ing] that whenever a command is redadly way of a connection whose as-
sociated proposition is true, it will left (if at all) by a coaction whose associated proposition will
be true at that time” [Floyd, 1967, p. 19]. Floyd only applide technique to a flowchart repre-
sentation of programs, however, but his ideas were sooreajdpy Hoare to a textual programming
language.

Hoare made a strong and explicit connection between progmagand logic, stating that “all
the properties of a program ... can, in principle, be founidfium the text of the program itself by

means of deductive reasoning”, and his paper aimed to ‘titeithe axioms and rules of inference
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which underlie our reasoning about computer programs” feloB969, p, 576].

Hoare’s logic was based on statements of the fétfif)} R, which were to be interpreted as
meaning “[i]f the assertiorP is true before initiation of a prograr®, then the assertio® will
be true on its completion” [Hoare, 1969, p. 577]. Axioms ie #ystem defined the properties of
individual statements, and inference rules defined thegutigs of control structures. The axiom

for the assignment statement was given as

- Py{z == f}P

where ‘P, is obtained fromP by substitutingf for all occurrences of” [Hoare, 1969, p. 577].
Hoare took as the control statements in his example langihage previously identified by Dijkstra
as giving rise to particularly simple patterns of proof. $Hor iteration, he gave the following

inference rule:

If +PAB{S}P then- P{while BdoS}-B AP

This rule shows what can be asserted of an iteration coattbl a while statement, given a previous

demonstration of a certain property of the statement, agnara fragmentS that is being iterated.
Hoare’s proposal, then, completed the project of showing &ibleast some program language

constructs could be embedded in the familiar logic of pramoss, thus enabling proofs about

algorithms and programs to be carried out using the existiaghinery of formal logic.

7.4 Constructive methods

The existence of a candidate proof theory for programs dicsatile the question of how proofs
of programs could be applied in practice, however. The nugtogy proposed by Naur, whereby
a program created using “examples and intuition” was sulesgty proved to be correct, had the
disadvantage that the insights provided by the proof the@me not used in program development,
and it was found in practice that it was rather difficult towmgnathematically about existing pro-
grams: the arguments needed to prove the correctness everydfivial programs turned out to be
rather long and tedious.

An alternative approach would be to employ a developmertga®which would guarantee that

the resulting programs were correct. Such a process haddoglared by McCarthy, who assumed
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as a prerequisite a theory stating when two programs or ano@ragments were equivalent. Given
such a theory, transformations that preserved equivaleoukl be defined and “used to take an
algorithm from a form in which it is easily seen to give thehtiggnswers to an equivalent form

guaranteed to give the same answers but which has othertagearsuch as speed [or] economy of
storage” [McCarthy, 1961, p. 225].

This idea was taken up by Dijkstra, who in 1968 published sepauoitlining what he called
“a constructive approach to the problem of program coresgh [Dijkstra, 1968a]. Rather than
proving the correctness of an existing program, Dijkstrated to tackle the problem of deriving a
correct program from “the specifications of the desired dyisdbehaviour”. Taking as his example
a simplified version of a multiprogramming problem, Dijlstyave as the starting point of the
derivation a simple and high-level version of the requireagpam, without making clear whether
this was intended to be a specification of the required progm a form of it which could easily
be seen to be correct.

Steps in the derivation process involved the introductibwaniables enabling the required be-
haviour to be more precisely specified, the definition of @sses involving these variables, and the
further articulation or refinement of the program to enshed the assertions are satisfied at the ap-
propriate times. The style of argumentation used was recenit of informal mathematics: Dijkstra
stressed that he was not attempting to derive a programnaatfdarmal system, and that significant
“mathematical invention” was required in the refinementcpss. Nevertheless, the emphasis was
firmly placed on guaranteeing program correctness, and legs used to justify individual steps in
the argument.

Naur then proposed an approach which would combine theeearbrk on assertions and cor-
rectness with the constructive approach suggested bytiijkdaur, 1969]. Naur proposed iden-
tifying variables in terms of which the program requirenseabuld be more precisely stated, by
using assertions, or general snapshots. “Action clustees& then defined to carry out the required
operations on these variables; an action cluster was asegoé program statements which would
always be performed as a whole and whose effect could beatkarzd in terms of assertions. The
correctness of the final program could then be assured byieiarthe relationship between the
assertions defining the action clusters.

Hoare subsequently combined the ideas of constructivelaf@awent with the formal logic of

programs, giving a formal account of the development of gorithm to perform certain manip-
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ulations on an array of data [Hoare, 1971]. He began by gieingnformal explanation of the
algorithm, but the development of a corresponding progras earried out completely formally.

Hoare started by giving a “rigorous formulation of what id®accomplished”, in the form of
predicates defining the assumptions made at the beginnthg pfogram and the required final state
of the data being manipulated. As with Dijkstra and Naur,dbaeral method for refinement that
Hoare proposed started by introducing new variables reduily the program, and defining their
properties. Statements could then be written to solve tieeativproblem using the new variables,
and these statements could be proved correct using theofuttes program logic. So after the initial
introduction of two variables, Hoare could write: “At thisipt, the general structure of the program
is as follows:

m:=1.n:=N;

while m < ndo “reduce middle part”
Furthermore, this code has been proved to be correct, movtiht the body of the contained iter-
ation is correct” [Hoare, 1971, p. 41]. Iteration of this pedure allowed Hoare to demonstrate a
complete program together with the annotations requirgittoonstrate the correctness of the code
using the rules of program logic.

However, Hoare was careful to point out that the procedutendt, in fact, prove that the final
program was absolutely correct. Firstly, a separate praf sequired to show that the program
would terminate. Secondly, there were aspects of the pmograich were not covered by the initial
formal requirements: for example, the algorithm was meardarrange the data in a given array, but
the initial requirements used in the derivation of the papgid not state that the array contained
the same data at the end as at the beginning. He commenteil W difficult to formulate
this requirement perspicuously, and that its inclusion lfaignificantly increase the length and
complexity of the proof.

Hoare described the method as “top-down ... split the psoods a number of stages, each
stage embodying more detail that the previous one” [Ho&@11p. 45]; a similar approach was
adopted, though in a less formal manner, by Niklaus Wirthrflyil971a]. For Wirth, “[iin each
step, one or several instructions of the given program aterdposed into more detailed instruc-
tions”, the process terminating when a complete executatdgram in the desired language is
obtained. Individual steps, known efinement stepsnplied that some design decisions had been

taken, often involving the introduction of new variables.irtWs starting point resembled that of
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Dijkstra rather than Hoare: he did not attempt to give a fdroharacterization of the problem to
be solved, but instead presented a rather high-level progrhich was supposed to be an accurate
rendition of the algorithm proposed for the solution of tmelpem.

By the early 1970s, then, McCarthy’s programmatic suggestabout program transformation
and proving the correctness of programs had been givenetenitrm for imperative languages as
a methodology for program development, namely stepwisaemident, and a supporting logic by
means of which such a development could be shown to deliesapty correct programs.

This raised the possibility, in principle at least, of tirgtprogramming as a purely formal ac-
tivity, in which refinement steps corresponded to the apfibn of inference rules in the appropriate
calculus. A number of heuristics were proposed to assistisnorocess, notably the introduction of
auxiliary data required in the program, together with theecfragments necessary to work with the
new data.

This in turn raised the possibility of the extent to which fr®@gramming process could be
automated. As Floyd saw it, there was an inescapable roleufoian creativity, because of the very
large number of programs that might satisfy given input antpat specifications. He imagined
an interactive process of design, in which the checking dividual refinement steps and similar
mechanical aspects would be handled by a computer, with tie aneative design decisions being

generated by the human programmer [Floyd, 1971].

7.5 Specifications and correctness

With the development of constructive methods, correctmessgeneralized from a simple property
of programs to an equivalence relation between differengiams which could be proved to have
the same effect, or to implement the same specification.rmogpecifications, however, were nor-
mally only stated informally, and the technique of stepwisfinement recommended starting with
a simple program whose correctness was self-evident ambtlicdeed to be formally established.
In his attempt to produce a completely formalized progranivdgon, however, Hoare had also

stated the requirements for the example program formaihing the assumptions made about the
data at the start of the process and the required propehisttshould have at the end. This
more formal notion of program specification quickly becamdespread. For example, Manna
and Waldinger proposed automating the process of progragiagenent, using automatic theorem

provers. They formalized the “specifications for the progta be written” as pairs of predicates,
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an “input predicatep(7) and anoutput predicate)(z, z)” and claimed that “[ijn order to construct
such a program, we prove the theorévi®) [¢(Z) D (3z)vy (7, Zz)]” [Manna and Waldinger, 1971, p.
152].

With this increased explicitness and formalization of tb&an of a specification came an asso-
ciated change in what was meant by the correctness of a pnodteeviously correctness had been
thought of primarily as a property of programs, but now itdomee understood as a relation between
a program and its specification, thus making explicit soingtthat had hitherto been assumed im-
plicitly. For example, Liskov and Zilles believed that inngeal “[w]hat we are looking for is a
process which establishes that a program correctly impisraeonceptwhich exists in someone’s
mind” [Liskov and Zilles, 1975, p. 7]. The effect of incredsiermality, however, was that “spec-
ification is interposed between the concept and the programs ... arwbthectness of a program
is established by proving that it is equivalent to the speaiion” [Liskov and Zilles, 1975, p. 8].
While recognizing that the equivalence between concepspadification could not be formally es-
tablished, Liskov and Zilles argued that, at least for paogg which were primarily intended to be
used by other programs, the “hierarchical nature of thefgramess” meant that “the concept which
[a program] was intended to implement can safely be ignofieidkov and Zilles, 1975, p. 8]. The
notion of correctness as a relationship between a programa areferably formal specification was

widely adopted:

To determine whether a program is correct, we must have say®fspecifying what

it is intended to do; we cannot speak of the correctness obgram in isolation, but
only of its correctness with respect to some specificatiéiiter all, even an incorrect
program performsomecomputation correctly, but not the same computation that th
programmer had in mind. [Manna and Waldinger, 1978, p. 201]

This change had the effect of increasing the importanceafipations: if correctness amounted
to correctness with respect to a specification, a progrartdamly be said to be correct to the ex-
tent that its specification was clearly stated and undedstbarthermore, if that correctness was to
be provable, the specification had to be written in a form s&ibée to existing proof methods, for
example as a pair of input and output predicates as sugdegtdéinna and Waldinger.

A second consequence was that the analogy between softerglpdment and logical deduc-
tion was enriched. A formalized specification can be undetstas defining a set of ‘axioms’;
from the specification other expressions are ‘deduced’ dosectness preserving refinement steps,

culminating in the production of ‘conclusions’ in the forrhexecutable programs in the target pro-
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gramming language. Hoare’s axioms did not quite functiom#sence rules, but they did enable

the correctness of individual refinement steps to be checkadl heuristically suggested the form

that such steps might take. The formal structure of softwlakelopment is therefore seen as being
identical to a logical theory: this tendency can be expikdégesaying that software development

was coming to be understood aqu@asi-deductivactivity.

The fact that specifications are viewed as axioms does ndy ithpt they are immune from
revision, of course. A program can be correct with respeda gpecification that is completely
inadequate from the users’ point of view. The activity of@fieation revision, however, plays no
role in quasi-deductive models: the overall developmeatgss is split between an initial phase in
which a specification is fixed, and a subsequent phase of mafimeand implementation based on
the assumption that an adequate specification exists.

This understanding of the process of software developmastwidely adopted, even when de-
velopment was not being carried out in a formal manner. Adargmber of ‘methodologies’ for
software engineering were developed which explained haset@lop software satisfying a speci-
fication by going through a number of steps which, even if egped in a mixture of informal text
and graphical notations, preserved the essence of the-dgdigctive approach, namely a process

of refinement leading from a specification to a conforminglangentation.

7.6 Structured programming

In the early 1970s, many of the concerns of the Algol resepregramme moved from the research
community into the mainstream of commercial and indusfpi@gramming. They were widely
thought to represent a new approach to the problems of progiiag, an approach that became
identified by the term ‘structured programming’. This seatexamines a number of different ways
in which this term was understood.

