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Abstract

Compared with the history of computing hardware, the history of software is in a relatively unde-

veloped state. In particular, the history of programming languages still consists for the most part of

technical accounts presenting a rather Whiggish perspective on developments. Given the importance

of software in the contemporary world, however, it is important to develop a more sophisticated un-

derstanding of the medium in which it is expressed.

This thesis considers some aspects of this history with the aim of examining the influence of

formal logic on the evolution of notations for expressing computer programs. It is argued that this

was not a natural or inevitable application of theory to practice, as is sometimes suggested, but a

complex and contingent process with a rich history of its own.

Two introductory chapters discuss the work on computability carried out by logicians in the

mid-1930s, and the controversial topic of the role of logic in the invention of the computer. The

body of the thesis proceeds chronologically, considering machine codes, the introduction of higher

level notations, structured programming and software engineering, and the early object-oriented

languages.

The picture that emerges is that formal logic was deliberately employed by programming lan-

guage designers to provide a model for a theoretical understanding of programming languages and

the process of program development. This led to a flourishingresearch programme in the 1960s and

1970s, many of whose results are of lasting significance and value. The thesis concludes by exam-

ining the early history of object-oriented languages, arguing that this episode shows the emergence

of limits to the applicability of the logical research programme.
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Typographical conventions

The literature shows little consistency in the way that the names of programming languages are

written: variants such as ‘FORTRAN’, ‘FORTRAN’ and ‘Fortran’ are commonly found. In this

thesis, the following conventions are adopted: names whichare more or less pronouncable are

treated as proper names and written as ‘Fortran’, whereas unpronouncable acronyms are written as

‘NPL’. In direct quotation, however, the style adopted by the original source is preserved.

The name ‘Mark I’ is used throughout to refer to the machine designed by Howard Aiken and

also known as the ‘Automatic Sequence Controlled Calculator’ or ‘ASCC’. A persuasive rationale

for this practice has been given by I. Bernard Cohen in his biography of Aiken [Cohen, 1999, p.

xix–xx].
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Chapter 1

Introduction

The roots of modern digital computing lie in the desire to automate certain processes of calculation

and collation. In the nineteenth century, Charles Babbage’s Difference Engines were intended to

compute various arithmetical tables, such as tables of logarithms [Babbage, 1864], and Herman

Hollerith designed a punched-card system to facilitate theprocessing of the results of the 1890

census in the USA [Austrian, 1982]. This latter work led directly to the creation of a large punched-

card industry in the first half of the twentieth century whichautomated many data processing tasks

in industry and commerce [Aspray, 1990a].

Babbage’s work did not result in any comparable application, but in the 1930s a number of in-

dependent developments were started by people inspired, like Babbage, by a desire to escape the

labour of extended calculation. In 1935, Konrad Zuse had recently graduated as an engineer and,

apparently motivated by a desire to automate the long and complex calculations he had had to per-

form, “decided to become a computer developer” [Zuse, 1993,p. 34]. He set up what he described

as an “inventor’s workshop” in his parents’ apartment in Berlin, and by 1936 had started work on

the Z1, the first in a line of machines leading in 1941 to the Z3,a device that has been described as

the “first fully operational program-controlled computingmachine in the world” [Ceruzzi, 1983, p.

29]. In 1937, Howard Aiken at Harvard University noted the repetitive nature of the computations

involved in calculating approximate values of functions orperforming numerical integration using

infinite series [Aiken, 1937]. He designed a large-scale calculator intended to automate these and

similar calculations. Known later as ‘Mark I’, this machinewas developed in partnership with IBM

and became operational in 1944 [Cohen, 1999].

The construction of automatic computing machines raised the question of how to specify the

9



CHAPTER 1. INTRODUCTION 10

computational process that the machines should carry out. One approach was to build specialized

machines that could carry out one particular task, but except in specialized domains such as cryp-

tography, this approach was not followed: Babbage, Zuse andAiken all designed general purpose

machines which would be capable of carrying out a wide range of computations. At the time, large-

scale computations were carried out by people, known as ‘computers’, who followed computational

plans specified by instructions given on printed forms and sheets. Machines like Zuse’s and Aiken’s

were designed as direct replacements for the humans in such ascenario, a point that Alan Turing

made explicit in his theoretical analysis of computation [Turing, 1936]. The metaphor of ‘giving

instructions to the machine’, usually in the form of a deck ofpunched cards, gradually emerged as

a way of describing the way in which computations were specified.

As well as manipulating physical objects, such as punched cards intended for machine pro-

cessing, people working with automatic computers began to represent the instructions symbolically

for the purposes of designing or communicating computational plans. This led to a convergence

with the discipline of mathematical logic which, since the end of the nineteenth century had been

investigating the properties of symbolic notations that could be processed ‘mechanically’. By the

1930s a notion of formal language had been developed which captured the important properties

of such notations. For people with a background in mathematical logic, such as Turing and John

von Neumann, it was natural to see the instructions given to an automatic computer as terms in a

mechanically processable language, and hence to see an analogy between logic and the activity of

programming automatic computers.

This was the beginning of what has turned out to be a long and involved relationship between

logic and computer science, the anticipated significance ofwhich was described by John McCarthy

in the following terms: “It is reasonable to hope that the relationship between computation and

mathematical logic will be as fruitful in the next century asthat between analysis and physics in the

last” [McCarthy, 1963a, p. 69]. Historical studies have been written describing various aspects of

this relationship, covering for example the areas of artificial intelligence [Pratt, 1987] and theoretical

computer science [Mahoney, 1997]. The principal aim of thisthesis is to explore the history of this

relationship in a different area, namely the development ofprogramming notations and languages.

The significance of this development is not restricted to thehistory of computing. Following the

publication of Frege’sBegriffschrift in 1879, mathematical logic had developed a notation in which

mathematical proofs could be completely formalized, and many metalinguistic properties of this
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notation had been formulated and proved. By contrast, no formal notation existed for the expression

of algorithms. Although algorithmic procedures had been known since the earliest days of recorded

mathematics, they were still described at best semi-formally: even the computation plans used in

large-scale manual calculations required some degree of interpretation by the human computers

carrying out the work.

When computational plans were first developed for automaticcomputers, there was no longer

any possibility of the computing agent interpreting the instructions given to it. To ensure complete

explicitness and the possibility of mechanical interpretation, plans were initially thought of simply

as sequences of the basic operations, such as the addition oftwo numbers, that a machine could

perform. Compared with a notation like the predicate calculus, however, there are at least two

significant problems with this approach. Firstly, it is not auniversal notation: programs are written

in a dialect specific to one type of machine, and so cannot easily be read by or shared with workers

accustomed to another type. Secondly, there is noa priori reason to suppose that a sequence of

basic instructions provides a usable notation in which humans can write, study, or reason about the

properties of programs.

From this perspective, the history of programming languages can be read as the search for an ad-

equate formal notation for the expression of algorithms, a notation which would be as theoretically

fruitful and as universally accepted as the notation of the predicate calculus was for the expression

of proofs. Programming languages can therefore be seen not merely as a specialized topic within

the history of computing, but as having a larger significancewithin the history of mathematics,

completing the project of formalization which had come to prominence in the nineteenth century.

This viewpoint provides one way of understanding why logicians saw relevance for their work

in the new and esoteric activity of programming automatic computers. This thesis examines how

logic came to have a concrete influence on the development of programming languages and some

aspects of the nature of that influence. The period under consideration is roughly the years from

1930 to 1975. By 1936, mathematical logic had developed a theoretical analysis of the concept

of computability, and a number of practical projects in automatic computation were beginning to

get under way. By the end of the period a degree of unanimity had been reached about many

of the desirable features of programming languages, and theresults obtained by researchers were

beginning to have a significant effect on the industrial practice of programming, and indeed have

continued to provide a foundation for the development of subsequent languages. A sense of closure
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at this time was sometimes recognized by contemporary writers, such as Peter Wegner who in 1976

suggested that “[i]t may well be that programming language professionals did their work so well

in the 1950s that most of the important concepts have alreadybeen developed” [Wegner, 1976,

p. 1224]. The focus of the thesis is on the programming languages developed for scientific and

commercial data processing applications. More speculative developments, and in particular artificial

intelligence (AI), were clearly influenced by logic as much as, if not more than, the mainstream.

The relationship between logic and AI has long been recognized and subjected to detailed critical

examination [Birnbaum, 1991, for example], however, and isnot considered in any detail here.

1.1 The historiography of programming languages

This section briefly reviews prominent work on the history ofprogramming languages, in order to

gain an overview of that history and also some insight into the way the history has been written.

One of the earliest surveys of programming languages was published in 1964 by Saul Rosen,

a mathematician who had been involved in computing in both academia and industry since the

1940s [Rosen, 1964]. Rosen provided a narrative account of early developments culminating with

the distribution of Fortran II in 1957, a language which Rosen credited with being responsible for a

“revolution” in the field of scientific computing. He then gave a detailed account of the development

of the Algol 60 language in the years 1958–1960, and a survey of the languages that had been

developed for data processing applications, leading up to the introduction of Cobol in 1961.

Rosen’s account combines a classification of existing languages with more detailed considera-

tion of specific languages which were judged to be particularly significant or noteworthy. As was

common at the time, Rosen distinguished scientific from dataprocessing applications, and identified

what he considered to be the most significant language in eacharea, Fortran and Cobol respectively.

Algol 60 was also identified as a key development, although Rosen expressed reservations about its

practical significance.

In 1967 Rosen published an anthology which reprinted a rangeof original papers on program-

ming systems and languages [Rosen, 1967]. The structure of this book again illustrates the themes

of classification and evaluation implicit in the earlier paper (which was reprinted in the book) while

also widening its scope. A section titled simply “programming languages” contained papers on For-

tran, Algol 60, Cobol and IBM’s ‘New Programming Language’,later known as PL/I. A separate

section on “languages for processing lists and strings of symbols” contained papers on languages
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associated with the field of artificial intelligence, such asIPL-V and Lisp. The book also contained

a number of papers on language processors and operating systems.

Another noteworthy publication in the 1960s was Jean Sammet’s book “Programming Lan-

guages: History and Fundamentals”, published in 1969 [Sammet, 1969]. Like Rosen, Sammet or-

ganized her presentation largely around a classification ofapplication areas. Within each application

area, a small number of languages were discussed in detail, with early developments and languages

of restricted use being briefly described. Sammet adopted essentially the same classification as

Rosen: Fortran and Algol 60 were listed as “languages for numerical scientific problems”, Cobol

as a language for “business data processing problems”, and IPL-V, Lisp, Comit, Snobol and Trac as

“string and list processing languages”. PL/I was classifiedas a “multipurpose language”, and Sam-

met also included sections describing “formal algebraic manipulation languages” and “specialized

languages” for areas such as the control of machine tools andcomputer-aided design.

In 1971, at the conference of the International Federation for Information Processing (IFIP),

Thomas Cheatham delivered a paper which surveyed “the recent evolution of programming lan-

guages” [Cheatham, 1971]. Cheatham wrote from a more academic perspective than Rosen and

Sammet, and classified languages on technical grounds rather than by application area; he distin-

guished between “interactive” and “non-interactive” languages, and included categories of “special-

purpose” and “extensible languages”. In his account of the current situation, he listed a number of

“popular” languages, including the then widely used Fortran and Cobol. However, in the category

of popular languages Cheatham included Algol 60 and PL/I, despite admitting that they were much

less widely used.