The term ‘structured programming’ appears to have beereddiy Dijkstra, who wrote some
widely circulated ‘Notes on structured programming’ in Aisty 1969 [Dijkstra, 1969a] and pre-
sented a working paper titled simply ‘Structured programghiat the NATO conference on soft-
ware engineering techniques in that year [Dijkstra, 19680} Dijkstra, the central issue was how
to be assured of the correctness of “intrinsically largegypmns” [Dijkstra, 1969b, p. 222], where to
get any reasonable assurance of a program’s correctneas fiegessary to have a very high degree

of confidence in the correctness of the modules making upribgram. The constructive approach
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to program development was outlined, with an argument feruge of specific control structures
rather than jumps. Dijkstra also emphasized the use ofattsiata structures in the program de-
velopment process, along with a metaphorical descripti@program as “an ordered set of pearls,

a ‘necklace™ [Dijkstra, 1969b, p. 225], each pearl repreiggy a program module written in terms
of the facilities provided by the module below it in the styin

The notion of ‘pearls’ derived, like the idea of construetiprogramming, from Dijkstra’s ex-
perience in designing and writing a multiprogramming sys{Bijkstra, 1968c]. This system had
been designed as a hierarchy of levels with the charadtetisit each level in the hierarchy was
written strictly in terms of the level immediately below in explaining this idea, Dijkstra drew
upon the old idea of program semantics being given in terng\wiftual machine: “Between two
successive pearls we can make a ‘cut’, which is a manual faaéhime provided by the part of the
necklace below the cut and used by the program representtitt Ipart of the necklace above the
cut” [Dijkstra, 1969b, p. 255].

The ‘Notes on structured programming’ presented a morariglg explanation of these ideas,
together with complete examples of constructive programeldpment. Some flowchart illustra-
tions of the recommended control structures were given, Rijictra pointed out that “[tlhese
flowcharts share the property that they have a single entilyeatop and a single exit at the bot-
tom” [Dijkstra, 1972, p. 19]: as a result, they could be teglhts a single indivisible action in
a sequential program. This was important in constructivgm@mming, as it meant that a single
high-level action could be refined by introducing a conttolicture whose properties could then be
argued about independently of the rest of the program.

Dijkstra’s notes were published in 1972 in a book entitBttlictured Programminghich con-
tained in addition contributions from Hoare and Dahl. Hoewmatributed an essay on data struc-
turing, in which he argued that set theory could be used tméefirange of data structures, and
an essay on ‘hierarchical program structures’ by Hoare aall Described how programs were
structured in the Simula 67 programming language. Simules @dnsidered in more detail in the
following chapter; in the context of structured programgnitwas argued that it contained features
which allowed the hierarchical structuring of programsteammended by Dijkstra.

As presented in these texts, then, structured programmicgnepassed not only a recom-
mended set of control and data structures, but also a condgénrthe idea of the provable cor-

rectness of programs, the constructive method by which goohrams could be produced, and
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a general scheme for program modules. This rich collectioidens provided scope for selec-
tion and interpretation. For example, Henderson and Snowlgscribed an “experiment in struc-
tured programming” which adopted a “top-down’ structuaglproach with the hope that the pro-
gram can be seen to be correct by its very structure” [Hepndesiad Snowdon, 1972, p. 38].
They discovered that the application of this technique ditl prevent the occurrence of errors
in the finished program, and concluded that “in such a teckniye must apply formal meth-
ods” [Henderson and Snowdon, 1972, p. 51]. However, a resptmthis paper by Henry Ledgard
concluded that “[tlhe method used ... is strictly speakingneally ‘structured programming’, at
least as conceived by Dijkstra”, precisely because theocasithad not formalizedand debugged
each of the levels” [Ledgard, 1974, p. 49]. To add to the csiofu Ledgard, despite claiming to
make a case for structured programming, defined a progragnmathodology of his own which
not only combined the ideas of structured and top-down jogning and stepwise refinement, but
also adopted a programming style using the goto statement.

In 1973 Barbara Liskov offered a definition which extendeikffa’s simple emphasis on cor-
rectness: “Structured programming is a programming disepntended to support the production
of correct, understandable programs which are easy to gnadid maintain” [Liskov, 1973, p. 5].
An example of top-down decomposition of a program into medulas presented, using “the three
sequential control structures proposed for structuredrnaroming”; these were justified not by an
appeal to proof, however, but because they had a “1-in, 1goperty which made the flow of
control through a program easy to visualize. Indeed, “fghare many control structures other than
[these three] which preserve the 1-in, 1-out property, dhofahese are permissible in structured
programming” [Liskov, 1973, p. 6]. Liskov, however, dowapéd the significance of proof on the
grounds of uncertainty about the form thas@ecificationlanguage would have to take in order to
serve as a foundation for proofs of the correctness of progira

Within the wider software industry, interest in the ideasstrfictured programming was stim-
ulated by reports of their successful application on a ptajarried out by IBM for the New York
Times [Baker, 1972a, Baker, 1972b]. This project was useal\ahicle to test a new approach to
the management of software projects, the use of ‘chief pragring teams’, which were intended to
move projects away from a situation where each programmkecdiaplete responsibility for every-
thing to do with a particular part of the program to one wheagipular functional responsibilities

were assigned to individuals. Like a surgical team, thegmtojvould be lead by an experienced de-
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signer, the “chief programmer”, who would be assisted bycksap programmers”, “programming
librarians” and other team members.

In addition to this novel form of organization, the projesed a top-down approach to program
design and implementation and employed structured pragiag) understood as “a set of rules
that enhance a program’s readability and maintainabilitythe rules state that any proper program
— a program with one entry and one exit — can be written usirg e following programming
progressions” [Baker, 1972a], namely sequence, if-the@-statements and do-while loops. The
project was described as being highly successful, and isteded that “[s]tructured programming,
and the organization and tools used to achieve it, were lkagriin developing this kind of sys-
tem” [Baker, 1972b]. Even though it was admitted that the ofsehief programmer teams was
not essential to employing structured programming, widsesh interest in this project meant that
‘structured programming’ became understood as a genepabagh to software projects and not
simply a technical approach to the organization of programs

In 1973 interest was further encouraged wiidatamation a magazine that was widely read
throughout the computing industry, published a specialkism structured programming. An intro-
ductory article was titled ‘Revolution in Programming’ aaskerted that “[s]tructured programming
is a major intellectual invention, one that will come to beked with the subroutine concept or even
the stored program concept” [McCracken, 1973]. The agitighis issue oDatamation however,
characterized structured programming in terms derivedenfram Baker’s description of IBM's
experience on the New York Times project than from Dijkstitheoretical writings.

In theoretical writings on structured programming, theugs®f program correctness was of
great importance; for example, Wirth wrote, echoing Dijistthat “[ijn order to achieve intel-
lectual manageability, the elementary composition sclsemast be simple. ... The simplicity
consists in the ease with which we can infer properties athejicomposition scheme] from known
properties of the constituent statement” [Wirth, 1974, B2]2 This point was echoed in thH2ata-
mationarticles, but with a slightly different emphasis and widpplicability: “since flow of con-
trol is simpler in a structured program, the development exetution of test cases to adequately
debug the program is simpler ... structured programs ang easy to read and verify for cor-
rectness” [Donaldson, 1973]. Verification was here beikgnan an informal sense, however, and
Donaldson went on to state that “study of program proofafactness ... has not yet produced

any practical results” [Donaldson, 1973].
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In particular, for a more practical audience, the key pobud the adoption of a particular set
of control structures was described in terms of increadieg¢adability of programs; for example,
McCracken stated that “[u]sing only these constructionsit.is possible to write programs that
can be read from top to bottom without ever branching backotoething earlier ... Programs
are accordinglynucheasier to read and understand” [McCracken, 1973]. The hem#fmaking
programs clear and comprehensible extended not just to titiagwvof correct programs, but more
widely across the whole software lifecycle. Thus it was helde easier to test structured programs,
and that ease of understanding made it simpler to corremtsarr programs or to modify programs
to provide new or enhanced functionality. The conferenacesaftware engineering in the late
1960s and subsequent work had drawn attention to the costsftofare development across the
whole lifecycle, and suggestions of how to reduce thesesaoste highly attractive to industry.

There can be no doubt that structured programming made dicégn and lasting contribu-
tion to programming language design and programming mec®Ilder languages, such as Fortran,
which did not include the required control structures, waen revised to include them, and they
have been a constant part of all languages developed siheecohtroversy over the goto statement
has died away, and in some modern languages it is not evelalaeai Ideas of ‘structure’ were
soon more widely applied: for example, the term ‘structudedign’ was soon coined to describe
an approach that emphasized a modular structure of progranssstent with structured program-
ming [Stevens et al., 1974].

Structured programming emerged from work carried out inlidigéc research programme, and
in particular from its concern with proving the correctne$programs. As it became known and
applied in industry, however, the ways in which it was cheadzed changed. Management issues
were emphasized, and the key point about the suitabilitypofrol certain structures was rephrased
in the form of recommendations that would be immediatelyliapple by programmers, such as
rules about the indentation of code [McCracken, 1973].

In particular, it is noticeable that any formal relationshietween structured programming and
program correctness was played down in favour of a moregdifftonnection. As McCracken put
it, “[pJrogram proving isn't yet a practical matter for pna@gns of realistic size, but the theory influ-
ences the daily practice of programming anyway” [McCragKe¥3]. By using control structures
which had been designed with a view to making proof easievai believed that programmers

would obtain the benefits of programs that were easier t@wdtrectly, to understand and to mod-
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ify even without involving the construction of formal preof

7.7 Proof and testing

As noted above, one of the central goals of the research groge articulated by McCarthy in
1962 was that of replacing testing and debugging by proaf,this chapter has described the evo-
lution of some of the techniques necessary to make the catisin of program proofs feasible.
At the end of the 1960s, researchers were optimistic abeupdtissibilities for proof: Hoare em-
phasized the expense of testing and expressed the beligfttegractical advantages of program
proving will eventually outweigh the difficulties, in viewf the increasing costs of programming
error” [Hoare, 1969, p. 579]. Despite expressing resasaatiabout the power of the proof tech-
niques then known, he was soon suggesting that “if a proobiisttucted as part of the coding
process for an algorithm, it is hardly more laborious thamttiaditional practice of program test-
ing” [Hoare, 1971, p. 39], as well as offering a much stronggarantee of reliability.

However, despite the success of structured programmimngf prever became widely used in
the software development industry, and testing nevertesbie as the principal method for gaining
assurance about the correctness of programs. Despitegthi, progress was made in ensuring
the reliability of software. Twenty years later, Hoare hitfigevisited the topic in a paper titled
“How did software get so reliable without proof?”. He comrnezhthat “the problem of program
correctness has turned out to be far less serious than f@étiend suggested that the systematic
application of traditional engineering techniques towafe development was largely responsible
for the observed increase in software reliability [Hoar294].

This situation raises the question of to what extent the Mgsearch programme can be cred-
ited with improvements in programming practice if a cenprait of its programme, namely proof,
was not at all widely employed? One possible answer to théstipn might be based on the obser-
vation that, as described earlier in this chapter, the Algeéarch programme introduced a general
model of program development where programs were systeafigtderived from specifications by
a process ofefinement This process could be carried out formally, but more ofteweis not; how-
ever, even informal versions of the process, which inclugsting, were found useful and widely
adopted by industry. Rather than being completely opposelahtques with nothing in common,
as McCarthy and Dijkstra suggested, proof and testing carbe wiewed as complementary tech-

niques for ensuring the correctness of software within trgext of refinement-based methods.
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The remainder of this chapter will give a more detailed asialgf this situation by drawing on
accounts of scientific methodology developed in the phppbgaof science which relate the notions
of theory and experiment. A useful categorization of thesgme positions was provided by Imre
Lakatos [Lakatos, 1967], who modelled scientific and mathiésal theories as deductive systems
which relate axioms to ‘basic statements’, the ‘final cosidas’ drawn by the theory. In scientific
theories the basic statements are said to be those whichsoaletestable, empirical assertion.

These ideas can be applied to the software developmentgsrpoeposed by the Algol research
programme by identifying the specification of a softwareteryswith the axioms of a deductive
theory. In a top-down process, a high-level program is theittem and its correctness argued
for; by a series of refinement steps a low-level, executabidgram is then derived. Refinement
steps are akin to inferences within the system, and the fiogiram, fully expressed in the target
programming language, is the equivalent of a basic statertt@npoint at which derivation stops.
As in a scientific theory, where the basic statements makatiesassertions, programs are run and
tested, and accepted or rejected on the results of these test

Lakatos identified two basic types of theory, which he terfiiactlidean” and “quasi-empirical”.
These were distinguished by the place where truth value$rgeeted” into the system. Euclidean
theories inject truth at the top, by assuming the truth ofcth@sen axioms and by truth-preserving
inference steps deducing valid conclusions from them. @ragirical theories inject falsity at the
bottom, by testing the basic statements; a failed testéatelicthe falsity of a basic statement, which

in turn, forces some modifications at higher points in thethé consistency is to be maintained.

Software engineering as a Euclidean theory

It is evident from what has been said in previous sectionsttieoverall view of software engi-
neering evolved by the Algol research programme was that# Buclidean, in Lakatos’ sense.
Correctness is injected at the top of the system, in the fdra fixed specification of what the
system is to do. The task of software development was urmet<$b be that of systematically de-
veloping from the specification a program which implementexspecified functionality, by means
of a number of development steps which preserved correctri@sce techniques had been devel-
oped to carry out such derivations effectively, it was expedhat alternative approaches such as

testing and debugging would become obsolete:

| should like to point out that the constructive approachrogpam correctness sheds
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some new light on the debugging problem. Personally | cansfodin from feeling
that many debugging aids that are en vogue now are inventadcampensation for
the shortcomings of a programming technique that will beodeced as obsolete in the
near future. [Dijkstra, 1968a, p. 185]

Support for this position was largely rooted in the beligdtttesting on its own could not guar-

antee the correctness of software:

Since it is well known that no foolproof methods exist of kriogvthat the last error
in a program has been found, there is much practical confedembe gained in never
finding the first error in a program, even in debugging. [Mill876, p. 269]

The role of testing within Euclidean methods

However, even though a broadly Euclidean approach to soétdevelopment was widely adopted,
formal proof was not, and testing retained a central rolessueing the correctness of software. A
number of views have been put forward to justify or explaia tbexistence of the two approaches
in software engineering.

Shapiro [Shapiro, 1997] described the use of quasi-daduantiethods and testing on the same
project as a pragmatic approach employing two independesification techniques to maximize
the chances of producing a correct system. One motivatiorsdoh an approach might be an
acknowledgment of the possibility of errors even in a prob&g@rogram. In 1976, Gerhart and
Yelowitz listed a number of errors detected in publicatidihsstrating the formal derivation of
programs. While broadly sympathetic to mathematical aggres to program development, they
cited evidence in support of the fallibility of mathematigaoof. While accepting that program
verification had a role to play in ensuring that a program veabstantially correct”, they concluded
that “we must simply learn to live with fallibility” [Gerhaland Yelowitz, 1976, p. 206].

This implies a mixed Euclidean and quasi-empirical apgndacsoftware engineering, in which
the typical response to an error detected in testing woul loerrect the faulty code. Proponents
of the Euclidean approach, however, have subsequentbukatitd a distinctive view of the role of
testing: its purpose is not to assess directly the correstoéthe software, but rather, by checking
consistency between the specification and the programstsasvhether the development process
has been correctly carried out. The recommended resporsséatied test on this approach is not
to correct the final artefact, but rather to modify and maks fallible the process that led to it, and

then recapitulate the development: “The real value of iestet that they detect bugs in the code,
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but that they detect inadequacy in the methods, concemtratid skills of those who design and
produce the code” [Hoare, 1996].

A third justification for including testing in a Euclidean ohal arises from the distinction be-
tween a program text and the executing program that is dkfien it. As Fetzer pointed out
[Fetzer, 1988], this is a contingent relationship: the faet a given program behaves in a certain
way when executed can only be established empirically, yainbexamination of the program text,
and so testing is necessary to verify the run-time propedfea program, even when the program
itself is assumed to be correct as a result of a formal désivat

Despite the use of the quasi-empirical technique of testiogvever, these positions remain
largely Euclidean in that they retain a belief in the fediibof the goal of developing correct soft-
ware. This assumption is not shared by more thorough-gailagieempirical approaches, discussed

below.

An inductive view of testing

The traditional view of testing was that programmers shé&elkep running, testing and modifying a
program until it passes all its tests. A passed test repiesaerinjection otorrectnessat the bottom

of the system, a confirmation that the program was behavirgaqsred. As Lakatos points out,
the belief that correctness can be injected at the bottomdefdaictive system is tantamount to a
belief in inductive methods, and the comparison betweendtion and the traditional account of
testing has been made in the software engineering literafire thought is that successful tests are
singular statements of a program’s correctness; from a seioh statements, we want to be able to
infer that the program as a whole will give correct resultaletimes in the future.

Although this belief underlies much informal, small-scptegramming practice, positive state-
ments of an inductive principle are rare in the software meegjing literature, no doubt because
of the prominence of Dijkstra’s early attack on the posititnonically, however, a mixed position
which included elements of an inductive approach was enapldyy Dijkstra in the development
of the THE multiprogramming system. He describes how théegysvas designed in such a way
that it could be formally proved that “the number of releviadt cases will be so small that [the
designer] can try them all” [Dijkstra, 1968c, p. 344].

A later attempt was made by Goodenough and Gerhart to ceamecthe “logic of testing”;

they proved a “fundamental theorem of testing” which “stateat in some cases, a tést proof
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of correctness” [Goodenough and Gerhart, 1975, p. 157]. idé& underlying this theorem was
to partition the input space of a program in such a way thastleeessful completion of one test
would imply that the program would function correctly fot ather inputs from a given partition.
This attempt foundered, however, on the difficulty in preetof finding a partition of the testing

space with the required formal properties.

Quasi-empirical software development

Quasi-empirical views of software engineering would besthavhich characterize failed tests as
injections ofincorrectnessat the bottom of the quasi-deductive system. This has stemés a
number of commentators an analogy between the testing girgmes and the refutation of sci-
entific theories: for example, Fetzer wrote that “it mightdsd that programs are conjectures,
while executions are attempted—and all too frequently esgftil—refutations (in the spirit of Pop-
per)” [Fetzer, 1988, p. 1062], and Dasgupta articulatecthiesis that problem solving in design,
including the design of programs, “is a special instanceanfi(is indistinguishable from) the pro-
cess of scientific discovery” [Dasgupta, 1991, p. 353].

There was a significant tradition in software engineerinictvbdopted a broadly quasi-empirical
approach. In a rather Popperian spirit, this tradition dititake as its primary aim the development
software that was absolutely correct, but instead accdapidnherent fallibility of software. In
1971, Bauer wrote in an overview of the then young field ofwgafe engineering that the aim of
the discipline was “to obtain economically software thataable and works efficiently on real
machines” [Bauer and Wossner, 1972]. It is noteworthy Beaier refers not to the correctness of
the software, but rather its reliability; unlike correcteereliability is not understood in engineer-
ing as an all-or-nothing goal, but rather a property whicktams can possess to different extents,
depending on contextual and economic factors. A later psyneeying approaches to the study of
reliability in software made this point explicitly: “Our pdion is that it is neither necessary nor
economically feasible to get 100 per cent reliable (totaliyor-free) software in large, complex
systems” [Schick and Wolverton, 1978, p. 105]. Rather tinging to ensure the absolute correct-
ness of software, software engineers who accept the ibditigaof errors have been concerned with
techniques for developing fault-tolerant systems andttdistical characterizations of the reliability
of software [Randell, 2000].

A further characteristic that we might expect to find in qeasipirical software engineering is
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‘bold hypotheses, followed by dramatic refutations’, asaldbed in Popperian rhetoric about sci-
ence. Much current practice can in fact be interpreted swlay. For example, it is a commonplace
that commercial software products are full of errors, amdjfiently revised with patches or inter-
mediate releases which correct faults. Traditional sa#wengineering views this as a problem,
feeling that a mature engineering profession ought to beetatdo better. It is precisely what would

be expected, however, if software engineering was in factesigempirical discipling

Correctness and the user

In empirical science, quasi-empirical approaches cantle#ite rejection of the axioms assumed to
be the foundations of a theory. If the analogy is fully apglile, we should expect to find approaches
to software engineering that allow for the revisability bétspecification in the light of errors and
problems discovered in the process of software developmfmtearly statement of this position

was made by Douglas Ross:

The most deadly thing in software is the concept, which atmpiversally seems to be
followed, that you are going to specify what you are going o ahd then do it. And
that is where most of our troubles come from. The projectsdhacalled successful,
have met their specifications. But those specifications Wwased upon the designers’
ignorance before they started the job. [Ross, 1968]

Similar views were later expressed by McCracken and Jackgom commented that “systems
requirements cannot ever be stated fully in advance, natieverinciple, because the users doesn't
knowthem in advance” [McCracken and Jackson, 1982, p. 31], amagt based on the observa-
tion that the development process itself frequently chdngmong other things, users’ perceptions
of requirements.

This implies a view of program correctness which is basedomneshing other than the rela-
tionship between a program and a specification. If spedificatare revisable as users’ insight in
the system requirements grows, correctness should inkeeadderstood as a relationship between
a program and its users. As this distinction became appeekizhe process of checking that a

program meets its specification became knowneadication whereas the process of checking that

In the 1990s, a particular approach to software engineafiagacterized itself as ‘empirical’, based on the belief
that “the most important thing to understand is the relatigm between various process characteristics and product
characteristics” [Basili, 1996]. In the Lakatosian franoely this approach would seem to fall squarely in the Euelide
tradition, but emphasizing the external, managerial aspgche development process rather than the internal giepe
of software-related artefacts. What is being proposed agpe be an empirical study of a Euclidean process, not an
empirical approach to development itself.
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a software engineering artefact—either specification oggam—meets the actual requirements of
its users became known @slidation[Boehm, 1984].

Responses to this situation took the form of proposals fiwsne development methods that
would involve the user extensively throughout. Origindligown by terms such as ‘prototyp-
ing’ or ‘evolutionary development’, a similar approach il extant, now often referred to as
‘agile’ or ‘iterative and incremental’ development. A ggranecdotal history of this approach
that traces its roots back to the late 1950s has been comnipjl€taig Larman and Victor Basili
[Larman and Basili, 2003].

Such approaches do not view the software development wrasaguasi-deductive; instead, de-
velopment is viewed as a continuing dialogue between uskdeweloper. Aspects of contemporary
package software also appear to fit this model, with the fanatity of a program evolving over a
series of releases in response to direct or indirect demfanisisusers. Recent work in the philos-
ophy of science has described models in which candidatatggieknowledge is not articulated as
part of a deductive structure, but rather emerges in theseaniran unpredictable process in which
scientists explore the ‘resistances’ provided by a vaiétyuman and non-human actors. An early
example of this approach was the actor-network [Callon71.3d it has been taken up and refined
in Pickering’s notion of the ‘mangle’ [Pickering, 1995]. ttever, it is beyond the scope of this the-
sis to explore further the connections between this workeumdutionary approaches to software
development, though some attempts to link software dewsdop with the ideas of post-modernism

have been made [Robinson et al., 1998, for example].

7.8 Conclusions

This chapter has considered the influence that the Algohrekgrogramme had on the practice of
software development. The ideas that became popularizeéer whe label of ‘structured program-
ming’ were widely influential in the computing industry, awitlely perceived to have introduced a

more formal approach:

Before this decade of intense focus, programming was redaad a private puzzle-
solving activity of writing computer instructions to worls a program. After this
decade, programming could be regarded as a public, matlesAbaised activity of
restructuring specifications into programs. [Mills, 1986]
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The emphasis on specifications was key to the new programtaahgpiques, and also became
a cornerstone of software engineering practice more giyeraroducing the idea of Euclidean
models of the software lifecycle which covered not only pemgming but also other activities such
as design, testing and maintenance. In this context, Boétassed the “extreme importance” of
“a complete, consistent, unambiguous specification”, amahsence of which problems could be
anticipated in many other stages of development [Boehn]197

Structured programming was frequently [McCracken, 1974tl, 1974] described as a ‘revo-
lution’ in programming, and it is interesting to considemhwell this usage corresponds to Kuhn’'s
sense of the term. There was certainly a sense of crisisiagmbavith software development in
the late 1960s and early 1970s, as evidenced by the NATO remdfes on software engineering,
and many people greeted the ideas of structured programasirggnovel technique which would
address these practical problems and make software develd@m more straightforward and pre-
dictable process. However, for Kuhn revolution is assedatith the adoption of a new paradigm,
and as the last two chapters have argued, structured progrgntan be viewed as the outcome of
a logic-inspired paradigm whose revolutionary moment caritle the publication of the Algol 60
report. So the application of Kuhn's historiographical estia in this case seems not to be straight-
forward, with the perception of crisis and the adoption ofeavrparadigm occurring at different
times in the research and industrial communities.