Why, then, were these less widely-used languages included?Cheatham identified certain lan-

guages as “important” — “Lisp . . . takes its place with Algol-60 as being one of the most important

programming languages ever developed” [Cheatham, 1971, p.301] — and a major component of

this importance was related to theoretical innovation rather than practical success. The importance

of Algol 60, for Cheatham, came from the fact that it served asa model for many subsequent de-

velopments, and in particular led to “considerable and vigorous activity to develop formal models

for syntax and semantic specification which has borne some very important fruit” [Cheatham, 1971,

p. 299]. Similarly, “Lisp was probably the first programminglanguage to have a formal semantic

model” [Cheatham, 1971, p. 301]. This illustrates that by 1970 programming language theory had

developed to such an extent that languages could be evaluated by something other than their practi-
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cal or commercial success. For Cheatham, a key element in such an evaluation was the relationship

a language bore to certain metalogical ideas.

In 1972, as part of the 25th anniversary of the ACM, the American professional body concerned

with computing, both Rosen and Sammet were invited to contribute their thoughts on the current

situation. Rosen stated that “[i]n 1972 and on into the foreseeable future,FORTRAN andCOBOL are

the languages in which most of the world’s serious production programs are written” [Rosen, 1972,

p. 591], although PL/I was also mentioned as an emerging “standard production language”. PL/I

was also mentioned because of the importance to language theory of the formal description that

the IBM laboratory in Vienna had produced [Lucas and Walk, 1969]. Algol 60 and its successor,

Algol 68, were described as primarily being of importance tothe “theoretical development of pro-

gramming language concepts” [Rosen, 1972, p. 593]. Describing more recent developments, Rosen

adopted Cheatham’s classification of ‘extensible’ and ‘special purpose’ languages, and highlighted

the use of APL and Basic in interactive computing systems.

Sammet began by discussing some general questions about writing the history of program-

ming languages, and in particular tried to describe the grounds for identifying certain languages as

historically important. She concluded that “there are really two major reasons for a language to

be considered significant: one is that it is economically practical and hence very useful, and the

other that it is technically new” [Sammet, 1972, p. 603]; these reasons also seem to have informed

Rosen’s choice of subject material. Another feature of Sammet’s paper was a “language history

chart”, which gave a graphical representation of many programming languages and the relation-

ships between them: one language could be a subset or an extension of another, and in many cases

a relationship of “influence” was shown, glossed as “sometimes the second language is ‘like, or in

the style of’ the first” [Sammet, 1972, p. 606].

In 1976 Peter Wegner published a survey article describing “the first 25 years” of program-

ming languages [Wegner, 1976]. This presented a more complex historical account in which three

historical phases, each roughly corresponding to a decade,were identified. For Wegner, the 1950s

represented a period of empirical investigation, in which important programming language concepts

were discovered and described; in the 1960s a mathematical approach was taken to the elaboration

and analysis of these concepts, and in the 1970s an engineering approach was taken to developing

an effective software technology based on the earlier work.Within this periodization, Wegner de-

scribed “some of the principal milestones of programming language development . . . includ[ing]
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the development of specific programming languages, and the development of implementation tech-

niques, concepts and theories” [Wegner, 1976, p. 1208]. Thecriteria according to which these

milestones had been selected were not made explicit, however, but they did include familiar refer-

ence points such as Fortran, Algol 60 and Cobol.

The 1970s also saw a growing interest in the more general history of computing, and in June

1976 an International Research Conference on the History ofComputing was held at Los Alamos

[Metropolis et al., 1980]. This conference concentrated ondevelopments before 1960, and the pa-

pers on programming languages largely described work carried out in and before the 1950s. A

further conference, organized by the ACM in 1978, was dedicated to recording the history of indi-

vidual programming languages [Wexelblat, 1981]. The criteria used for inclusion in the conference

were that a language must have been in use in the period 1967–1977 and have had “considerable

influence on the field of computing” in at least some of the following areas: “usage, influence

on language design, overall impact on the environment, novelty (first of its kind), and unique-

ness” [Sammet, 1981, p. xviii]. Two subsequent conferences, in 1993 and 2007, have been orga-

nized on similar lines [Bergin and Gibson, 1996, Ryder and Hailpern, 2007].

By the end of the 1970s, then, there was quite a sophisticatedand long-established tradition

of writing about the history of programming languages. At least two criteria were routinely used

for assessing the significance of particular languages, namely the language’s importance in practice

or to theoretical development, and these were used to identify a set of ‘landmark achievements’

about which there was a considerable degree of consensus. There was also the beginnings of a more

synoptic account of developments, apparent for example in the periodization suggested by Wegner.

All the historical work discussed so far was produced by people trained in computing and work-

ing in the field, either in industry or academia, but from about 1980 professional historians began

to take an interest in the history of computing. One effect ofthis was an increased emphasis on the

context surrounding technical developments. As Paul Ceruzzi put it in his 1980 thesis, “the em-

phasis will be on placing these descriptions [of early computing machines] into a larger context—of

social, political, and historical themes as well as technical ones” [Ceruzzi, 1981, p. 2]. Among other

things, this change contributed to a move of historical focus away from accounts of programming

languages to a more general attempt to write the history of software.

This change of perspective has affected what is seen as significant in the past. For example,

whereas Sammet recognized two distinct criteria for the significance of a programming language,



CHAPTER 1. INTRODUCTION 16

historians of software tend to emphasize only the extent to which a language is used in industry. In

the brief discussion of programming languages in their history of the computer, for example, Martin

Campbell-Kelly and William Aspray discussed Fortran and Cobol, but made no mention of Algol

60, or indeed of any other programming language [Campbell-Kelly and Aspray, 1996].

In fact, programming languages as such have not been much discussed by historians of software,

and when they have been it has often been in the context of a related topic. For example, Stuart

Shapiro included significant discussion of programming languages in an article whose main focus

was on different approaches taken to the task of software development [Shapiro, 1997], and Michael

Mahoney touched on language issues in papers on the development of mathematical theories of com-

putation [Mahoney, 1997]. The organisers of an International Conference on the History of Com-

puting in 2000 devoted to “Software Issues” [Hashagen et al., 2002] proposed that the history of

software be discussed under a number of general themes, including software as science and as engi-

neering. Within these themes, however, programming languages were only incidentally mentioned.

Later work, such as Campbell-Kelly’s account of the software industry [Campbell-Kelly, 2003], has

only reinforced this trend towards a more general, contextual approach.

A number of observations can be made on the basis of this briefsurvey of the literature of

the history of programming languages. Firstly, there has been a move away from technical de-

tail towards a kind of history which focuses almost exclusively on commercial and contextual

issues. Campbell-Kelly recently reflected on this change inhis own work, stating that he could

not look back on his earlier, more technically-oriented work, “without a mild flush of embarrass-

ment” [Campbell-Kelly, 2007, p. 40]. While recognizing thereasons that led historians to move

away from the earlier, highly descriptive, technical accounts of programming languages, however,

it is still possible to feel that something is missing from accounts which treat software history purely

as business history, omitting any detailed consideration of the underlying technology. This point has

recently been made in a slightly different context by ThomasMisa, who wrote that, “[a] contextual

history—devoting close attention to specific details of themachines while situating them in their

historical context—should be a vital ongoing tradition” [Misa, 2007, p. 53]. One of the aims of this

thesis is to re-engage with the richness of the detailed technical history of programming languages,

while simultaneously benefiting from the methodological insights of historians.

These insights are related to a second observation, that thehistory of programming languages

has been written by two distinct groups of people, and that the judgements of these two groups
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on what is historically important are distinct. The first group can loosely be described as “insid-

ers” [Mahoney, 1997], computing professionals with in mostcases long experience and detailed

technical knowledge of programming and programming languages. The second group, the ‘out-

siders’, have typically been trained in a non-computing discipline, such as history or sociology.

When judging a question such as the significance of a particular language, insiders tend to focus

on aspects such as technical novelty and influence, whereas outsiders focus more on the importance

of the language in an external, commercial context (though it should be noted that insiders such as

Rosen and Sammet consistently applied both criteria in selecting languages for discussion). The

distinction between these two groups has often been noted. In a discussion of the writing of the

history of computing, for example, Jan Rune Holmevik distinguished two different types of his-

tory, one written largely by and for computer professionalsand the other by historians with a wider

range of interests, and argued for the legitimacy of each type within the context of its intended

audience [Holmevik, 1994].

Insider history is sometimes said to be vulnerable to a number of methodological weaknesses,

such as “Whiggism” and “internalism” [Holmevik, 1994], which together lead to the writing of a

kind of history which represents the development of technology as an autonomous and teleological

process, in which historical events follow purely technological laws of evolution to end up in what

is essentially the current state of affairs. By contrast, outsider history emphasizes the importance

of non-technological causes, such as economic and sociological factors, and presents technology as

just one element of a larger historical manifold which evolves unpredictably in response to a wide

range of events. The following sections examine the supposed fallacies of insider history in more

detail, concluding with a description of the methodological approach taken in this thesis.

1.2 Whiggism

The Whig interpretation of history was characterized by thehistorian Herbert Butterfield as “study-

ing the past with reference to the present”, and he identifieda number of methodological errors in

this approach [Butterfield, 1931]. Whig history misreads the past, seeing in it solely a reflection of

contemporary concerns rather than making the positive effort of historical understanding necessary

to grasp a situation that might in many ways differ from the present; it “over-dramatizes” the histor-

ical process, seeing it as the triumph of one set of ideas or actors over opposition and error rather

than as a general ongoing transformation, the outcomes of which might in a dialectical fashion differ
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from anything anticipated by the historical actors; and it is over-concerned with questions of origin

and causation, paying insufficient attention to the real complexity of historical transformation.

Whiggism in the history of computing has been specifically identified as a problem by a number

of writers, including Holmevik and Anthony Hyman [Hyman, 1990]. A characteristic example from

the history of programming languages is a paper by F. L. Bauerand H. Wössner which discusses the

Plankalk̈ul programming notation developed by Zuse in the mid-1940s [Bauer and Wössner, 1972].

The very title of the paper, which describes thePlankalk̈ul as a “forerunner of today’s programming

languages”, illustrates Butterfield’s points, suggestingthat historical events are to be regarded pri-

marily in their relationship to the present, and that the principal motivation of the study is to identify

origins and causes of contemporary techniques in the past. No attempt is made to place Zuse’s work

in its historical context, and it is seen as having value and interest primarily insofar as it anticipates

later developments: “it is nevertheless surprising to whatextent thePlankalk̈ul already contains

standard features of today’s programming languages” [Bauer and Wössner, 1972, p. 678].

A further characteristic of this approach is the reinterpretation of concepts and terminology in

the contemporary terms: “[Zuse] usedAngabenfor data andVorschrift for algorithm. Not having at

his disposition the wordProgramm, he called a programRechenplan” [Bauer and Wössner, 1972, p.