An alternative model for the adoption of structured prograng can be found in the traditional
model of new ideas being developed in a research environamehthen, when mature, transferred
for application in an industrial setting. However, it is apgnt that the ideas themselves may be
significantly altered in such a transfer. Structured progréng as conceived of by industry high-
lighted certain aspects of the academic work while ignodnglownplaying others. In particular,
program proof and the elimination of testing and debuggimg & central goal of researchers in
the Algol paradigm, but presentations aimed at industry rfoawed these aspects, emphasizing
instead issues to do with the management of software pspjeetn though these formed no part of

the theoretical notion of structured programming.



Chapter 8

The unification of data and algorithms

In the early 1970s, programs were frequently characterémetiaving two main aspects, namely
the data structures that the program required and the tdgwiused to manipulate the data. Pro-
gramming languages were described along similar axes:ieatygxample is Pascal which defined
control and data structures largely independently [Wit®i/1b].

Work on data types, however, had made a strong case for evimgjdhese two aspects together,
and this led to research into a new form of abstraction whichld/define a particular data structure
together with the algorithms needed to make use of it, ansepteit to programmers as a single
entity. As described in Chapter 6, this work was pursued asgbshe Algol research programme,
and in the early 1970s a number of languages were proposezhwhpported the idea of data
abstraction in various ways.

This chapter examines in more detail the development ofraroming language support for
data abstraction, and argues that a stable configuratiatea$j one that has profoundly influenced
the design of programming languages up to the present dayaeteeved by the Smalltalk language.
Although drawing on work in the Algol research programme, designers of Smalltalk were also
strongly influenced by ideas from completely different aremnd the chapter concludes by arguing

that Smalltalk marks a limit to the influence of logic on praxggming language design.

8.1 Simulation languages

A number of important ideas about the unification of data dgdrahms emerged from attempts
to write programs to perform simulations. Simulation hagegls been an important application

of digital computers, and in the early 1960s a number of gdqmmrpose simulation languages

204
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were developed to make it easier to write programs to simydatticular systems; these languages
included SIMSCRIPT [Markowitz et al., 1963] and GPSS [Gardb961] and two slightly later
languages, Simula [Dahl and Nygaard, 1965] and SOL [KnuthMoNeley, 1964].

Of these, Simula turned out to be particularly influentialater work on the design of general-
purpose programming languages. It was developed at the édiaw Computing Centre by Kristen
Nygaard and Ole-Johan Dahl, and had its roots in work in ¢jper@ research carried out by Ny-
gaard, specifically in “the necessity of using simulatidre heed of concepts and a languages for
system description, lack of tools for generating simulatiwograms” [Nygaard and Dahl, 1981,
p. 440]. In particular, Dahl and Nygaard noted that for vasidechnical reasons “simulation
programs are comparatively difficult to write in machinedaage or in AGoL or FORTRAN"
[Dahl and Nygaard, 1966, p. 671] and that for this reasoneaibwould be convenient to develop
specialized simulation languages.

Simula and SOL were both influenced by, and in some ways mestielh, existing high-level
languages and in particular Algol 60; indeed, Simula wasgdesl to contain Algol as a subset.
Nevertheless, the demands of the specialized problem doofigimulation meant that there were
also significant differences. For example, Simula was ofeento be not only a programming lan-
guage, but more generally “a language for a precise andatdizdd description of a wide class of
phenomena, belonging to what we might call ‘discrete evgsttesns™ [Dahl and Nygaard, 1965,
p. 1]. (An echo of Algol 60, which had been initially charaited as a language “to describe
computational processes” [Naur et al., 1960, p. 300] rattm@n simply a programming language,
can be heard here.) The systems of interest were initiallyagherized as consisting of a number of
active components, or ‘stations’, which processed datingbassive components, or ‘customers’.
Inspired by examples such as an office with a number of clegldirdy with customers or a pro-
duction line in a factory, each station maintained a queueusfomers, and once a customer had
been dealt with it could be passed on to join the queue at anstation, thus modelling its progress
through the system.

By the time the language was implemented in 1964, the twoegms®f ‘station’ and ‘customer’
had been merged into a more general notion of ‘process’ wtoahbined both the data associated
with the passive customers and the operations carried dhighgctive stations. This generalization,
which was very similar to the approach adopted by SOL, wagdhkelt of experience gained in

modelling a greater range of systems and also in implengsimulations based on the resulting
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models [Nygaard and Dahl, 1981].

Simula made use of and extended the Algol concept of a blokk:ALGoL program (block)
specifies a sequence of operations on data local to the pnpgiawell as the structure of the data
themselves. MULA extends AGoOL to include the notion of a collection of such programs, chlle
‘processes,’ conceptually operating in parallel” [Dahlidygaard, 1966, p. 671]. Technically, this
extension had to do with the lifetimes of blocks: in Algolednock could be defined inside another,
with the consequence that any data defined in the inner blogkl ©nly be maintained so long as
the outer block was still in existence. For simulation pergs, however, the lifetime of data in the
program was unpredictable and depended on the events ling®d, so the Algol discipline was
too restrictive. Simula therefore generalized the notiba lalock so that “a process may remain and
operate after [the block in which it was created)] is out ofgkistem, i.e. the life spans of different
processes may overlap each other in any way” [Dahl and Nyg4865, p. 14].

Individual processes in Simula therefore shared many optoperties of blocks in Algol: they
contained both data, defined in local variables, and statenakefining how that data was to be pro-
cessed; these statements could belong to the block bodycomib@ned in procedures and functions
local to the block. A class of processes with the same streietias defined by an ‘activity’, which
was essentially the same as an Algol procedure declaradtiowever, whereas in Algol a program
was defined by a single, top-level block, in simulation leages the emphasis was placed rather
on the system constituted by a number of processes, or hlex&suting simultaneously: in SOL,
for example,“[a] complex system can be represented as a@wailndividual processes, each of
which follows aprogramvery much like a computer program” [Knuth and McNeley, 1964401].
The ‘master program’ did not encode an algorithm, as in Algat instead defined the processes

that would exist initially and the data items that they useddmmunicated with each other.

8.2 Modelling with records

Because of the nature of simulation systems, languagesSiikeila were naturally described as
providing facilities tomodelcertain aspects of the real world. This modelling capabbiécame
understood as providing programmers with the ability tokweith structured data, where an in-
dividual object could be characterized within a program lgokection of data items of varying
types, with the number and type of the data items requiregingufrom object to object. Apart

from simulation languages, the ability to work with struettl data was available in certain other ar-
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eas, notably business data processing where Caobol, foreapnovided the ability to exhaustively
describe the structure of data stored in files.

Scientific languages such as Fortran and Algol did not peogigch capabilities, however, and
as discussed in Section 6.6 in the mid-1960s proposals wefemqvard, most notably by Wirth and
Hoare, for adding a general record handling capability thdanguages. These proposals made
the connection with modelling clear: for example, Hoare terihat “we often need to construct
within the computer anodelof that aspect of the real or conceptual world ... In such aghedch
object of interest must be represented by some computetityjuan Such a quantity is known as a
record’ [Hoare, 1968, p. 294].

In their most developed form, proposals for record handfiefined the relationship between the
real world and the computer model in terms of four propefitsare, 1968]. Firstly, objects were
considered to possess a numbeattfibutes each of which was modelled by a data item stored in
afield of the record. Secondly, similar objects would naturallyéhéhe same kinds of attributes,
though perhaps with different values. Objects could tleeeebe grouped into classes, anceord
classin a program would define the attributes belonging to a padicclass of objects. Next, it was
also considered important to model relationships betwdgects: in the simple case of functional
relationships, this was done by defining a new kind of dataevathich defined aeferenceto a
record, and allowing records to hold references to otherdscto which they were related. Finally,
it was recognized that many classes consisted of disjolntlasses of objects, in the way that the
class of vertebrates consists of the subclasses of mambirals and so on. The proposals allowed
record classes to contain subclasses, with ‘private’ fildsdefined attributes that applied only to
objects belonging to certain subclasses.

Hoare and Wirth’s record handling proposals on the one haddSamula on the other there-
fore represented two alternative proposals for extenditgpl60 to permit the manipulation of
structured data which modelled real-world entities. Saradhieved this by generalizing the Algol
notion of a block; however, Hoare pointed out that this iretgd the record concept with that of
the process, defined by “a rule of behaviour as specified lgegoal statements” [Hoare, 1968, p.
330], and brought with it the complexities of parallel presi@g. Records, by contrast, provided a
new language feature which isolated the central problenmaonélling structured data, thus reinforc-
ing such characteristic themes of the Algol research progra as clarity and the need to be able to

understand and control the behaviour of programs.
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8.3 Simula 67

Simula 67 was a revised version of the Simula produced asii cd®xperience gained with Simula
and also in response to proposals made for using recordsitehstructured data.

Unlike Simula, Simula 67 was intended as a general purpasgrgmming language. It was
assumed that high-level languages like Algol had succeedbé goals of enabling “precise formal
description of computing processes” [Dahl et al., 1968] araking it easier for non-specialists to
write programs. Simula 67 was intended more generally tp Hiebse who are confronted with the
task of organizing and implementing very complex, highkgractive programs” [Dahl et al., 1968,
p. 1]; simulation programs were considered to fall into ttasegory, but were no longer the sole
focus of interest.

In its basic structures, however, Simula 67 was very remémisof the original Simula. It was
recommended that the components that problems were diuidedhould each be describable as
individual programs, implemented as before by an extendsdion of the blocks of Algol 60.
Through a terminological change influenced by Hoare’s warkexord classes, the ‘activities’ and
‘processes’ of Simula were renamedcessesandobjects Objects, like the processes of Simula,
consisted of “an aggregated data structure and associgtaittams and actions” [Dahl et al., 1968,
p. 5]. The latter consisted of local procedures which cogldoa the data stored in an object, and
a block body which could be executed in a quasi-parallelifeshlong with the bodies of other
objects.

A significant innovation in Simula 67 was the introductionpréfix classesintended as an
alternative to the record subclasses that Hoare had deddiirahl and Nygaard, 1968]. The idea
was that the definition of a new class could specify a singidixpclass: the attributes of the prefix
class would become attributes of the new class, and furtirlsides could be added to specialize
the concept being modelled by the class. Class prefixingddeeicarried out repeatedly as often as
required, allowing a hierarchy of classes to be defined.

Two significant aspects distinguished Simula 67’s prefissdas from the record subclass pro-
posed by Hoare. Firstly, prefix classes are more flexible thaard subclasses. Hoare’s proposal
required all the subclasses of a given record class to béfiggeat the point of definition of the
class. In Simula, on the other hand, any class can be usecfisiprany other class definition,
giving an ability to reuse code that went beyond that offdsgdecord subclasses. Consider, for

example, the idea of a linked list, a dynamic data structéreaords or objects linked by embedded
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references. Linked lists of many types are required in @nogning, and it would be nice to find a
way of defining the concept of a linked list once and for allhea than having to repeat the relevant
definitions whenever a new type of list is required. In Simaifathis can be done by defining the
basic linked list functionality in a class which is then useda prefix class to make linked lists
of a particular sort of data: the required data fields are kiragded when defining the new class.
By contrast, when using records the definitions for the khkst would have to be repeated in the
record class definition for every type of data that was to beestin a list.

A second point of difference was the notionvirtual quantities Using this mechanism, a prefix
class could declare a field, say, which it does not itself defit which it is planned will be defined
in subclasses. For example, a vehicle class might definedactidled ‘capacity’, even though that
field was only defined in the subclasses of vehicle. The inapo# of this notion lies in the ability
to define the capacity field differently in different subalas of vehicle. A programmer might then
refer to the capacity of a vehicle without knowing in detalilat sort of vehicle is being referred to at
run-time. Record handling proposals contained no simégability: the emphasis on the concept
of typing in the Algol research programme made it highly ddse that the every field in a record

was fully defined when a program was compiled.

8.4 Data abstraction

In Section 7.6 it was argued that structured programmingioecprincipally identified with two
of the ideas presented by Dijkstra, namely the use of a cestrirepertoire of control structures
and the employment of a top-down approach to program dewedap A third idea, that programs
could be structured as a layered hierarchy of machines, atlasrroverlooked and became confused
with the view that program structure was a hierarchical dgmwsition of functions, themselves
identified as part of the top-down method. For example, Widbcribed the method by stating that
“[iln each step a given task is broken down into a number ofasks” [Wirth, 1971a, p. 226] and
later that “an abstract program emerges, performing spegjiferations on abstract data ... The
operations are then considered as the constituents of tigggon which are further subjected to
decomposition” [Wirth, 1974, p. 249].

As discussed above, Simula and Simula 67 incorporated angrh of Algol's blocks which
provided a way of unifying data and operations. However, ré@asons that will be considered

in more detail below, the details of Simula’s classes wettewidely adopted in other languages,
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despite the inclusion of an extended discussion in the widsd ‘Structured Programming’ book
published in 1972 [Dahl et al., 1972]. Instead, the early0E93aw extensive discussion of and
experimental proposals for new language mechanisms ietetwlprovide support for more data-
oriented program modules.

Writers on structured programming did of course recognimg tontrol structures and data
needed to be considered together: “[a]s tasks are refinethesdata may have to be refined,
decomposed or structured, and it is natural to refine progaach data specifications in paral-
lel” [Wirth, 1971a, p. 221]. However, the commonest form afgram module remained an Algol-
like block, thought of primarily as defining a single opevati Blocks could contain local data
or make reference to data defined in outer blocks, but theydigrovide an adequate means of
dealing with data generally.

One important theme in generating more complex proposatstiaidea of isolating data and
only allowing direct access to it to limited parts of a pragraVarious advantages were thought
to follow from this. For example, the designers of thieass language identified as a significant
problem the fact that, in the domain of systems programmilaga structures frequently needed
to be changed. It was important, therefore that “the strectiefinition and the algorithms which
operate on the elements of a structure must be separatedhirasuay that either can be modified
without affecting the other” [Wulf et al., 1971, p. 787]. Blwas achieved by enabling access to the
elements of a data structure through a function-like iatf and defining the data structure along
with an algorithm for accessing the elements of the strectlithe data structure was changed, the
algorithm for accessing its components would also need tthheged, but code which made use
of the functional interface would be unaffected. It was hibfit this would increase the ease with
which programs could be modified and reused.

This line of thought was taken further by James Morris untlergeneral heading of ‘protec-
tion’ [Morris Jr., 1973]. As well as describing programmitanguage mechanisms which would
enable a data structure and a set of procedures to be clasaygiated, Morris described methods
for preventing other parts of the program from accessingitita structure directly. A related ap-
proach was described by Stephen Zilles as “proceduralaatistn . .. the technique of representing
system components in terms of one or more procedures suchtiigactions among components
are limited to procedure calls” [Zilles, 1973]. As this dégtion suggests, it was widely assumed

that the procedure, or block, was the fundamental type afara module, and proposals typically
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tried to show how procedures could be used or adapted todeavstructure that was more focused
on data.

The question of whether program modules were in fact beséngtmbd as simple functions
was explicitly addressed by David Parnas, who concludedemrdntrary that “it is almost always
incorrect to begin the decomposition of a system into madlatethe basis of a flowchart”. Instead,
Parnas appealed to a principle of ‘information hiding’, aadommended that “one begins with a
list of difficult design decisions which are likely to changeach module is then designed to hide
such a decision from the others” [Parnas, 1972, p. 1058]s dda is clearly related to that of
Dijkstra, who described program modules as “pearls”, eachoglying “a specific design decision
(or, as the case may be, a specific aspect of the original@robtatement)” [Dijkstra, 1969b, p.
87].

One specific type of design decision that could be hidden hmgram module was the choice of
representation for a particular data structure. As Palikasthe designers dfLISS, pointed out, if
knowledge of a particular data representation is shareuddest many modules, as typically happens
when modules represent tasks, a change in that data refati@enill require associated changes
to many program modules. An alternative approach is to aribe choice of data representation
in a single module, which will then make available to otherdmes a more abstract representation
of the data, together with the ability to manipulate it. Bifla had recommended that “[s]uch a joint
refinement of data structure and associated statement&dd®an isolated unit of the program
text: it embodies the immediate consequences of an (indiepgndesign decision and is as such
the natural unit of interchange for program modification’ljkStra, 1969b, p. 87]. Parnas gave a
slightly expanded version of this idea, recommending theitdata structure, its internal linkings,
accessing procedures and modifying procedwss part of a single module” and “not shared by
many modules as is conventionally done” [Parnas, 1972, $6]10

The connection between these ideas was made explicit ifoee®s structured programming
at an ACM meeting in 1973, where Barbara Liskov explained thdypothetical structured pro-
gramming language could provide levels of abstraction bavfe. We assume that an abstraction is
presented to the user as an abstract data type togethetheitperations available on that type ...
the entity ‘level of abstraction’” must be a syntactic unitteé language” [Liskov, 1973, pp. 6—
7]. It was noted that the class concept of the Simula 67 progriag language provided a similar

feature, but because it made the data representation #dxedssother modules, it did not fully
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support the desired notion of abstraction. A new languageting these requirements was more
fully described in the following year by Liskov and Zilles.h@&y again emphasized the connec-
tion with structured programming, here understood as “ags® of successive decomposition. The
first step is to write a program which solves the problem buictvinuns on an abstract machine,
one which provides just those data objects and operatiomshvene ideally suited to solving the
problem” [Liskov and Zilles, 1974, p. 50].

The language proposed by Liskov and Zilles, later naoied defined a new program structure,
the cluster, intended to provide a way of implementing an abstract dgte,tunderstood as “a
class of abstract objects which is completely charactertzag the operations available on those
objects” [Liskov and Zilles, 1974, p. 51]. A cluster definedet of data objects which, from the
point of view of a program using them, were completely alesteand could only be manipulated
by using the operations defined in the cluster. The clusteifitlefined a suitable representation
for the abstract objects, in terms of other, lower-levektdus or the basic types provided by the
language, and implemented the operations in terms of thigsentation. A cluster, therefore, was
a concrete proposal for a program module correspondingjkstti’s ‘pearls’, and provided a kind
of abstraction closely related to the notion of a ‘cut’ in thecklace of pearls that Dijkstra had
described.

Liskov and Zilles also saw a strong connection between thefiabstract data types and issues
to do with proving the correctness of programs. The use dfatiton enabled the task of proving
the correctness of a program to be split into two parts: m@vhe correctness of the abstract
program that used the data abstraction, and proving thecatagss of the implementation of the
data abstraction itself. In order to carry out such proofmly, however, it was necessary to have
some way of writing formal specifications of abstract dataety Liskov and Zilles argued that
an ‘input-output specificatignwhich describes the mapping of the set of input values iméosket
of output values” [Liskov and Zilles, 1975, p 10] was suitabbr defining procedural abstractions,
but not for data abstractions, and considered various wayghich formal specifications of data
abstractions could be given.

From the mid-1970s on, the notions of data abstraction amdotimal specification of abstract
data types became very significant areas of research anticatagork, and many programming
languages were developed in which these ideas were apglieid. section has demonstrated the

close relationship between the origins of this work andesstaised in the development and ap-
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plication of some of the ideas of structured programmingti@aarly those relating to program
decomposition and proof. This suggests that this traddifomork should be seen as an integral part
of the Algol research programme.

The key innovation in this work was the construction of a dg¥@ notion of abstract data
type. This raises the question of why a new concept was féle toecessary, or rather why existing
mechanisms, such as the classes of Simula 67, were not badtadequate. In the first place, classes
were not types. Types were widely thought of as sets of ddtesavith associated operations. This
was consistent with the way in which basic types in prograngntanguages were defined, and also
provided a natural way in which the properties of the typelatdne formalized. Classes, on the
other hand, were thought of as mechanisms for the produofiobjects, each of which contained
data and operations; objects were therefore significaritfigreint from data values. Furthermore,
a different model of processing is involved: when an operais invoked on an object, the object
updates itselfn situ; with an abstract data type, by contrast, a data value isepgaags an argument
to a function and an updated value returned.

Another important difference was the issuepodtection abstract data types were intended to
provide a barrier which allowed programmers to manipulata anly by means of the provided
operations. Simula 67, by contrast, allowed programs tnictesxd access to the attributes of objects
and therefore did not support a crucial part of the notionbsti@ction. Finally, although Simula
67’s classes did provide a unification of data and algorithihey did a lot else besides. In particular,
they provided support for a coroutine mechanism which albwbjects to exist in a quasi-parallel
fashion. Although useful for applications such as simatatithis provided a complication that

obscured what was felt to be the important new concept of ainadi data type.

8.5 Smalltalk

By the mid-1970s, then, the Algol research programme haeéldpgd a solution to the question
of how to unify algorithms and data in programming languageshe form of a fully articulated
notion of abstract data type. A number of significant langsagere based on the idea, pioneered
by cLu, of a program module which defined and encapsulated an abdata type. Perhaps the
most notable of these languages was Ada, developed in thd%510s and early 1980s by the US
Department of Defense [Department of Defense, 1983].

However, later languages such as C++ and Java did not fdtlisvgtyle, adopting instead a form



CHAPTER 8. THE UNIFICATION OF DATA AND ALGORITHMS 214

of program module derived from the Simula notion of a clasanduages adopting this style be-
came known asbject-orientedanguages: this approach to programming language desianize
prominent in the early 1980s and has remained dominantthetipresent time. As with structured
programming, earlier languages have been extended witdttwbjiented features: this occurred,
for example, in the 1995 revision of Ada. An important inflaerin the development and adoption
of object-oriented ideas was the Smalltalk language, deeel at the Xerox Palo Alto Research
Centre (PARC) from the early 1970s onward.

Smalltalk was designed as the programming language to ltkars@ new hardware device,
described by Alan Kay and Adele Goldberg as “a personal dymaradium the size of a notebook
(the Dynabool which could be owned by everyone and could have the poweandlb virtually
all of its owner’s information-related needs” [Kay and Gmdag, 1977, p. 31]. The Dynabook
was to possess a high-quality graphical display that woeldlide to present information in a way
not inferior to the printed page, the capability for highelity sound reproduction, and a variety
of input devices that would enable users to perform a mdkitaf tasks, including editing text,
drawing images, and composing music. It was thought of aseadmedium, whose content would
be a wide range of already-existing and not-yet-inventediai¢Kkay and Goldberg, 1977, p. 40].

The Algol research programme had originated in the traditioscientific programming carried
out in the 1950s. A typical problem in this tradition was twide algorithms for solving particular
computational problems, and Algol was conceived of orifjnas a language for the expression
and communication of algorithms. The background for Sralitllton the other hand, was the devel-
opment of a highly interactive device which was intendedaaibable by a wide range of people,
including young children. Smalltalk was intended to be midydhe language in which the system
was coded, but also a medium through which users would wdtktvé system. Programming was
conceived not as the production of code by following an egjiimg-like process, but as an ongoing
interaction with a complex and reactive system, an outlobickvprofoundly shaped the design of
Smalltalk: Kay and Goldberg referred to Smalltalk as a “caminations system ... implemented
on small computers” [Kay and Goldberg, 1977, p. 31] rathantsimply as a ‘language’.

The first stable version of the language, known as Smalitalkvas designed in 1972 and in use
at PARC from 1973 on the “Interim Dynabook”, a small comp@gstem being used to research as-
pects of the Dynabook idea. The instruction manual for Saikt72 was written with an audience

of high-school students in mind, and in style and contentrikisgly different from the manuals
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written for languages in the Algol tradition [Goldberg andy<1976]. As a communications sys-
tem for the Dynabook, Smalltalk was intended to be usedantiely, and use of the language is
introduced under the heading “talking to Smalltalk”. Pergming took place in a “Smalltalk dia-

log window”: the user could enter arithmetic expressiondgrfanediate evaluation, or draw simple
pictures by issuing commands to control a ‘turtle’ capalfldrawing lines on the screen.