678]. This approach obscures the evolution of technical concepts and the extent to which scientific

terminology can change its meaning over time.

Finally, the paper nicely illustrates what Butterfield called the “Whig historian’s quest for ori-

gins”. Bauer and Wössner describe thePlankalk̈ul as “a remarkable first beginning on the way to

higher programming languages” [Bauer and Wössner, 1972, p. 678], despite acknowledging that it

was never used in practice, and had a minimal influence on the development of later languages.

A slightly later and more sophisticated example of Whiggisttendencies is a paper by Donald

Knuth and Luis Trabb Pardo, which played an important role inthe historiography of programming

languages by documenting and drawing attention to many of the early languages and notations that

preceded the development of Fortran. Knuth and Trabb Pardo had a genuine interest in history, and

unlike Bauer and Wössner they emphasized the need to “realize how long it took to develop the

important concepts that we now regard as self-evident” [Knuth and Trabb Pardo, 1980, p. 198] and

attempted to describe and illustrate each language as it would originally have been used. Never-

theless, they illustrated the languages under discussion by using them to code an artificial example

program which required techniques that were not available in many of the older languages, and at
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the end of the paper the languages were classified according to the extent to which they supported a

number of linguistic features salient at the time the paper was written.

Despite the methodological changes that have taken place inthe history of computing since the

1970s, examples of Whiggism can still be found in historicalwriting on programming languages.

In 1997, for example, Wolfgang Giloi published another account of thePlankalk̈ul which, in terms

very reminiscent of Bauer and Wössner, described it as “thefirst ‘non von Neumann’ programming

language” [Giloi, 1997].

On the whole, it seems that Whiggish history is indeed open tocriticism. The writing of history

can not be completely divorced from the concerns of the present, as the selection of what is to be

written about will necessarily be made from the standpoint of contemporary concerns and interests.

Nevertheless, once this selection is made, historical accuracy is better served by making an attempt

to understand the past for its own sake and in its own terms.

1.3 Internalism

A distinction has often been drawn between ‘internal’ and ‘external’ histories of science. In Kuhn’s

words, internal history is “concerned with the substance ofscience as knowledge” whereas ex-

ternal history is “concerned with the activity of scientists as a social group within a larger cul-

ture” [Kuhn, 1968, p. 76]. The distinction is also applied tothe kind of account that is given of the

historical process, depending on whether internal or external causes are adduced to explain partic-

ular events. Internal history is typically written as an account of the autonomous development of

scientific ideas, whereas external history deals with otherfactors, often economic, sociological or

political, which are held to affect the development of the content of science.

At the heart of the distinction is a belief that the content ofscience can be clearly demarcated

from the context in which it is developed. For example, an internal account of the development of

programming languages might focus on the features providedby different languages, and the formal

differences between them, and explain how innovations in one language influenced later designs.

By contrast, an external account might examine how languages arose from the needs of computer

users, and the way that the use of languages in industry affected their development. These different

histories would typically appeal to different types of cause: the external account might consider the

existing level of usage of Fortran and the increasing marketshare of IBM hardware, for example,

while the internal account might discuss the technical advantages of certain language features.
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An extreme account of the distinction between internal and external accounts was given by

Imre Lakatos [Lakatos, 1971]. Lakatos proposed that philosophical accounts of scientific method-

ology which gave internal accounts of the “logic of scientific discovery”, to use Popper’s phrase,

should be used as the basis for writing the history of science. A “rational reconstruction” of his-

tory would show the extent to which it could be viewed as conforming to the chosen methodology,

and the non-rational residue would be given an external explanation. The ideal would be to give

a rational, internal explanation of all the historical material: Lakatos thought of external factors as

unscientific, only capable of having a negative effect on scientific progress by obstructing a rational,

methodology-led development.

The priority that Lakatos and others gave to internal explanation was challenged by an increased

interest in the sociology of knowledge. The “strong programme” put forward by David Bloor em-

phasized a positive role for social causes in the creation ofscientific knowledge [Bloor, 1976], and

proposed that a uniform causal explanation be given for all statements of scientific knowledge. The

strong programme was highly influential in the subsequent development of science and technology

studies, and its effects can be traced in the history of computing, as described above. As a result,

internalism is sometimes characterized as an error in historical methodology comparable to Whig-

gism [Holmevik, 1994, for example]. Before considering this view, however, it will be useful to

consider in more detail the typical characteristics of ‘insider history’.

1.4 The insider perspective

Insider history of computing is overwhelmingly Whiggish: concerns of the present are routinely

used as a guide for describing the past, and great emphasis isplaced on identifying the origins of

particular developments and the links whereby one event mayhave influenced another.

Furthermore, insider history is typically internal history, both in terms of the subject matter se-

lected for examination and the explanatory model used. Thisexplanatory model consists of two

parts: the historical events that are selected for examination, and the relationships between them.

From the insider perspective, historical events are thought of as discrete episodes, each marking a

particular ‘contribution’ to the development of the discipline, such as the first publication of a new

theorem, or a description of a new programming language. This tendency was noted by Kuhn, who

wrote that a historian who believed in an cumulative accountof science’s development “must deter-

mine by what man and at what point in time each contemporary scientific fact, law and theory was
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discovered or invented” [Kuhn, 1962, p. 2]. A good example ofthis tendency in the history of pro-

gramming languages is Wegner’s article, cited above, whichpresented the history of programming

languages as a series of “milestones”.

Insider history is then typically concerned with tracing the migration of ideas, or intellec-

tual content, between the discoveries or inventions so identified. Ceruzzi states this explicitly:

“[a] central theme in the study of the history of science and technology is the transmission of

ideas” [Ceruzzi, 1981, p. 170]. The process of transmissionis often described in terms of ‘in-

fluence’: a key task is to trace the way in which one piece of work has influenced later workers in

the field. For example, in his recent history of research on reasoning about programs, Cliff Jones

stated that he would “trace the main line of development taking a key publication of . . . Hoare as a

pivotal point” [Jones, 2003, p. 26].

This basic picture is reinforced and motivated, as Kuhn noted, by a belief, which is usually left

implicit, in the cumulative nature of scientific work. Historical episodes feature in insider history in

so far as they have contributed to later work; influence is a process where a later worker will take up

and further develop the ideas of a predecessor. The earlier work may be in certain ways developed,

or ‘its implications drawn out’ but, by the very nature of themodel, work which had no influence,

or which is later deemed to have been erroneous, will tend notto feature in historical accounts. This

in itself reinforces the Whiggish nature of insider history.

Another symptom of this view of history is the metaphorical use of the term ‘pioneer’ to describe

those who carry out early work in a particular subject. This term has been widely used in the history

of computing: for example, conferences organized by the ACMand IFIP have regularly included

‘pioneer days’. This usage is taken from celebrations of early explorers and settlers of the American

frontier, and encourages a perception of a new subject as an unexplored territory. The metaphor

implies that the properties and features of the territory antedate its exploration, like an unexplored

country, and that new ideas and the connections between themare waiting to be discovered by

sufficiently gifted researchers. This sharply contrasts with later sociologically-inspired views of

history which tend to emphasize the construction or invention of new developments rather than

their discovery.

Clearly insider history, as described here, is susceptibleto the fallacies of Whig history identified

by Butterfield. The present state of development in a particular area is taken as the reference point

for the history to be written, inescapably affecting the selection of historical incidents to be consid-
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ered and their interpretation. The model can also be directly criticized, however, on the grounds of

a lack of explanatory power.

One area in which this arises is with the question of anticipations: it frequently happens that it

is possible to identify work which appears to be very much ‘ahead of its time’, but which appears to

have had no influence. Later, the ideas are rediscovered, andat this point are taken up and developed

further. The insider model has no way of explaining this phenomenon: as Jones says, referring to

early papers by Goldstine and von Neumann and Turing, “[t]here is no compelling explanation of

why more than a decade elapsed before the next landmark” [Jones, 2003, p. 29]. Despite this, a

common theme in insider history is the search for ‘forgottenpioneers’: good examples of this are

the papers on Zuse’sPlankalk̈ul cited earlier. Ironically, the Whiggish search for originshere seems

to be in conflict with the explanatory model of influence.

A second explanatory shortcoming occurs when individuals appear not to have perceived some

of the implications of their work, implications which from the perspective of the historian seem in-

escapable. Aiken is commonly criticized from this point of view, as Mark I did not in some respects

conform to later ideas about computer design: for example, “Aiken does not seem to have recog-

nized the general nature of logical control which is impliedby his use of register 72” [Ceruzzi, 1981,

p. 155]. Within the insider model, the only explanation thatcan be given of such cases is by ap-

pealing to the intellectual limitations of the individualsconcerned. To extend the ‘pioneer’ analogy,

it is as if an explorer could only be prevented from reaching the summit of an unclimbed mountain,

for example, by some physical or logistical weakness: as in Lakatos’s account, external causes are

invoked to explain what would otherwise be a puzzling failure.

1.5 Methodology

In summary, then, insider history is predominantly Whiggish and internal, whereas following the

recognition of the importance of sociological and related factors to scientific development, an al-

ternative historiography has emerged which aims to avoid the fallacies of Whiggism and is largely

external.

In this thesis, it is assumed that Whiggism is indeed a poor way to write history and to un-

derstand the past. It will be assumed that it is important to try to understand the past in its own

terms, and in particular to avoid projecting the concepts and terminology of the present onto the

past. Instead, an attempt will be made to depict the texture of innovation and recapture the meaning
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that events and ideas had for the people who were involved with them. Such a description should

try to avoid selecting material on the grounds of its currentrelevance, and should not assume that

particular events had the same significance as may now be attributed to them. Andrew Pickering has

described this as the attempt to give a “real-timeunderstanding of [scientific] practice” as opposed

to the “retrospective” account typically provided by practising scientists [Pickering, 1995, p. 3]

Some writers have identified internalism as a historiographical fallacy comparable to Whiggism.

Holmevik makes this criticism explicit [Holmevik, 1994], and it is implicit in much writing on the

sociology of scientific knowledge. There are, however, strong reasons for supposing that internal

history is a legitimate and important pursuit. Firstly, it reflects important properties of the scientific

enterprise as it is perceived by its practitioners. Scientists are often inspired by the work of others,

and certain pieces of work do give rise to large amounts of activity in new areas. Secondly, it is

not obvious that all the fine detail of scientific work can be explained by purely external factors.

For example, a convincing explanation for the development of programming languages during the

1950s could be based on the increased use of computers and theshortage of people with skills in

machine code programming, but it is less plausible that the way in which the syntax of Algol 60

was presented, say, can be adequately explained by such economic and social factors.

The subject matter of this thesis is largely concerned with internal details of the development

of programming languages and the influence of logic on that development. In the light of the

foregoing discussion, the question arises of how this project can be carried out while avoiding the

more problematic aspects of insider history. Part of the answer involves the avoidance of Whiggism,

as discussed above, but in addition the following ideas drawn from research into the methodology

of scientific activity have been found useful in the coming toan understanding of the historical

phenomena.