As well simple commands, conditional statements and iteratcould be specified. An in-
troductory example showed how to create an infinite loop wiginabled the mouse cursor to be
used as a simple drawing device. This provides a strikingngka of the effect that a different
set of priorities could have on programming style: in sdfenprogramming, an infinite loop was
generally taken to be a severe error in a program and metlooggdving that a program termi-
nated when expected were intensively investigated. In Batialhowever, the advice given was
simply “[tjo escape from the loop and get Smalltalk to listeryou again, press the key marked
‘ESC™ [Goldberg and Kay, 1976, p. 5].

Smalltalk was often described as a system which carriedioutlation, and Simula was a sig-
nificant influence on the development of Smalltalk. Howewdrat was influential was the model of
computation that was implied by Simula’s notion of simwatiwhich was taken up and generalized
by Smalltalk. Syntactically, Smalltalk did not resemblen8ia, or indeed any other language. For
example, Smalltalk-72 included a number of hieroglyple-ldharacters, including a pointing hand,
an eye and a smiley face, on the grounds that these had be@htftooonvey the meaning of certain
operations to children better than a set of reserved wonatsh&more, because the language was to
be used interactively, there was no concept or textual septation of a complete program. Instead,
users could add definitions to the system, and then use theragtively as required.

Kay had been directly inspired by Simula’s notion of an objend in particular the integra-
tion of data and procedures into a single structure. He latete, “[flor the first time | thought
of the whole as the entire computer and wondered why anyonddweant to divide it up into
weaker things called data structures and procedures. Whdivide it up into little computers
...?" [Kay, 1996, p. 516]. However, rather than directly deypéhg ideas of simulation or abstract
data types, for Kay “[i]t was the promise of an entirely newyM@ structure computations that took
my fancy” [Kay, 1996, p. 517]. At about the same time as he caaness Simula, Kay also studied
Lisp in detail and became fascinated by the idea of buildmgratire programming language on one

single abstraction, in the way that lambda abstraction teh fundamental to the design of Lisp.
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The original design of Smalltalk was written as a conscidtesnapt to emulate the McCarthy's orig-
inal definition of Lisp [McCarthy, 1960], but based on a diéfat primitive notion, namely the idea
of message passing between objects [Kay, 1996, p. 531].

The Smalltalk-72 manual put it as follows: “Every entity im8litalk’s world is called an ob-
ject. Objects can remember things and communicate with eder by sending and receiving
messages” [Goldberg and Kay, 1976, p. 6]. Despite the Sitikdaerminology, however, it was
recognized that there were important differences [ShogRO]L Firstly, Simula’s classes and ob-
jects were provided as an extension to Algol 60, leading tornsistency in the way that different
data items had to be treated; Simula 67, for example, had ssigrament operations depending
on whether the assignment involved an object or an Algol data. Secondly, objects commu-
nicated in Simula by means of a “fairly typical proceduredcation” [Shoch, 1979, p. 72]. By
contrast, the object receiving a message in Smalltalk cexdganine or manipulate the message, in
effect deciding on its interpretation. To an extent thisatality had been included in Simula 67,
thanks to the notion of virtual quantities, but the moti@atfor including these had more to do with
accessing attributes of objects than dynamically int¢ipgemessages [Dahl et al., 1968, p. 24].
By contrast, Smalltalk made it a fundamental feature of émgliage, applying to all inter-object
communication.

As in Simula, every Smalltalk object belonged to, or was astance of’, a class which defined
the way in which its instances would respond to messagessdé&malltalk could extend the sys-
tem by defining new classes, by providing suitably formatéed. Unlike Simula, however, classes
were not thought of primarily as pieces of program text. Bgtin accordance with Smalltalk’s
overall philosophy of treating everything as an objectssts themselves were objects within the
running Smalltalk system. Defining a class was thought oSnahuch as writing a program text as
formatting a particular type of message which would tell$mealltalk system to create a new class.
As objects, classes could be sent messages, for examplesageds create a new instance of the
class.

The Smalltalk designers were aware of the potential forusioh in this approach. If all objects
are instances of classes, then classes, being themseleessolhad to be instance of a class, the
‘Class class’. The Class class would define the behaviouas$es, such as their ability to respond
to messages asking for the creation of new objects. The €lass, however, had in turn to be

thought of as an instance of itself, a form of self-inclusibat might be thought of as paradoxical
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in philosophy or set theory. In attempts to clarify what wasng on here, explicit reference was
sometimes made to Plato’s theory of forms, the Class clasg lidentified with the Form of the
Good [Shoch, 1979].

Subsequent versions of Smalltalk introduced additionajuage features, notably subclassing,
the Smalltalk analogue of Simula 67’s prefix classes, in 8atled76 [Ingalls, 1978] . A class could
be defined as a subclass of another class, its ‘superclemsi,vhich it would ‘inherit’ behaviour.
Behaviour that was shared by a number of class could theréfpthis method be written in one
superclass and inherited and reused in as many subclassesessary.

In a description of Smalltalk-76, Ingalls distinguished @ltalk’s “object oriented” approach
from a traditional “function oriented” approach: in a fuioct oriented language, the expression
‘3 + 4’ would be interpreted as passing the arguments 3 and 4 top@ion 4+’; in Smalltalk,
on the other hand, it was interpreted as sending the message¢o the object representing the
number 3. Whereas function oriented languages would peoaitibrary of useful functions for
programmers to use, Smalltalk provided “a set of well dgwetbsuperclasses from which most of
the system classes are derived” [Ingalls, 1978, p. 9]. dséined classes could equally well be
derived from any available superclass.

Smalltalk reached a definitive form in the 1980 and expegdr&e considerable growth of in-
fluence and use during the 1980s; in the 1990s it was for a wjnike widely used industrially,
particularly in the finance sector. The details of this l&listory are outside the scope of this thesis,
however, and the relationship between Smalltalk and thelAlgsearch programme will now be

considered.

8.6 The relationship between Smalltalk and logic

The previous section has described the key features of Gtkaland suggested that its origins
and the motivations of its designers were very differentfrinose of the designers of Algol 60.
Although the influence of Simula was acknowledged, the agraknt of Smalltalk seems to have
owed little else to the Algol research programme. This sacsupports this claim by describing
ways in which the Smalltalk language itself differs from tiaion of programming language, based

on Carnap’s notion of a formal language, found in the Algekich programme.
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Smalltalk and the concept of a formal language

In one sense, every programming notation or language cahdught of as a formal language:
without the existence of decidable syntactic rules it waubd be possible for the notation to be
processed by machine. However, a stronger claim was madeapt€ 5, namely that the Algol 60
report led to programming languages being considered toieal languages in the sense of that
notion articulated by Carnap and Tarski in the 1930s, andraras as terms in such a language.
Smalltalk deviated in many ways from this notion, not leasts use of text to represent programs.

Certain aspects of the Smalltalk system made use of mackauable text. One way in which
the user could interact with the system was by typing text antialogue window; such text was
interpreted by the system as a request to send a certaingedssaspecified object. However, other,
non-textual, forms of interaction were also availablengsadditional interaction devices such as a
mouse. In terms of their effect on the system, however, éxnd non-textual interactions were
semantically equivalent, both specifying that a messagsebeto an object.

Text was also used for the definition of new classes, whictevigsed by the user into an
editing window. However, whereas in more conventional laaggs the programming language text
was taken as definitional of the program being written, in Bad more emphasis was placed on
the existence of the class within the complete Smalltalkesys For example, when a class text is
brought up for editing, Ingalls describes the situation dyirsg that “[t]he class has thus provided a
simulation of itself as structured text” [Ingalls, 1978,18)]. In the context of the Smalltalk system,
the text entered by the user was not the definition of the clagsrather anessagdo the object
in the system responsible for creating new classes. Othssages, perhaps utilizing different and
even non-textual representations of the required behawould equally well have been used.

Because Smalltalk was thought of not just as a programminguiage but more generally as
a programming system, there was no clear notion of what al&thgbrogram might consist of.
As opposed to the traditional model, where program textsevsebmitted to a computer system
that would execute them, the Smalltalk system was the eixecabmputer system and the user
programmed by communicating with the system in various wayS$malltalk program could not
therefore be isolated from its environment and dealt witpurely linguistic terms. Programming
was not thought of as the task of constructing a linguistiityerbut rather as a process of working
interactively with the semantic representation of the prog using text simply as one possible

interface.
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In particular, Smalltalk did not satisfy the propertiesatbby Tarski and Carnap as definitional
of a formal language, discussed in Chapter 2. The first ofethess that the basic signs in the
language should be clearly described: this was not donerf@lialk, and given the possibilities
for non-textual communication with the system, it is notclthat it could have been done.

Similarly, the second condition, that the sentences ofdahguage should be distinguished by
purely structural means, was not satisfied. It was argudigetirat ‘sentence’ should be understood
as denoting the linguistic unit expressing the speech ast important to the users of a language:
indicative statements in the case of logic, and commandsagrams in the case of conventional
programming languages. In the Smalltalk system, as Kagssttk the sole and unifying speech
act was that of sending a message to an object. Certain tdatoss for accomplishing this were
specified, but these were not presented as being the onlipjlitiss. As well as the possibility of
non-textual messages, it would be quite possible withirSimalltalk metaphor for a user to send a
garbled or meaningless message to an object: the effedsafitiuld be defined by the object rather
than by the syntax of the message.

In conclusion, then, the designers of Smalltalk do not apfzehave thought of Smalltalk as a
formal language, or to have made any attempt to present liteigetterms. As this was a corner-
stone of the Algol research programme, it is therefore ptes$o describe Smalltalk as marking a

significant departure from the Algol paradigm, despite tifience of Simula on the language.

Smalltalk’'s computational model

The differences between Smalltalk and other languagescargmply to do with syntax, however,
but extend to the general understanding of what computétion

As described in Chapter 3, the principal motivation for tlewalopment of electronic digital
computers was to automate calculation, and the canonisigd¢éhat emerged, the so-called Von
Neumann architecture, split the computer into a data stoé,control and arithmetic units which
processed data taken temporarily from the store. Thistaathre was reflected in the programming
languages developed in the Algol tradition, which by 197@enemmmonly viewed as consisting of
features for expressing algorithms and a largely sepaedtefdeatures for describing data struc-
tures. Within this tradition, programs were fundamentalyn as expressing algorithms, which in
turn were understood as processes which carried out furatticansformations on data.

Not all application areas fell neatly into this model, hoeevone which did not was the use of
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computers to carry out discrete event simulation, wheréates of interest lay in the computational

process itself, or properties of it, rather than in the tfmmsation between the initial and final states
of the data presented to the program. As described earlidisrchapter, Simula 67 developed a
way to support simulation within the context of the Algol @asch programme, a process which
necessitated a number of extensions to Algol.

The designers of Smalltalk saw themselves as adopting the madical approach of taking
the notion of simulation expressed in Simula as the fundamhegpresentation of computation. A
Smalltalk system defines a simulated reality and rather pihaviding for the definition of isolated
algorithms, the language provides a way for the user toadntewith this reality [Shoch, 1979].
Therefore a semantic account based on functions does notlisedy to be the most natural way to
understand the behaviour of a Smalltalk system.

It is notable that, like the Algol model, this design refleatpects of contemporary computer
architecture. Smalltalk was developed in the context oflyaabook project, widely viewed as
an originator of a type of ‘personal computing’ very diffetédrom traditional scientific computing.
The Dynabook was intended to enable the user to interactltsineously with a wide range of
informational artifacts: documents, pictures, musicahpositions and so on. Just as Pascal can
be seen as reflecting the distinction between store andatémthe von Neumann architecture, the
design of Smalltalk can be seen as reflecting the convensdtérchitecture of the Dynabook user

interface.

Smalltalk and compositional semantics

A further way in which Smalltalk differs from conventionairinal languages emerges in the rela-
tionship between syntax and semantics. In the metalogiba&inse developed by Tarski and Carnap,
the meaning of a sentence in a formal language stands in #dnatrelationship to its syntactic
form. An interpretation in a language assigns a meaninggsiimallest linguistic elements, and the
meaning of larger expressions is defined in terms of the mgarof their component subexpres-
sions.

The idea of message passing, and in particular the concegyrafmic binding, introduces
difficulties into this scheme. Dynamic binding is assodatéth the notion of virtual quantities in
Simula and was adopted as the default mechanism in Smalltadkovides a mechanism whereby

the effect of sending a message cannot be predicted by tersegbbjects are accessed by means
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of references, but in both languages it is not always passibtell from a reference exactly what
kind of object is being referred to. The identity of the olbjbeing sent a message, then, is not in
general known until the program is run, and the same messageénvoke different behaviour on
different occasions, depending on the history of the coatjmut.

This means that the computational effect of an expressi@miula and Smalltalk cannot be told
from a purely static inspection of the program text. It isyony running a program that its detailed
behaviour can be known. This is an idea which has no countempdormal logic, where the
meaning of an expression is entirely determined by its syictéorm. Dynamic binding introduces
a new feature into object-oriented languages that appeds incompatible with a key assumption

of classical metalogic.

The programming process

Smalltalk had a novel idea of what the activity of programgnoonsisted of, one in which the
notion of inheritance was crucial. A Smalltalk program ig aocself-contained linguistic entity
which is compiled and run. Rather, the programmer workserctintext of a pre-existing Smalltalk
programming environment, itself written in Smalltalk, whiprovides support for both program
development and execution. Programming is not viewed astrnita of constructing a discrete
program, but rather as an activity of extending and modifyine environment, primarily using
inheritance to reuse existing functionality. In such aniremment, the notion of programming as
a quasi-deductive activity can seem rather unnatural, lage tis little if any evidence in the early
Smalltalk literature of the concerns with program derimator proving properties of programs that
were characteristic of the Algol research programme.

It should be noted in passing that many aspects of the Sikaitide of programming were also
characteristic of Lisp programming environments, though less pronounced form. The contrast
between this open, exploratory style of programming, aedlore rigid, formal style of the Algol

tradition is a striking feature of the history of programinin

8.7 Conclusions

By the early 1970s, programming language researchers batifidd as a key issue the definition of
linguistic structures that would support a unified treattdrdata and algorithms. This chapter has

described the development of two proposed solutions tgtoislem, namely the concept of abstract



CHAPTER 8. THE UNIFICATION OF DATA AND ALGORITHMS 222

data types developed as part of the Algol research programnaethe approach to object-oriented
programming embodied in Smalltalk.

Further, it was argued that Smalltalk marked a significaetkmwith the Algol research pro-
gramme, and in contrast with many of the languages developéte preceding decade it owed
little to the influence of logic. Not only were the inspirati@and informal goals of the language
quite different, emphasizing an interactive approach tg@amming and the use of computers, but
the form of the language differed profoundly from those digved in the Algol tradition. The
Smalltalk project was addressing some of the same issudg aslgol research programme, but
proposed a quite distinct solution which owed little to tbgit-influence approach characteristic of

that programme.



Chapter 9

Conclusions

This chapter summarizes the main substantive and methgidala@onclusions of the thesis, makes
a number of observations on the development of the field #feemid-1970s, and concludes by

highlighting areas for possible future research.

9.1 The influence of logic

The primary aim of this thesis has been to provide an accdutheovays in which mathematical
logic was influential in the development of mainstream difierand commercial programming lan-
guages. The account given recognizes, as have many othera,drucial event in this development
was the publication of the Algol 60 report [Naur et al., 196Dhe significance of this report is here
explained, however, by proposing that it played the role @fracrete paradigm, in Kuhn's term, for
what has been described in this thesis as the Algol reseangngmme.

The key characteristics of the Algol research programme baen highlighted by making use
of terminology introduced by Lakatos. For Lakatos, a redeqarogramme “consists of method-
ological rules: some tell us what paths of research to aveégdtive heuristi; and others what
paths to pursueppsitive heuristiy’ [Lakatos, 1970, p. 132]. The negative heuristic telleggshers
to preserve at all costs certain propositions, the “har@’cof the programme. For the Algol re-
search programme, it was suggested in Chapter 5 that thechezdvas roughly the proposition
that programming languages should be understand to be lftanguages in the sense established
by mathematical logicians in the 1930s. This in turn was idlesd, making use of Pickering’s
schematic account of conceptual innovation, as an exanfgdyging [Pickering, 1995].

By contrast, the positive heuristic of a research prograrsete out the “research policy” of the
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programme, so that researchers will have a framework wittiith they can set their work, and
which will save them from “becoming confused by the oceamaoinaalies” [Lakatos, 1970, p. 135].
The positive heuristic of the Algol research programme wamended most influentially by John
McCarthy in the early 1960s [McCarthy, 1961, McCarthy, 1962 large part of what McCarthy
suggested amounted to a programme for applying the metiggiinyframework of logic to the study
of programming languages. Some of the details of this workevaescribed in Chapters 6 and
7, and illustrated Kuhn’s contention that a large part ofnmalrscience consists of puzzle solving
rather than profound innovation. Pickering’s descriptidthis phase as one tfanscription where
the well-understood ideas and techniques from one aregpptieéto a new area, reinforces this
picture.

By the early 1970s, the Algol research programme had madhifisant progress and it was
argued in Chapter 7 that many of its results were making thiay to practical application in the
form of ‘structured programming’. In particular, this padisaw the acceptance of particular forms
of data and control structures and approaches to the mddgydof program development that
have remained central to the disciplines of computer seieamd software engineering ever since,
and which represent central achievements of the Algol reBgarogramme in the period under

study.

Paradigms and revolutions

The use of structural concepts such as ‘paradigm’ and ‘reBgaogramme’ in this account suggests
further observations about the history of programming leugs. For example, it could be argued
that the Algol research programme was in fact the first pgradwithin the field of programming
language design, a claim based not on an isolated evaluattitre merits of the Algol report, but
on the fact that after its publication the field acquired fax first time many of the characteristics of
Kuhnian normal science, as described in Chapter 6. A coeseguof adopting this position would
be that the earlier work on automatic programming carriedimthe 1950s would be described
as being preparadigmatic. This is not to underemphasizaértpertance of earlier achievements,
in particular Fortran, but draws attention to the fact thg tvork was not informed by a shared
understanding of what the problems in the field were and obébeways in which to make progress
in solving them. The move towards automatic programmindhé 1950s was driven by practical

motives, including the desire to make the most economicapassible of the available machines,
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but innovation took the form of a number of small and largelgapendent initiatives, as described
in Chapter 5, and it was only after 1960 that these began fesmainto a coherent programme.

It could be objected that it is inappropriate to view the wafkthe 1950s as preparadig-
matic, because there existed an existing paradigm for @nogning based on the use of machine
code, a candidate concrete paradigm for which might be tkibdek of Wilkes, Wheeler and
Gill [Wilkes et al., 1951]. To some extent this must remairuastion of judgement and interpreta-
tion, and there are facts, such as the initially negativetiea of many machine code programmers
to Fortran, which bring to mind Kuhn’s descriptions of thenbgiour of adherents to an existing
paradigm when confronted with a successor. However, it semmthe whole that the work on
automatic programming was addressing issues and problestisct from those relevant to ma-
chine code programming, and that it is better viewed as thinginary to the formation of a new
paradigm than as normal science in an established tradifiorachine code programming.

Despite its influence and success, however, the Algol resgaogramme did not encompass all
subsequent work on programming languages. Chapter 8 deddhe early development of object-
oriented programming and concluded that the Smalltalketojepresented a new and independent
development that, despite certain historical links, d#teprofoundly from approaches to program
language design that were influenced by logic. It is outdidestope of this thesis to study in detail
the subsequent development of object-oriented programemd the interaction between it and the
logic-based tradition, but the following provisional refk&ican be made.

Many widely-used programming languages of the presentsimh as Java and C++, are de-
scribed as being object-oriented, and owe a lot to the exapfghe ideas developed in Simula and
Smalltalk [Stroustrup, 1994]. However, they do not differradically from Algol-like languages
as Smalltalk did, and the currently dominant form of progming language can reasonably be
described as a synthesis of the two approaches, as the iftdi@eints suggest.

Firstly, the top-level structure of programs is based oncthes concept evolved in the object-
oriented tradition, not on the abstract data types of thelAlgsearch programme, and the char-
acteristically object-oriented features of inheritanod dynamic binding are widely used. Source
code programs are structured as a set of class definitiodsaraexecuting program is viewed as a
network of intercommunicating objects, not as a single gssc

However, the resemblance between contemporary progragiariguages and formal languages

is stronger than in the case of Smalltalk. Programming ityae&rsions of Smalltalk was a process
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of interacting with a complete system which included marpeass of what would now be classed
as the computer’s operating system, thus blurring thendistin between a program and its envi-
ronment. Reuse and extension of existing code has replaee@alltalk model of an extensible
programming environment, however, and programs are atgely understood to be fundamentally
textual objects which are processed in various ways by a@anoging system which is in principle

separate from the applications being written. As a reshé,ttaditional metalogical distinctions

can be applied to these languages, and research into, fiopéxathe semantics of object-oriented
languages has been able to make progress in a way that wasltiffith Smalltalk.

Finally, it should be noted that contemporary programmamnglages include data and control
structures that are clearly derived from the results otstined programming. These provide a layer
of computational primitives which are used to define thesdaghat make up and object-oriented
program. Like Simula, then, these languages are clear ngaots of Algol-like languages.

Object oriented programming has frequently been descrifsed ‘revolution’, a description
perhaps partly enabled by the frequent use of the Kuhnian tearadigm’ to describe different
approaches to programming language design. There doesdirsgem to have been a significant
change in the dominant class of programming languages,hwimdtil the late 1980s, consisted
largely of languages which supported abstract data typesa development reminiscent of the
way in which structured programming constructs were inioedl into older languages like Fortran,
however, some of these languages later introduced obijextted features, supporting the idea that
object-orientation is now in fact the dominant approach.

If the adoption of object-oriented languages was a revaithowever, it appears to have been
a conservative one, in the sense that many of the results thhenprevious paradigm have been
carried across the revolutionary divide and preservedeémiw paradigm. Specifically, as noted
above, these results include the data and control strgctdrgtructured programming, and many of
the metalinguistic assumptions of the Algol research mogne. It has been suggested that such
conservative revolutions characterize progress in madkiemmand logic [Gillies, 1992], and it is
therefore possible to speculate that the similar patterth@fobject-oriented ‘revolution’ reflects
the relationship that had been established by the Algobrekeprogramme between programming
languages and logic.

It is possible to ask, however, if there are any substangasans why the adoption of object-

orientation should have had a conservative character inohwthie new ideas were applied mostly to
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issues of large-scale program structure and not to all &spéprogramming. One way to address
this question would be trace the relationship between thiefpehich became widespread in dis-
cussions of the ‘software crisis’, that the most signifigartblems for software engineering were
those which arose in the development of large-scale sysimisthe subsequent uptake of object-
oriented ideas, not only in programming but also in prograsigh. This, however, is a topic for
future research.

A further question is the issue of why object-oriented lagps have proved more successful
than those based on abstract data types. A full answer taqtigstion is outside the scope of
thesis, but one possible factor is that object-orientapoovides a better ‘fit' with a significant
range of applications than the simpler data abstractionetndebr example, consider applications
which run over a network of distributed computers: this seinfits very naturally with Alan Kay’s
vision of a Smalltalk program being composed out of many aibjeeach with the capabilities of
a computer. Further, since the widespread adoption of gralpbser interfaces, programs are no
longer in control of when input takes place, but are requicegtspond to unpredictable input from
users. This again relates very naturally to the metaphobjgfots responding to messages; in fact,
as argued in Chapter 8, it is plausible that this was an impbitfluence in the development of the

ideas of object-oriented programming.

9.2 The nature of influence

This thesis has examined aspects of the influence a theardisripline, mathematical logic, has
had on more practical activities, namely the design of @gning languages and the construction
of programs. Often, this direction of influence is describedheapplication of theoretical ideas
to practice and is taken to ground a distinction betweemsei@nd engineering. For example, in
the 1980s a number of writers described how the logical antthenaatical approach to software
developed by the Algol research programme would enabledtat™ of programming to transform
itself into a mature engineering discipline [Hoare, 1982a\8, 1990, for example].

Often, this process of application is seen as being unpmudtie: for example, Chapter 3 con-
sidered that claims made by Davis and Mahoney that the iioreof the computer could be char-
acterized simply as the application of ideas from logic, #trecomputer as a ‘byproduct’, in Ma-
honey’s term, of theoretical research in logic. Howeveapipears that a far less certain and more

exploratory process took place than the simple term ‘apftio’ would suggest, and that within this
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process logical ideas were just one of many factors whosepilaty led to the development of the
computer. The close connection between the computer aicldpgears, on the contrary, to have
been established some years later, suggesting that thadtiv® between theory and application is
not a causal process, but rather a question of interpretaifa scientific community coming to see
a new device in a particular way.