The first of these is to recognize the importance of the notionof ‘normal science’ introduced

by Kuhn [Kuhn, 1962]. For Kuhn, normal science is science which takes place in the context of

a ‘paradigm’, or ‘disciplinary framework’ which among other things defines the problems that are

to be addressed and the form that an acceptable solution willtake. Normal science is contrasted

in various ways with pre-paradigmatic science and the work that takes place at times of scientific

revolution.

For the purposes of this thesis, a key feature of normal science is that it seems to possess some of

the characteristics that the insider perspective attributes to science generally, notably the appearance
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of progressing through a steady accumulation of new results. Hence it can be argued that it is

appropriate that an internal account be given of the historyof normal science. In Kuhn’s words,

“[t]hat quite special, though still incomplete, insulation [of normal science from external factors]

is the presumptive reason why the internal history of science, conceived as autonomous and self-

contained, has seemed so nearly successful” [Kuhn, 1968, p.81].

In this thesis, Lakatos’s terminology of ‘research programme’ is used to describe a coherent

tradition within which normal science progresses [Lakatos, 1970]. Although inspired by Kuhn’s

work, Lakatos’s concept of research programme adds a numberof features to the notion of normal

science. Among these are an emphasis on the core propositions held by adherents to a research

programme, thehard core, and the observation that within a particular field, a numberof distinct

research programmes can coexist, some progressing and others degenerating.

In the history of software, the term ‘agenda’ has been used byMichael Mahoney in describing

the history of theoretical computer science. Although Mahoney cites neither Kuhn nor Lakatos,

his notion has echoes of both: an agenda is defined as “what practitioners of the discipline agree

ought to be done, a consensus concerning the problems of the field, their order of importance

or priority, the means of solving them, and perhaps most importantly, what constitute solutions”

[Mahoney, 1997, p. 619]. However, the term is also used in phrases such as “the agendas of seman-

tics” [Mahoney, 2000, p. 31] to label diagrams which depict lines of influence between key workers

and concepts in a field, in a style very reminiscent of the insider perspective.

From the point of view of historiography, the important thing about this family of ideas is that

they provide a way of understanding how science can proceed independently of external factors, but

without appealing exclusively to individual moments of inspiration, or some notion of the unfolding

logic of a discipline. Paradigms, research programmes and agendas define ‘what is to be done’ in

a particular field, providing direction and scope for creative individual work, and it is plausible that

an ‘internal’ account can quite legitimately be written of the work carried out in such a context. The

situation is different with work carried on outside a research programme, or before the formation of

an initial paradigm in a particular area.

The second methodological guideline adopted in the thesis is to make explicit the development

and change of meaning of technical concepts. Insider history tends to identify the current meaning

of a term with the meaning or significance it may have had in thepast, a Whiggish practice which

can lead to significant misinterpretation of the past. The quotation given earlier from Bauer’s paper
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on Zuse’sPlankalk̈ul exemplifies this tendency.

By contrast, it is often the case that a particular term will change its meaning over time, or

that a concept will evolve from a simple initial form to a morecomplex set of ideas. In his study of

Lakatos, Brendan Larvor has labelled approaches which describe such changes as ‘dialectical’: “Di-

alectical philosophy of mathematics studies the process bywhich mathematical argument improves

mathematical concepts” [Larvor, 1998, p. 11]. Where appropriate, this thesis attempts to illustrate

the way that practical experience has changed the technological concepts used to characterize that

practice. It is a major weakness of the insider perspective that it is blind to the evolution of concepts

in the light of experience.

A third methodological guideline relates specifically to the topic of the thesis, namely the use

made of an existing discipline, mathematical logic, in guiding the development of a new subject

area. Andrew Pickering has described this type of conceptual innovation as a process ofmodelling

in which existing results are applied in a new domain, a process which he breaks down into three

stages [Pickering, 1995, p. 115–7]. First,bridging is the choice of which existing work to take as

a model in the exploration of a new domain. In Pickering’s account, this choice is not determined,

and researchers typically have alternative approaches available. Once a choice is made, however,

a process oftranscription follows, in which moves from the existing model are applied in the new

domain. When transcription breaks down, because of resistances encountered in the application of

ideas from the original domain in the new environment, it is followed by a process offilling, where

aspects of the new system which do not correspond to anythingin the model are completed, again

in a fairly free way. Pickering’s scheme is attractive for two reasons: it provides an analysis of what

the rather vague term ‘influence’ might mean in at least some situations, and the notion of bridging

can be seen as an important ingredient in some cases of paradigm formation. In the body of the

thesis, the scheme will be applied to a number of historical situations; see for example Section 2.9

for an example of its applicability.

1.6 The argument

The historical event at the heart of the thesis is the emergence of high-level programming languages

in the years around 1960. As discussed earlier, this period gave rise to a number of long-lived and

influential languages, in particular Fortran, Algol 60, Cobol and Lisp, whose introduction was seen

as highly significant by contemporary observers. It is argued that after 1960 the further investi-
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gation of programming languages was given coherence by a newresearch programme whose hard

core was the identification of programming notations with the formal languages characterized by

mathematical logic. The formation, development, significant achievements and potential decline of

this research programme up to the mid 1970s are described in the body of the thesis.

Chapter 2 describes work in formal logic that was of particular importance to the later develop-

ment of programming languages. A significant aspect of this was the articulation of a formal notion

of computability in the first half of the 1930s. Turing’s famous paper of 1936 is often seen as mark-

ing a transition between logic and computing; rather than viewing it as a ‘milestone in computing’,

however, this chapter reads it in the context of related workin logic. The chapter also describes the

concept of formal language that was developed by Carnap, Tarski and Morris in the 1930s and later

drawn upon by workers in the field of programming languages.

Chapter 3 represents a slight detour from the main argument,discussing the development of

computing machines in the period from the mid 1930s to 1950. Although an appreciation of this

material is important for the understanding of later chapters, the main reason for its inclusion is to

address the question about the influence of logic on ‘the invention of the computer’, about which

there has been considerable debate. As with the relationship between logic and programming lan-

guages, it is argued that this is not the straightforward story of ‘influence’ that is sometimes claimed.

Chapter 4 describes the style of machine-level programmingdeveloped alongside the computers

of the late 1940s and early 1950s. Although there was an awareness of a connection between logic

and the activity of programming, there was little systematic connection between the two areas at this

time and programming techniques were based fairly directlyon characteristics of typical machine

architectures.

Chapter 5 describes the gradual development in the 1950s of higher-level programming nota-

tions and the role played by logic in this development. Work in this decade shares many of the

properties that Kuhn identified as characteristic of pre-paradigmatic science: workers in the field

shared an ambition to ‘make programming easier’, but lackeda common understanding of how to

achieve this goal. By 1960, however, the Algol 60 and Lisp languages had demonstrated two distinct

ways in which logic could be applied in the development of programming languages.

Chapter 6 argues that Algol 60 played the role of a concrete paradigm, a technical achievement

which served as the catalyst for the formation of a new research programme. Evidence for the exis-

tence of a coherent research programme is considered and thechapter describes that achievements
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of the new programme in the area of programming language theory and design.

The Algol research programme also had a significant impact onthe practice of software devel-

opment, and Chapter 7 considers the details of this process.The structured programming movement

of the early 1970s is characterized in the light of this research programme.

Chapter 8 describes work from the early 1970s in the Algol research programme on the modular

structure of programs and the unification of data and controllogic. The attempts by the developers

of the Smalltalk language to address similar questions are described, and in the light of subsequent

developments it is suggested that Smalltalk represents theemergence of a competitor to the Algol

research programme and marks a limit to the influence of logicon programming language develop-

ment.

Finally, chapter 9 summarizes the argument and conclusionsof the thesis, and offers suggestions

for further work.



Chapter 2

Logic, computability and formal systems

This chapter surveys work in mathematical logic that was carried out in the 1930s and later drawn

upon in the development of programming notations for automatic digital computers. Two devel-

opments are described, namely the evolution of a mathematical concept of computability and the

articulation of a particular concept of formal language.

In the first half of the 1930s, the informal notion of effective computability was formalized in

a variety of ways, and in 1936 different, but provably equivalent, accounts of it were published

by Stephen Kleene, Alonzo Church, Emil Post and Alan Turing,a “confluence of ideas” that has

been analysed by Robin Gandy [Gandy, 1988]. One reason for the importance of this work is that

it is often seen as having had a material influence on the development of digital computers in the

following ten years: the links between logic and the development of the computer are considered in

detail in Chapter 3.

Later chapters are concerned with the influence of this logical work on the development of

programming languages. This development made use not only of specific logical formalisms, but

also of a metalinguistic account of those notations developed in the 1930s by Alfred Tarski, Rudolf

Carnap and Charles Morris. Their work described a frameworkwithin which formal languages

could be described and their properties discussed. The mostimportant elements of this framework

are described in Section 2.8.

2.1 Historical links between logic and computation

Before looking in detail at the work of the 1930s, it is usefulto consider briefly the origins of the

relationship between logic and computation. Logic is oftendefined as the study of valid patterns

28
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of reasoning in human thought, and if it is understood in thisway the connection with computation

is perhaps hard to see. Since the seventeenth century, however, philosophers and logicians have

explicitly linked the two areas, and as a number of historical accounts have pointed out, a major

theme in logical research has been to develop a calculus of reasoning so that deductions can be

made or verified by algorithmic methods [Pratt, 1987, Davis,2000].

An early connection was made by Hobbes, in whose view of language “general” or “universal”

names signified collections, or “parcels”, of objects, and “consequence” was a relation between

names corresponding to the relation of inclusion between these collections. He explicitly compared

reasoning with numerical computation, as follows:

When a manReasoneth, hee does nothing else but conceive a summe totall, fromAd-
dition of parcels; or conceive a Remainder, fromSubstractionof one summe from
another: which (if it be done by Words,) is conceiving of the consequence from the
names of all the parts, to the name of the whole; or from the names of the whole and
one part, to the name of the other part. [Hobbes, 1651, chapter 5]

In the seventeenth century, this programme was developed intwo ways. There were a number of

attempts to develop a “real character”, or a complete categorization of all the objects and concepts

that could be referred to in discourse, together with symbols to represent them, and to base on

this a “philosophical language” suitable for clear and unambiguous communication on any subject

whatsoever [Wilkins, 1668, for example]. In this vein, Leibniz hoped to create acharacteristica

universalis, a universal language which would be adequate to represent the whole of human thought,

by defining a set of elementary concepts from combinations ofwhich all complex propositions could

be expressed [Lewis, 1918].

Leibniz also planned to produce acalculus ratiocinator, an algebra which would make explicit

the particular forms of ‘reckoning’ applied in reasoning. He made some progress with the calculus,

formalizing, for example, the idempotency of logical addition, in which it differs from the numerical

operation.

The development of logic in the direction of symbolic manipulation was continued by George

Boole and others [Boole, 1854]. Boole’s goal was to mathematize existing logic, particularly the

syllogism, and the formulas of the resulting algebra of logic were not sufficiently expressive to

capture all the features of sentences important to valid reasoning. In particular, the approach did not

seem adequate to account for all the patterns of reasoning used in mathematics and so serve as a

rigorous foundation for the subject.
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Frege, by contrast, created a notation which did appear to besufficiently expressive, but one for

which the process of deduction did not possess the clarity and ease of use of algebra [Frege, 1879].

Deduction was represented by a formal system characterizedby a number of axioms and rules of

inference. Frege’s system and those based on it, notably Russell and Whitehead’sPrincipia Math-

ematica[Whitehead and Russell, 1910], shared with the algebra of logic the property that logical

relationships could be checked by the manipulation of symbols, putting aside any thought of their

meaning. Gödel among others highlighted this aspect of it:

The development of mathematics toward greater precision has led, as is well known, to
the formalization of large tracts of it, so that one can proveany theorem using nothing
but a few mechanical rules. [Gödel, 1931]

In arithmetic, however, mechanical processes such as an algorithm for long division are guar-

anteed to lead in time to an answer to any problem, if correctly applied. In contrast, Frege’s system

and those based on it did not provide a guaranteed way of establishing whether a particular conclu-

sion in fact followed from a set of premises. The decision problem orEntscheidungsproblem, given

prominence by Hilbert and Ackermann [Hilbert and Ackermann, 1928], was the question whether

an algorithmic process existed for establishing the relationship of logical consequence.

Although it did not directly address this question, Gödel’s famous paper on the incompleteness

of formalized theories of elementary arithmetic [Gödel, 1931] introduced a number of ideas and

techniques that were widely used later, and is a convenient place to begin a more detailed consider-

ation of the logical background.

2.2 Gödel’s construction

Gödel’s incompleteness proof is based on the idea of constructing, in the formal system ofPrin-

cipia mathematica, a self-referential sentence similar to those occurring inthe semantic paradoxes.

By analogy with the natural language sentences used in the ‘liar’ paradox, which assert their own

falsity, Gödel constructed a formula which could be interpreted as asserting its own unprovability.

Assuming the consistency of the system, it can be shown that neither this formula nor its negation

is provable. This implies that the formula is true, however,and hence that the system is incomplete

in the sense of containing true but unprovable formulas.

Informal presentations of the argument rely on the fact thatnatural languages are rich enough

to serve as their own metalanguage: it is possible in Englishto refer to sentences of the English lan-
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guage, and the language also contains semantic predicates such as ‘is true’. Given these resources,

the paradoxical sentences can easily be constructed. It is not obvious that a system designed for for-

malizing mathematics will necessarily be equally expressive, however, and a large part of Gödel’s

paper is devoted to presenting the technical details of how to define the necessary syntactic and

semantic properties in the formal system.

A formal system, for Gödel, is based on a set of primitive signs. The formulas of the system are

finite sequences of these signs, and proofs are finite sequences of formulas. According to Gödel, “it

is easy to state with complete precisionwhichsequences of primitive signs are meaningful formulas

and which are not” [Gödel, 1931, p. 147, emphasis in original], and the properties that distinguish

proofs from non-proofs can similarly be specified. Gödel gave a description of a particular formal

systemP : this description is ‘precise’ but not formal, being statedin sentences of natural language.P consists of the logic ofPrincipia mathematicacombined with Peano’s axioms and its intended

domain of interpretation is therefore the natural numbers.

Gödel then pointed out that for metamathematical purposesthe exact choice of primitive signs is

irrelevant, and proposed to use natural numbers as primitive signs in place of the conventional typo-

graphic symbols. By making use of the unique factorization theorem, Gödel showed that sequences

of natural numbers could also be represented as numbers, andhence that it was possible to represent

every primitive sign, formula and proof ofP by a single natural number, its ‘Gödel number’. Gödel

explicitly defined a function� which mapped linguistic elements to their Gödel numbers and picked

out an “isomorphic image” [Gödel, 1931, p. 147] ofP in the natural numbers. This encoding of the

formulas ofP as numbers, orarithmetization, is at the heart of Gödel’s approach.

Metamathematical discussion ofP could now be carried out by talking about the isomorphic

image�(P ) rather than the formulas ofP themselves. In other words, a metamathematical propertyRP of formulas ofP could be expressed as a propertyRN of natural numbers such thatRP is true

of certain formulas if and only ifRN is true of the corresponding Gödel numbers:RP (e1; : : : ; en) � RN (�(e1); : : : ;�(en))
It remained to show how the required metamathematical properties ofP could be represented by

formulas ofP . Gödel did this in a slightly roundabout manner. First, he defined a class of number-

theoretic functions and predicates which could be specifiedby so-called ‘recursive’ definitions; the

precise nature of these definitions is discussed in more detail in the following section.
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Gödel then gave a series of recursive definitions of a numberof metamathematical properties ofP , expressed in terms of the corresponding Gödel numbers in�(P ). A number of these properties

defined the syntax of the languageP , thus demonstrating how the syntax of a formal system could be

defined formally, or mathematically, rather than ‘precisely’ in a natural language. Further predicates

gave number-theoretic definitions of the properties of being a meaningful formula and being a valid

proof.

These recursive functions and predicates were defined in a metalanguage which went beyond the

resources of the systemP . AsP was defined as a formal language for number theory, it is natural

to ask whether they could have been defined inP itself. Gödel proved that this was in fact the case,

and that in principle all the functions and predicates defining the metamathematical properties ofP
could have been directly defined by formulas ofP itself.

In summary, then, Gödel’s strategy was to code formulas ofP as natural numbers, thus mapping

the syntax ofP into its own domain of interpretation. The metamathematical predicates required

for his proof were then defined as number-theoretic predicates which were themselves expressible

as formulas ofP . These formulas could therefore be interpreted in two ways:firstly as statements

about natural numbers, and secondly, thanks to the mapping�, as statements about formulas ofP .

By means of this second interpretation,P was enabled to act as its own metalanguage. The final

requirement for the incompleteness proof was to construct aparticular formula ofP which, in this

second interpretation, made reference to itself and asserted its own unprovability. The details of

how Gödel achieved this are not of importance to this thesis, however, and will not be discussed

further.

The techniques and arguments employed by Gödel were highlyinfluential. In particular, Tur-

ing adapted Gödel’s strategy in his definition of the universal machine, as discussed in detail in

Section 2.7. The following section describes the further development of the notion of recursively

defined functions. These formed the basis of one of the definitions of effective computability given

in 1936, and were later of importance in the development of programming languages.

2.3 Recursive functions

The class of functions that Gödel called ‘recursive’ had been investigated before 1931. Definitions

of functions over the natural numbers by ‘simple recursion’were well-known: an example is the

definition of addition by the definitionsa+0 = a anda+(b+1) = (a+ b)+1, for all a andb. The
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step-by-step evaluation of functions defined by simple recursion seemed to capture an important

aspect of the notion of effective computability, and recursive definitions were widely discussed as

an example of a finitistic approach to the definition of functions, acceptable to intuitionistic modes

of thought.

In 1919 Skolem applied “the recursive mode of thought” to elementary arithmetic, with the aim

of removing quantification over infinite domains from the system of Principia mathematica. He

made extensive use of simple recursive definitions, basing his approach on “Kronecker’s principle

that a mathematical definition is a genuine definition if and only if it leads to the goal by means

of a finite number of trials” [Skolem, 1923, p. 333, emphasis in original], thus highlighting the

connection between recursive definition and the informal notion of effective computability.

In 1925 Hilbert categorized the “elementary” methods of constructing functions as substitu-

tion and recursion, and restated the connection between recursion and finiteness as follows: “[t]he

method of search for the recursions required is in essence equivalent to that reflection by which one

recognizes that the procedure used for the given definition is finitary” [Hilbert, 1926, p. 388].

Gödel’s 1931 definition of recursive functions employed these two basic techniques. Substitu-

tion allowed a function� to be defined from functions� and�1 : : : �m by the equation�(x1; : : : ; xn) = �(�1(x1; : : : ; xn); : : : ; �m(x1; : : : ; xn))
and a function� could be “recursively defined in terms of” functions and� by the equations�(0; x2; : : : ; xn) =  (x2; : : : ; xn)�(k + 1; x2; : : : ; xn) = �(k; �(k; x2; : : : ; xn); x2; : : : ; xn):
A function� was said to be “recursive” if it was a constant function, the successor function, or could

be defined from other recursive functions using these two techniques [Gödel, 1931, p. 159].

It appeared, however, that the class of functions definable by these means did not exhaust those

that appeared to be, in an informal sense, effectively calculable. Ackermann had proved that allow-

ing higher-level recursions, involving “functionals” which could take functions as arguments, and

definitions involving simultaneous recursion on more than one variable both allowed the definition

of functions that could not be defined by substitution and simple recursion [Ackermann, 1928].

In 1934, Gödel gave a more general definition of recursive functions, based on a suggestion
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from Herbrand [Gödel, 1934]. This defined a “general recursive function” � as being defined by a

system of equations if from the equations exactly one equation of the form�(k1; : : : ; kn) = m
could be derived, for natural numberski andm, or in other words, a system of equations from

which it followed that� was in fact a function. Definitions involving only substitution and recur-

sive definition were special cases for which the uniqueness of the function defined could be easily

proved.

In a definitive paper of 1936, Kleene discussed Gödel’s definition, introducing the now standard

terminology of “primitive recursive” for functions definedusing substitution and recursion only,

and “recursive” for the wider class [Kleene, 1936a]. Kleenealso gave the first ‘formal’ definition of

recursive functions, in the sense of describing the sets of equations involved in a recursive definition

as terms in a formal language. He adopted Gödel’s techniqueof arithmetization and, like Gödel,

defined a series of number-theoretic functions which characterized important syntactic properties of

recursive definitions.

2.4 �-definability

The�-calculus was developed by Alonzo Church, and used in the first explicit attempt to give a

formal characterization of the intuitive notion of effective calculability. It was inspired by work in

which Schönfinkel had investigated the minimal set of primitive notions necessary for the formula-

tion of logic, and in particular had attempted to remove the need for the use of variables in purely

logical formulas [Schönfinkel, 1924]. Schönfinkel took asprimitive the notion of a function, and

generalized it firstly by allowing functions to use other functions as arguments and result values,

and secondly by using this capability to reduce functions ofseveral arguments to those of a sin-

gle argument. Schönfinkel’s work was further developed by Haskell Curry, who commented that

the “raison d’̂etre of the theory” was the fact that any expression involving variablesx1; : : : ; xn
could be transformed into the formFx1; : : : xn whereF was a variable-free expression denoting a

function ofx1; : : : ; xn [Curry, 1929].

Church first made use of this work in a paper on the foundation of logic. In Church’s notation,

the function ofx defined by an expressionM was represented by the notation�x[M℄, and the



CHAPTER 2. LOGIC, COMPUTABILITY AND FORMAL SYSTEMS 35

application of a functionF to an argumentX by the notationfFg(X) [Church, 1932]. These

notations were related by the rule that function applications of the formsf�x[M℄g(N) could be

evaluated by substituting the argumentN for the variablex in the expressionM, giving a result

symbolized asSxNMj. This procedure could also be reversed, allowing a term to berewritten as the

application of a function to an argument.

It turned out that the attempt to base logic on these foundations gave rise to inconsistencies.