Similar points can be made about the relationship betwegio knd programming. Through-
out the 1950s, there were several explicit attempts to dpplgal ideas to programming, such as
Turing’s ‘anticipation’ of program proving, Elgot’'s use fifrmal language theory, and Hamblin's
application of tukasiewicz's ideas [Turing, 1949, Elgd®5%, Hamblin, 1957]. However, in the
absence of a more global understanding and acceptance afl¢hef logic, these pieces of work
had little if any immediate influence. By contrast, once tHgohresearch program had become
established in the 1960s, such applications of logic beqantine. This suggests an answer to the
guestion of how to explain the problematic time-lag ideetifby Jones between anticipations and
the subsequent further development of similar ideas [J&¥X3]: certain pieces of scientific work
only gain their full significance when interpreted in the @t of a research programme which
shares their assumptions.

In the traditional view, application is seen as a separagesthat takes place after a research
programme has delivered significant theoretical resuis,résults themselves not being substan-
tially changed by their application. In this way, it was aggun Chapter 7 that the phenomenon
of structured programming in the early 1970s can be seernsphg@s the application of the ideas
of the Algol research programme in practice. However, ongisy feature of this process was
the extent to which the theoretical ideas were modified: ii@dar, the importance of program
proving was downplayed while new ideas about the manageaiesutitware projects were treated
as an integral part of the structured approach.

This phenomenon can be seen as related the third stage @riRigk schemafilling, where
results from the existing discipline do not provide a cleayvorward and more open-ended work
is required than in the transcription stage. Whereas logét grovided an approach to the design
of data and control structures in languages, for exam@egaihtribution to the practice of program
development was more problematic. Informal top-down debigcame a popular practice, but for-
mal program proving was not, and has not been, widely acdepl@e belief that a proof-based

approach to programming would guarantee the correctnegegfams has been repeatedly criti-
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cized [De Millo et al., 1979, Fetzer, 1988, for example], éaample, and a number of writers have
commented on the lack of practical application of theoattiesults [Arden, 1980, Mahoney, 1997,
for example]. Proponents of the traditional model, such aarbl, suggest that these problems can
be addressed by further development of the theory, or aggreffort in education. By contrast,
Pickering’s scheme suggests the possibility that there Imedimits to the extent to which a given

theory can be straightforwardly applied in a particulamare

9.3 Methodological conclusions

The subject matter of this thesis belongs to what it usudibracterized as internal history. How-
ever, as discussed in the introduction, one aim of the themisto explore the possibility of writing
about such material while avoiding the methodological rsribat traditional ‘insider’ history has
been accused of. This section summarizes some of the wayiidh whis has been done, and the

conclusions drawn.

Context and explanation

Insider history tends to describe historical episodes fimseof their relationship with the current
state of knowledge, ignoring their historical context. Aremnative tradition, associated with var-
ious approaches to the sociology of scientific knowledgacgs emphasis instead on the external
context of developments, and in particular social, palitend economic factors. It was suggested in
the introduction that such external factors might not bécaht to explain certain internal features
of a particular subject matter, and this thesis has acagiydinied to remain agnostic about what
kinds of contextual factors might be explanatorily relaviarany particular case.

For example, in Chapter 2, Turing’s machine table notatias examined in the context of con-
temporary logical work on computability. Accounts of Tugis work in the history of computing
tend to stress its novelty, and to stress its role in the msigif modern computing. However, as
argued in Chapter 2, there are many similarities betweeimg@’arnotation and that of recursive
function theory and the-calculus, and drawing attention to these makes, it wasesigd, bet-
ter historical sense of Turing’s work. In 1936, after allrifig was making a contribution to the
literature of mathematical logic, not to the then nonexistibject of computer science.

In this case, then, related work in the theoretical disaglof mathematical logic provided a

useful context in which to gain a better understanding ofriis work. Chapter 3, by contrast,
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emphasized the importance of two other disciplines, naroetyputational mathematics and cy-
bernetics, in the formation of the stable concept of an aatandigital computer described by von
Neumann in 1945. As writers such as Paul Edwards have enzglg&dwards, 1996], the Second
World War provided a historical context which cannot be igrbin discussing the development of
computers and the uses to which they were put, but this cbistart sufficiently specific to explain
the fine detail of proposals such as von Neumann’s Draft Repor

External factors seem more directly relevant to the worlcdiesd in Chapter 5: the principal
motivation for the development of automatic programminghie 1950s was the need to make pro-
gramming less laborious and time-consuming, hence empfhlanticipated demand for program-
ming from industry and commerce to be met, and the emphasierotula translation stemmed
from the preponderance of scientific applications, itstiatable to the wartime origins of the
computer. However, these factors are not, it was arguedicisut to explain details such as the
form of the mathematical expressions that were adopteddgramming languages, and a more
theoretical, ‘internal’ explanation was given for this.

As a final example of the possible range of relevant explapdtztors, it was suggested in
Chapter 8 that aspects of the high-level structure of prograng languages can be explained by
the architecture of the machines on which the programming twebe carried out. This line of
thought could be developed, for example, by consideringettient to which the area in which a
given language was intended to be used, such as scientifamanercial applications, affected the
design, included features and style of the resulting laggua

In general, then, it can be concluded that a historical @stan the technical or internal details of
a particular subject area does not preclude the possibfligiving a contextual account of particular
episodes. However, obtaining an adequate understandiggmugeneral involve a wider range of

explanatory factors than are sometimes found in exterstbties.

The construction of new concepts

Insider accounts of technical invention often treat epésoaof innovation as if they were indivisible

moments of inspiration, not susceptible to analysis andaegtion. This is a consequence of the
Whiggish perspective which sees in the past only those &spevant to present work. In contrast,
this thesis has emphasized the work involved in the cortstruof new concepts or techniques that

may now seem to be obvious and unquestionable, the altezaatiat were considered, and the
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reasons behind the choices that were made by the histoGtaisa A repeated pattern can be
observed, in which a period of experimentation is followgdam episode of closure in which a
standard solution is widely accepted. The reasons for wdijehrticular solution is widely adopted
differ from case to case, however.

This process appears at every stage of the historical s@hngpter 2 outlined the process by
which a mathematical concept of effective computabilityeeged and gained acceptance, involving
the interactions between the work of a number of logicianth@early 1930s. In this case, the
provable equivalence of a number of widely different deifim$ appears to have been the deciding
factor in generating closure.

A similar story can be told about the design of the computdsaied in von Neumann’s Draft
Report, as outlined in Chapter 3. The proposed EDVAC desipears to have won widespread
acceptance very quickly, as it provided an effective sofuto the problem of automatically pro-
gramming electronic machines. The identification of coramibf this type with Turing’s universal
machine concept, which is now often treated as axiomatak smme time to become widely ac-
cepted, however. Furthermore, it was philosophical rathan technical arguments which seem
finally to have made the difference in this case.

A similar extended, exploratory process is involved in teealopment of more technical de-
tails. Chapter 4 described how even such a fundamentalkré&atyprogramming as performing two
operations in sequence went through a period of negotidiidore its final form was established;
the solution adopted in this case was largely determinechéyneeds of the programmers of the
machines, not by the intrinsic capabilities of the machihesnselves.

A similar process to do with the types of formula that autamtxanslators would handle was
described in Chapter 5. The interest in formula translatias prompted by a desire to widen the
field of people who could program computers, but it was suggethat the form of the expressions
handled was decided not by the mathematical needs of the, usdrby the ease with which a
particular class of formulas could be defined and processed.

This notion of the work required in conceptual innovatiooyides an explanation for the prob-
lem of ‘blockages’ noted in the introduction. These are epés where a historical actor fails to
make an inference or a discovery that with hindsight appeby#ous or inevitable. Rather than
simply accounting for such episodes as unaccountabledaila more nuanced account of innova-

tion enables us to recognize that even simple-looking iatioms can require a complex and con-
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tingent process of work before their final form is establghend that in many cases this can only
be achieved by the interaction and experience of many werki@r place responsibility on an indi-
vidual for a lack of insight, or failure to make a particulaowe is in many cases to misunderstand
the nature of the historical processes at work in technizadvation.

A striking example of this is the fact in the mid 1940s, neittren Neumann nor Turing included
in their machine codes a single instruction to perform a ttawhl jump, despite being fully aware
of the importance of this pattern to programming. In thisecabe relevant general point that
syntactic and semantic structures should match only beeamlecitly recognized with Dijkstra’s

work in the mid 1960s, after much experience in writing peogs had been gained.

9.4 Directions for further work

Although this thesis has tried to avoid some of the familigfafys in writing internal history, it
does reflect traditional accounts in that it focuses on iatiom rather the use of technology, in
Edgerton’s terms [Edgerton, 2006]. For example, in the aiatgiven in Chapter 5, the early 1950s
were significant for the early development of autocodeglitepup to the development of For-
tran. However, as Rosen pointed out, most programming i3 1¥s being carried out on “the
Card-Programmed Calculator, an ingenious mating of antle@chanical Accounting Machine
with an Electronic Calculating Punch” [Rosen, 1964]. Hleaic computers were very thin on the
ground, and for most programmers the use of autocodes wawkl seemed a remote and theoret-
ical possibility. Similarly, in the early 1970s theoretichscussion of formal methods was being
carried out against a background in which overwhelmingly iiost widely used languages were
still Fortran and Cobol [Rosen, 1972].

These observations suggest that there are a number of anedswould deserve more detailed
examination in a more complete history of programming i fhériod. One significant omission
is any consideration of the ways in which card processingegys were programmed to carry out
complex computations, and the relationship between tleedmigues and those later developed for
automatic calculators and stored-program machines. Rdncérd technology was also of impor-
tance in the evolution of ideas about data structuring, amtdeen widely used in data processing
applications since Hollerith’s work during the 1890 US aenpAustrian, 1982].

The relationships between different application areasthadprogramming techniques devel-

oped for them deserves more detailed attention than wasbfmss this thesis, which has focused
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primarily on scientific computing. As well as the main altive areas of commercial program-
ming and artificial intelligence, the 1950s and 1960s sawdineslopment of a large number of
special-purpose languages motivated by the perceivedtnadelelop a language suitable for use
in a restricted application area [Wexelblat, 1981].

A number of technical aspects of programming languages dralydbeen mentioned in passing,
but also deserve more detailed study. Significant omissiatsde concurrency and types and type
theory, though in both these cases significant theoretigaistigation only took place towards the
end and after the period under study. It would also be wortlewtb study further the effect on
programming language design of the perception in the la604.9f a ‘software crisis’, and the
subsequent construction and promulgation of a notion divsmé engineering intended to address
the crisis.

As discussed in Chapter 8, object-oriented programmindjestgeed some of the ideas of the
Algol research programme, raising for example the quesifomhether all practical computation
could be modelled on the mathematical notion of a functioecBjble by its input and output
characteristics, or whether the recursive structure obA&D’s block structure was sufficient for
all needs. It would be worthwhile to study the ways in whichital models of programs and
programming languages were refined in response to theséansesThis in turn leads on to the
guestion of the possible influence of programming langulagery on logic: Gillies and Zheng have
suggested that in general the interaction between twaaliises is a dynamic process, in which first
one side dominates and then the other [Gillies and Zhend,]2dis thesis raises the interesting
possibility that the influence of logic on programming dissed in this thesis might have been
followed or accompanied by a period in which programmingyleage research exerted a reciprocal
influence on logic.

Finally, Chapter 3 described the way in which the new kind aihputer gradually became
understood in relation to Turing’s concept of the universathine. It would be interesting to study
in a similar way the history of the concept of the stored pangmachine. This is widely taken
to be the defining feature of the machine architecture dpeelon 1945, but in fact the term was
hardly used in the years up to 1950, and its salience was oatiuglly established. A related issue
is the history of the technique of self-modifying code: iadly recognized as a valuable practical
technique, as described in Chapter 4, by the early 1950sméésthought to have much wider

significance, for example in connection with the possipitift machine learning and thought. The
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autocodes of the 1950s excluded the possibility of writiel§-s1odifying programs, however, and
it found no place in the theoretical account of programmanglages, based on a strict separation

of syntax and semantics, given by the Algol research program
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