However, following the discovery of a way of representing the natural numbers as�-expressions,

investigations by Church’s students Kleene and Rosser revealed that an unexpectedly wide range

of number-theoretic functions were�-definable. In 1934, Church came to the opinion that the

informal notion of effective calculability and the formal notion of�-definability were equivalent, a

belief dubbed as “Church’s thesis” by Kleene [Rosser, 1984,p. 345].

In 1936 Church and Kleene published proofs that the�-definable functions were precisely the

recursive functions [Church, 1936, Kleene, 1936b], and Church proposed that this set of functions

be identified as those which were effectively calculable. This paper gave a more detailed account

of the formal properties of the notation, including an arithmetization which Church described as

“the Gödel representation of a formula” [Church, 1936, p. 349]. This was used to demonstrate

that syntactical operations on formulas were themselves recursive. Finally, Church answered the

decision problem in the negative, by exhibiting an unsolvable problem.

Gödel was apparently unimpressed by the�-calculus, and his definition of general recursive

functions in 1934 has been described as an attempt, at Church’s suggestion, to propose an alternative

account of effective computability [Rosser, 1984]. For Church and his colleagues, however, the

two formulations seemed intuitively acceptable, and theirunexpected equivalence gave support to

Church’s thesis [Church, 1936, p. 346, footnote].

2.5 Direct approaches to defining effective computability

Both recursive functions and Church’s�-notation characterized effective computability in terms

of formal systems in which the class of computable functionscould be defined. However, the

plausibility of this approach depends on the extent to whichit is felt that the basic operations defined

by the formal systems fall within the informal notion of effectiveness [Gandy, 1988, Soare, 1996].

In 1936, Emil Post and Alan Turing independently gave analyses of effective computability which,

in Post’s words, aimed at greater “psychological fidelity” [Post, 1936, Turing, 1936]. This work had
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a significant impact in gaining acceptance for Church’s viewthat the informal notion of effective

computability could be captured by a formal system.

Both Post and Turing described models which were based on taking seriously the metaphor that

human beings perform certain intellectual tasks in a ‘mechanical’ manner. As discussed below, Tur-

ing made explicit reference to the behaviour of ‘computers’, the term then current to describe people

carrying out complex calculations complex predefined plans. Jon Agar has described how similar

‘mechanical’ processes had been introduced in non-numerical areas, particularly in the British Civil

Service, and has speculated that awareness of this was an additional factor leading to Turing’s me-

chanical definition of computability [Agar, 2003]. Post andTuring abstracted two essential features

from the familiar activity of human computation: an external medium on which the data involved in

the computation could be recorded, and a representation of the instructions that the computer was

following.

In Post’s terminology, the model consisted of a “worker” operating in a “symbol space” by

following a “set of directions”, and the symbol space was a “two way infinite sequence of spaces

or boxes” [Post, 1936, p. 103], each of which could be empty orcontain a single symbol. The

worker was assumed to be capable of performing a number of basic operations on the symbol space:

moving to an adjacent box, placing or erasing a mark in a box, and detecting whether a box was

marked or unmarked. The instructions followed by the workerwere given as a numbered sequence

of “directions”. As well as start and stop instructions, theworker could be directed to perform a

basic operation and then continue with a particular specified instruction, or to perform one of two

alternative instructions depending on whether the currently occupied box was marked or unmarked.

Post only gave an informal description of sets of directions, and unlike Gödel, Kleene and

Church, he did not define an arithmetization of his notation.Consequently he gave no formal proof

of the equivalence of his formulation with the others, but hedid anticipate that his account would

“turn out to be logically equivalent to recursiveness in thesense of the Gödel-Church develop-

ment” [Post, 1936, p. 105], as indeed proved to be the case.

Turing presented his model and notation in much more detail than Post, as described in the next

section. Like Post, he made use of the notion of an external symbol space, which he described as a

“tape” infinite in one direction only and divided into squares each capable of storing one of a range

of distinct symbols. Rather than invoking the notion of a ‘worker’, however, Turing talked in terms

of “machines” which embodied the agency necessary to execute a set of basic operations and be
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responsive to the contents of the tape. Turing went on to showthat the operations carried out by a

worker following a set of instructions could themselves be represented as a machine, the so-called

“universal machine”; this development is discussed further in Section 2.7.

2.6 Turing’s machine table notation

Turing’s analysis was carried out by defining a class of abstract machines which are meant to em-

body the essential processes carried out by a human clerk or computer. Specific machines are de-

scribed using a notation that Turing called “machine tables”, and in the first half of the 1936 paper

the machine table notation is developed into a powerful and sophisticated formalism for describing

computations.

Despite the importance of Turing’s work, the machine table notation has not received much at-

tention from logicians and has gained a reputation for beingobscure and confusing [Chaitin, 2001,

p. 16, for example]. When it is discussed in detail, it is often with a view to identifying precursors

or anticipations of features found in later programming languages [Knuth and Trabb Pardo, 1980,

Copeland, 2004a]. Some of the resemblances between Turing’s notation and programming lan-

guages are indeed striking, but focusing on these leads to a rather unhistorical interpretation of

Turing’s work. In this section the machine table notation will be considered in the context of the

other notations for computability defined in the 1930s, and it will be argued that many of its features

fit naturally into this context.

Turing machines

Imagine a human performing a ‘mechanical’ procedure, such as a calculation. Assuming that the

procedure has been memorized, there will be no explicit written instructions being followed, but

intermediate results may be recorded externally, perhaps on paper. A typical example of such a

situation would be somebody carrying out an elementary calculation, such as a long multiplication.

Turing described a class of abstract machines which were intended to simulate the behaviour of the

human calculator in such cases. These machines have the following characteristics.

1. At any given moment, a machine is in exactly one of a finite number of states, known as

m-configurations. These are intended to model the different ‘states of mind’ of a human

computer, recording for example the stage reached in carrying out a computation.



CHAPTER 2. LOGIC, COMPUTABILITY AND FORMAL SYSTEMS 38

2. The machine is supplied with atape, representing the paper that a human worker would use

to record the intermediate and final results of an ongoing computation. The tape consists of a

sequence ofsquares, in each of which one of a finite number of symbols may be written.

3. At any given moment a machine has access to the contents of asubset of the squares on its

tape, known as thescannedor observedsquares. This reflects the fact that computations

can be carried out which are so large that human computers cannot “immediately recog-

nize” [Turing, 1936, p. 250] all the details of the work beingdone, and at different times will

focus on particular aspects only.

Human memory has two distinct roles in computation, which were clearly distinguished by

Turing. It is possible to carry out computations mentally, in which case the intermediate results of

the computation are not written down, but simply rememberedfor a short period of time. The use

of external aids such as paper becomes important as the size of the computations being undertaken

increases. This might suggest that intermediate results could be represented either asm-configur-

ations or as the contents of the machine’s tape. However, Turing’s distinction betweenm-configur-

ations and the tape is based strictly on the differing functional roles of each component. The tape

stores all the intermediate and final results of the computation, and in writing them all down Turing

machines are more pedantic than a human computer might be. The m-configurations represent

the computer’s knowledge of which steps in the computation have been performed and what is to

be done next, but not the results of those steps. If we imaginethat the instructions specifying a

computation are written down somewhere, the purpose of anm-configuration is simply to record

which instruction is to be followed next.

In a Turing machine, computation proceeds by way of a sequence of discrete steps. At each

step, the machine’s behaviour is determined by its currentm-configuration and the symbols in the

currently scanned squares, together known as the machine’sconfiguration. In a single step, the

machine may perform one or more basic operations and possibly change itsm-configuration. The

basic operations are of two sorts: firstly, the symbols in thescanned squares may be changed, and

secondly, the distribution of scanned squares on the tape may be changed. The newm-configuration

and scanned symbols then determine the machine’s behaviourin the next step of the computation.

A particular class of machines can be defined by specifying the structure of the tape, the set of

symbols used by the machine, the distribution of scanned squares on the tape, and the repertoire of

basic operations. The machines that Turing described in detail have a one-dimensional tape and are
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only capable of scanning one square at a time. The basic operations allow the symbol on the scanned

square to be erased or altered, and only the squares adjacentto the scanned square may become the

new scanned square (i.e. the machine can ‘move’ by only one square left or right at each step of a

computation). The symbols used may vary from machine to machine, and are specified as required.

Machine tables

Turing described particular machines using a notation which he called ‘machine tables’. The sim-

plest form of machine table consists of a set of rows, each defining the behaviour of a single step in

a computation, or what the machine will do in a particular configuration. A row therefore consists

of the following elements:

1. Them-configuration and the scanned symbol that define the configuration in question. In

Turing’s paper,m-configurations were named by Gothic characters and symbolswere shown

literally.

2. The actions that the machine performs in this step of the computation. Turing used the ab-

breviationsP� for the operation of writing the symbol� to the scanned square,E for the

operation of erasing the symbol in the scanned square, andL andR for the operations of

moving left and right, respectively.

3. Them-configuration that the machine is in at the end of a step in thecomputation, known as

thefinal m-configuration.

Using these conventions, Turing gave the following exampleof a table describing a machine

which prints the sequence ‘010101 : : :’ on alternate squares of the machine’s tape [Turing, 1936, p.

233].

m-config. symbol operations final m-config.b None P0; R  None R ee None P1; R kk None R b
This table is consistent with Turing’s description of the machines’ behaviour, which states that

they can perform at most one write or erase operation and one move at each step in the computation.

Turing immediately extended the notation, however, in two ways. Firstly, he allowed arbitrary
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sequences of basic operations to be specified in a single lineof a table. In general, this reduces the

number ofm-configurations needed to describe a computation. Secondly, he introduced a notation,

similar to the mathematical notation for ‘definition by cases’, for grouping together all the rows in

a table that share the samem-configuration and selecting the required behaviour on the basis of the

currently scanned symbol. Using these conventions a simpler table can be given for the machine

defined above, using only onem-configuration [Turing, 1936, p. 234].

m-config. symbol operations final m-config.b 8>><>>: None P0 b
0 R;R; P1 b
1 R;R; P0 b

Turing explained this form of machine table informally, saying that “for a configuration de-

scribed in the first two columns the operations in the third column are carried out successively, and

the machine then goes over into them-configuration described in the last column. When the second

column is left blank, it is understood that the behaviour of the third and fourth columns applies for

any symbol and for no symbol” [Turing, 1936, p. 233]. It can beseen that the machine table nota-

tion is at least as expressive as the sequence of instructions used by Post to specify computations.

The rows in a machine table are not ordered, but the sequencing of basic operations is determined

by the explicit specification of a finalm-configuration in each row, and the ability to select between

alternatives is provided by allowing each instruction to discriminate on the value of the currently

scanned symbol.

Variables and functions

Turing then went on to consider ways in which the task of writing tables for particular machines

could be made easier. He observed that there are a number of basic processes, such as locating,

copying, comparing and erasing symbols, which will form part of most machines and which may

be carried out many times in a given computation. When defining significant numbers of recursive

functions, Schönfinkel and Gödel had addressed this issueby defining simple functions which,

by means of substitution, could be repeatedly used without redefinition in the definition of more

complex functions, and Turing reinterpreted this technique in the context of his machine tables.

The definition of a function consists of an expression which defines in some way the transforma-

tion carried out by the function. In conventional functional notation, variables are used to represent

those elements of the expression that can vary in different contexts of application. When a simple
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process represented by a machine table is repeated, the number of m-configurations and the basic

operations carried out will remain the same, but the symbolsinvolved and them-configurations

that specify what the machine should do next may differ from one occasion to another. Turing

therefore introduced variables for symbols andm-configurations, and allowedm-configurations to

be denoted not simply by names, but by expressions involvingm-configuration functions, or m-

functions[Turing, 1936, p. 236]. Tables containing these notationalextensions were calledskeleton

tables.

The extended notation is best appreciated by means of an example. The table below defines

a machine which will locate the first occurrence on the tape ofa particular symbol, denoted by

the variable� [Turing, 1936, p. 236]. If� does occur on the tape, the scanned square at the end

of the computation will be the one containing the leftmost� and the finalm-configuration will

be that denoted by the variableC; if there are no�s on the tape, the finalm-configuration will

be that denoted by the variableB. In this example Turing introduces a convention whereby two

occurrences of the special symbol ‘e’ indicate the leftmost end of the used portion of the tape. In

effect, computations take place on a tape which is unboundedto the right, and which contains at the

start the symbols ‘ee’.

m-config. symbol operations final m-config.f(C;B; �) ( e L f1(C;B; �)
not e L f(C;B; �)f1(C;B; �) 8>><>>: � C
not� R f1(C;B; �)
None R f2(C;B; �)f2(C;B; �) 8>><>>: � C
not� R f1(C;B; �)
None R B

This table defines threem-functions,f, f1 andf2. On different occasions of use, these expressions

would denote differentm-configurations, depending on the values supplied for the variablesB, C
and�. The names of them-functions were presumably chosen to emphasize the fact that they are

parts of a self-contained table with a unified purpose. When the machine is inm-configurationf(C;B; �) it moves left until it reaches the beginning of the tape. It then goes intom-configur-

ation f1(C;B; �) and begins to move right, searching for an�. If an � is found the computation

finishes and the machine goes to the ‘success’m-configuration,C. If a blank square is found the

machine goes intom-configurationf2(C;B; �), and otherwise it moves on to the next square to the
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right. The behaviour of the machine inm-configurationf2(C;B; �)is the same as inm-configurationf1(C;B; �), with one exception: the discovery of a blank square means that two blanks in a row

have been found, and hence, according to a second conventionadopted by Turing, that the end of

the tape has been reached. In this case the machine goes to the‘failure’ m-configuration,B.

Skeleton tables therefore introduce the familiar logical apparatus of variables and functions

into the machine table notation. It should be noted thatm-function expressions have a different

significance if they appear in the first or last column of a table. In the first column they behave

rather like expressions in Church’s� notation, binding the variables that appear in that row: this can

be seen by noting that the variables in a row could be consistently renamed without changing the

behaviour specified by the table. In the final column them-functions are applied to determine the

machine’s nextm-configuration.

Outside of skeleton tables,m-functions are applied by replacing the bound variables by the

names ofm-configurations and symbols, and the resulting terms, such as f(d; e; x), denotem-

configurations. Such applications enable a skeleton table,like a function, to be ‘reused’ whenever it

is necessary to carry out the process that it defines. For example, given the following table fragment,

a machine in them-configuration will proceed to delete the first occurrence of the symbolx on the

tape.

m-config. symbol operations final m-config. f(d; e; x)d E ee : : :
Fromm-configuration, the machine will immediately move to them-configuration specified by

the expressionf(d; e; x). The effect of thism-configuration is defined by the skeleton table above.

With the obvious substitution for the bound variables, the machine will then search for the first

occurrence of the symbolx on the tape. If this search is successful, the machine will move to

m-configurationd, in which the currently scanned symbol, thex that has just been located, will

be erased. After erasure, or in the case that nox was found on the tape, the machine will be in

m-configuratione.
Turing defined the general effect ofm-function application in the same way as function appli-

cation is defined in the�-calculus, “by repeated substitution [ofm-configurations and symbols in

place of variables] in the skeleton tables” [Turing, 1936, p. 236]. Applying this procedure to the
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table fragment, and replacing expressions likef(d; e; x) with a simplem-configuration name such

asf, yields the following expanded table in the original notation without variables andm-functions.

m-config. symbol operations final m-config. ff ( e L f1
not e L ff1 8>><>>: x d
notx R f1
None R f2f2 8>><>>: x d
notx R f1
None R ed E ee : : :

In practice, of course, this substitution would remain implicit and use of them-function f in the

original table would be understood as a way of invoking an operation to find a particular symbol.

In this way, skeleton tables provide a mechanism for building complex tables out of simpler and

independent components. Furthermore,m-functions allow the instructions for a particular task to be

defined once and then used many times. There may be many occasions in a complex computation

when specific symbols must be located: once the skeleton table is defined, this can be achieved

simply by writing f, with suitable arguments, as the finalm-configuration of some row in the table.

Thought of in this way, an analogy can be drawn between skeleton tables and the open subrou-

tines or macro instructions found in later programming languages, as noted by Knuth and Trabb

Pardo [Knuth and Trabb Pardo, 1980, p. 201] and more recentlyby Copeland [Copeland, 2004a, p.

12]. However, Turing’s procedure in the introduction and use of skeleton tables is readily compre-

hensible in the light of contemporary work on effective computability. Gödel’s formal definition of

provability, for example, began with the definition of very simple arithmetical functions, and then

reused these to define a series of increasingly complex functions [Gödel, 1931], and the general

strategy, of defining complex functions in terms of simpler ones, was commonly used by writers on

recursive functions and effective computability [Skolem,1923, Kleene, 1935a, Kleene, 1935b, for

example]. In this context, Turing’s use of skeleton tables can be seen as a natural extension of the

same strategy to the domain of machine tables.
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Defining m-functions using substitution and recursion

In Gödel’s original definition of recursive functions, newfunctions could be defined in terms of

old ones by using the two techniques of substitution and recursive definition. Turing used both

techniques in the machine table notation to enable the definition of newm-functions in terms of

existing ones.

Substitution, in this context defined by Gödel as the “substitution of some of the preceding func-

tions at the argument places of one of the preceding functions” [Gödel, 1931, p. 159, footnote], was

provided by allowingm-function expressions to appear in the argument positions of the application

of anm-function. Just as with recursive functions, this providesa powerful mechanism whereby new

operations can be built up in terms of those already defined. For example, Turing gave the following

definition of an operatione to erase the first occurrence of symbol a on the tape [Turing, 1936, p.

237].

m-config. symbol operations final m-config.e(C;B; �) f(e1(C;B; �);B; �)e1(C;B; �) E C
This table defines anm-configuratione(C;B; �) which will erase the first occurrence of the

symbol� on the tape and then move tom-configurationC. If no occurrence of� is found, the

machine moves tom-configurationB. The machine first moves directly to anm-configuration

defined by the skeleton table for them-function f, which finds the first occurrence of� on the

tape. If the symbol is found, the machine will moved to them-configuration specified by the first

parameter off; this is a newm-configuratione1 which will erases the symbol before moving to the

‘success’m-configurationC.

Although the syntax used here for nestedm-function applications is identical to the standard

functional notation, it is worth noticing that the informalmeaning of Turing’s use of the notation dif-

fers from conventional usage. In a functional expression ofthe form�( (x)), the function (x) is

evaluated first, and its value used in the evaluation of�. In Turing’s expressionf(e1(C;B; �);B; �),
however, the effect is that the computation denoted by them-configuratione1 takes placeafter that

denoted byf.
The m-configuratione(C;B; �) will erase the first occurrence of� on the tape, but if all oc-

currences of�s are to be deleted, this operation needs to repeated until none remain or, in other

words, until it fails. Turing gave the following recursive definition of anm-configuration to achieve
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this [Turing, 1936, p. 237].

m-config. symbol operations final m-config.e(B; �) e(e(B; �);B; �)
Them-configuratione(B; �) will erase all occurrences of� from the tape and then go to stateB. It is important to note here that there are two distinctm-functions in this table, both denoted

by e, and distinguished only by the fact that one takes two and theother three parameters.e(B; �)
first moves to them-configuratione(C;B; �), defined in the previous table; this will delete the first

occurrence of�. If this succeeds, the nextm-configuration will again bee(B; �), and the process

will repeat to delete the second and subsequent occurrencesof �. Eventually, there will be no more�s on the tape and the deletion will be unsuccessful, in which case the machine will move to stateB.

Free variables

The final syntactic feature of the machine table notation provides a way of passing the value of the

currently scanned symbol to the finalm-configuration without having to name it, by allowing free

symbol variables to appear in the second column of the tables. In the table below, them-configur-

ation pe prints the symbol� at the end of the tape and then goes to them-configurationC. This

operation is then used in anm-configuration1 which copies the currently scanned symbol at the

end of the tape [Turing, 1936, p. 237].

m-config. symbol operations final m-config.pe(C; �) f(pe1(C; �);C; e)pe1(C; �) (
Any R;R pe1(C; �)
None P� C1(C) � pe(C; �)

In the first two lines,� is a parameter (or bound variable) and the value supplied when the row

is called will be substituted in the remainder of the row. In the line defining1, � is free: the effect

is that it will temporarily be bound to the scanned symbol, whatever that is, and that symbol will be

supplied as a parameter tope. Turing explained this as follows:

The last line stands for the totality of lines obtainable from it by replacing� by any
symbol which may occur on the tape of the machine concerned. [Turing, 1936, p. 238]

In other words, the line defining1 can be thought of as a shorthand for the lines
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m-config. symbol operations final m-config.1(C) 0 pe(C; 0)1(C) 1 pe(C; 1): : :
where there is exactly one line for each symbol used by the machine.

At this point the question arises whether every skeleton table written using the abbreviations

and conventions that Turing has introduced can be represented by a table in the unextended nota-

tion. Turing asserted this, but did not provide a proof. He considered the features of the extended

language to be convenient abbreviations, stating that “[s]o long as the reader understands how to

obtain the complete tables from the skeleton tables, there is no need to give any exact definitions

in this connection” and “a table can always be put in this [simple] form by introducing morem-

configurations” [Turing, 1936, p. 236, 239].

2.7 Universal machines

Them-configurations of a Turing machine represent the “states ofmind” [Turing, 1936, p. 250] of

a human computer, and encode information about the progressof a computation and the steps to

be carried out next. Although humans can carry out familiar and simple algorithms mentally, more

complicated processes require written instructions whichare then followed in a step-by-step manner.

Provided the computer or clerk can perform individual stepsin the process and keep track of the

next instruction to be carried out, this procedure is just aseffective as memorizing the instructions.

The act of following instructions is itself a clerical task,however, and this raises the question

of whether it is itself mechanizable. Turing called a machine which could follow the instructions

expressed in a machine tableuniversal, and answered this question in the affirmative by giving an

explicit table for a universal machine. In the context of Turing’s paper, this is “a single machine

which can be used to compute any computable sequence” [Turing, 1936, p. 241]; more generally, it

is a demonstration that the process of following explicitlygiven instructions is itself a mechanical,

effective procedure. As Turing later put it, “we should consider the machine as doing something

quite simple, namely carrying out orders given to it in a standard form which it is able to under-

stand” [Turing, 1946, p. 21].

Turing began the construction of the universal machine by formalizing the simple form of ma-

chine table to which he claimed all tables could be reduced. This format is referred to as thestandard
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form of a table. It is assumed that an enumerationq1; : : : ; qR of the m-configurations used in the

table is given, and also an enumerationS0; : : : ; Sm of the symbols which can appear on the tape. A

machine table in standard form consists of a number of lines each of which has one of the following

forms: qiSjSkLqmqiSjSkRqmqiSjSkNqm
Hereqi andSj denote the initialm-configuration and scanned symbol, andqm andSk the final

state and symbol.L,R andN represent the three basic operations of moving one square tothe left,

one square to the right, or staying in the same position on thetape. Each line defines the behaviour

of the machine when the currentm-configuration isqi and the scanned symbol isSj . When the

machine reaches this configuration in the course of a computation, the following events will take

place. The symbolSk will be written to the scanned square; ifSj andSk are the same, the effect

is that the symbol is unchanged, but this form of descriptionallows this case to be subsumed into

the case where a new symbol is written. The machine then movesone square to the left or right, or

stays put, and the finalm-configuration isqm.

For an example of standard form, consider the first example table presented by Turing. It has

four m-configurations and uses three tape symbols: letS0 represent a blank square,S1 the symbol0
andS2 the symbol1. Assuming that the tape contains the symbolS0 in every square at the beginning

of the computation and starts in them-configurationq1, the following table defines a machine which

prints the unending sequence010101 : : : on alternate squares of the tape.q1S0S1Rq2q2S0S0Rq3q3S0S2Rq4q4S0S0Rq1
A universal machine must be able to examine the table of another machine. This can be achieved

if it is defined how a machine table can be represented on the tape of the universal machine. For this

purpose, Turing defined a further representation of machinetables, which he called theirstandard

descriptions.

A standard description of a machine is an encoding of a table in standard form into the specific

set of symbols used by the universal machine. Turing’s universal machine uses the symbolsA, C,D, L, N , R and ; to represent the standard form of tables. Them-configurationqi is represented
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by the symbolD followed by i occurrences ofA; the symbolSj is represented by the symbolD
followed byj occurrences ofC; L,N andR represent themselves and the lines in the standard form

table are separated by;. The standard description for the table given above in standard form would

therefore be:DADDCRDAA;DAADDRDAAA;DAAADDCCRDAAAA;DAAAADDRDA
Standard descriptions are one-dimensional sequences of symbols, and therefore comprise an

encoding scheme which enables machine tables to be represented on a tape, and hence as data that

can be manipulated by other machines. Like Kleene and Church, Turing went one step further and

produced an arithmetization of his notation, associating aunique natural number with each machine

table. This representation was only used for theoretical purposes, however, and did not form part of

the definition of the universal machine.

2.8 The concept of a formal language

We now turn to the second area of logical research to be considered, namely the development of a

theory of a formal languages themselves. The similarity between the syntactic operations involved

in the definition of a formal notation and the recursive, or ‘inductive’, definitions used in mathe-

matics was familiar to logicians. For example, in an early paper Church commented on an informal

explanation of the structure of the well-formed formulas ofhis system, saying that “[t]his is a defi-

nition by induction” [Church, 1932, p. 352]. Gödel made this idea precise by employing the tech-

nique of arithmetization and defining syntactic propertiesas recursive number-theoretic functions.

As described above, a number of logicians subsequently provided an explicit arithmetization of their

notations and commented on the theoretical role of the encoding. Kleene, for example, wrote that

“[t]he operations on symbols which occur in the computationhave a similarity to ordinary recursive

operations on numbers” [Kleene, 1936a, p. 727], and Church referred to “the now familiar remark

that, in view of the Gödel representation and the ideas associated with it, symbolic logic in general

can be regarded, mathematically, as a branch of elementary number theory” [Church, 1936, p. 94,

footnote 8].

The insight provided by the technique of arithmetization made possible the development of a

mathematical theory of formal languages, a development associated particularly with the work of

Tarski and Carnap [Tarski, 1933, Carnap, 1937, Carnap, 1939, Carnap, 1942]. This section briefly
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describes the major features of this account of formal languages, which served as the framework

within which programming languages were subsequently studied.

Object language and metalanguage

An important preliminary distinction was drawn between thelanguage under investigation, the

object language, and the language in which the investigation is carried out,the metalanguage.

This distinction originated in Hilbert’s notion of metamathematics: for example, Gödel wrote of

a certain formula that it “is merely ametamathematical descriptionof the undecidable proposi-

tion” [Gödel, 1931, p. 149, footnote 13], and went on to explain how the proposition itself could be

written down. In the technical parts of his 1931 paper, Gödel distinguished the formal languageP
from the metamathematical notation used to define recursivefunctions over the expressions ofP by

using distinct logical symbols for the two cases.

For Tarski, the distinction between object and metalanguage was motivated by the fact that not

every language possessed “terms belonging to the theory of language” [Tarski, 1933, p. 167], and

so in general it would not be possible to discuss the syntax, say, of a language in that language itself.

Carnap stated explicitly that “we are concerned with two languages: in the first place the language

which is the object of our investigation—we shall call this the object-language—and, secondly,

with the language in which we speakaboutthe syntactical forms of the object-language—we shall

call this thesyntax-language” [Carnap, 1937, p. 4].

This distinction raised the possibility of the need for an unending hierarchy of metalanguages.

Arguing against this, Carnap emphasized that arithmetization provided a general technique whereby

a language rich enough to contain the theory of the natural numbers could, without fear of contra-

diction, function as its own syntactic metalanguage [Carnap, 1937, p. 53].

Different metalinguistic resources were needed for different purposes. For the purposes of log-

ical syntax, Carnap only needed a metalanguage which was capable of describing the syntax of

the object language, hence his use of the more specific term ‘syntax-language’. Tarski’s semantic

investigations, however, required the ability to describeboth the syntactic form of object-language

sentences and also their meaning. Tarski therefore demanded further that a metalanguage be ex-

pressive enough to contain a translation of each expressionof the object language: “the fact that the

metalanguage contains both an individual name and a translation of every expression: : : of the lan-

guage studied will play a decisive part in the construction of the definition of truth” [Tarski, 1933,
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p. 172].

Syntax

The first aspect of the metatheory of logic to be addressed in detail was that of syntax. Formal lan-

guages were originally characterized by the fact that theirstructure and properties could be discussed

without any reference to the meaning of expressions in the language. Tarski wrote that formalized

languages were those which could be described using “only those concepts which relate to the form

and arrangement of the signs and compound expressions of thelanguage” [Tarski, 1936b, p. 403],

and Carnap stated that “ [a] theory, a rule, a definition or thelike is to be calledformal when no

reference is made in it either to the meaning of the symbols (for example, the words) or to the sense

of the expressions (e.g. the sentences), but simply and solely to the kinds and order of the symbols

from which the expressions are constructed” [Carnap, 1937,p. 1, italics in original].

Syntax was therefore understood to be the theory of the purely structural properties and relation-

ships of the expressions of a language. Carnap thought of thesyntactical description of a language

as containing two aspects:

The rules of the calculus determine, in the first place, the conditions under which
an expression can be said to belong to a certain category of expressions; and, in the
second place, under what conditions the transformation of one or more expressions
into another or others may be allowed. . . . The two different kinds of rules are those
which we have previously called the rules of formation and transformation—namely
the syntactical rules in the narrower sense . . . , and the so-called logical laws of deduc-
tion. . . . [Carnap, 1937, p. 4]

The rules of formation described the structure of the expressions of a language, and defined

which expressions constituted meaningful sentences or formulas. Tarski characterized the important

aspects of the rules of formation by two properties:

(�) for each of these languages a list or description is given instructural terms of all
signs with which the expressions of the language are formed; (�) among all possible ex-
pressions which can be formed with these signs those calledsentencesare distinguished
by means of purely structural properties. [Tarski, 1933, p.166, italics in original]

Property (�) specified that the alphabet of the language must be given, inpurely structural terms.

The expressions in a language were all sequences, grammatical or not, of signs in the alphabet, and

Tarski gave an axiomatization of the operation of concatenation by means of which these sequences
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are formed. The sentences of the language were those expressions which were “well-formed”,

and property (�) asserted that it must be possible to distinguish the well-formed expressions, or

sentences, within the complete class of expressions purelyin terms of their structural properties, or

in other words, without referring to any interpretation of those expressions.

As the quotation above indicates, Carnap seems at this time to have thought of deduction as

being an intrinsic part of a formal language. Tarski was morecircumspect, writing that “formalized

languages have hitherto been constructed exclusively for the purposes of studying thedeductive

sciences”, but for him too the relationship of entailment between sentences was of particular interest.

The study of proofs had made it apparent that much of the notion of entailment could be captured

in formal terms, and so dealt with as part of logical syntax. Tarski summarized the way in which

this was typically done in two further properties. Property() stated that a set of sentences called

axiomsshould be specified in purely structural terms, and property(Æ) that a number ofrules of

inferenceshould be specified by which sentences could be transformed into other sentences.

Semantics

Gödel’s incompleteness result had shown that the syntactic notion of validity or provability did not

in general coincide with the notion of truth. Tarski had subsequently given a ‘semantic’ definition

of truth, so called because it was built upon a relationship of denotation, or designation, between the

terms of a language and the objects and properties in a suitable domain of interpretation. Building

upon this definition, Morris and Carnap defined semantics as the study of the “relations between the

expressions of [a language] and their designata” [Carnap, 1939, p. 6].

Tarski’s definition of truth was taken by Carnap as an exemplary semantic definition. Tarski re-

quired that “the sense of every expression is uniquely defined by its form” [Tarski, 1933, p. 165-6].

One important aspect of this requirement iscompositionality: the meaning of a whole expression

is given as a function of the meaning of its parts, and the way in which the meaning of a whole

expression is arrived at depends solely on the way in which itis syntactically constructed. For

example, Tarski’s definition of satisfaction is based on thesyntactic structure of sentences: for

each clause defining how a sentence can be constructed from simpler sentences, there is a match-

ing clause defining satisfaction of the resulting sentence in terms of the satisfaction of the simpler

sentences [Tarski, 1933, p. 193].
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The structure of the metatheory

Tarski’s definition of truth established a distinction between purely syntactic accounts of formal

languages and a semantic treatment. This distinction was applied and generalized by Charles Mor-

ris as part of the theory of signs. Morris based this theory onthe process ofsemiosiswhich in-

volved a three-way relationship between a “sign vehicle”, a“designatum” and an “interpretant”,

the “effect on some interpreter in virtue of which the thing in question is a sign to that inter-

preter” [Morris, 1938, p. 3]. Considering the three terms inthis relationship, Morris defined se-

mantics as the study of “the relations of signs to the objectsto which the signs are applicable” and

pragmatics as the study of “the relation of signs to interpreters” [Morris, 1938, p. 6]. Noting that

signs normally occur in the context of a system of related signs, “syntactics” was further defined as

the study of the “relations of signs to one another in abstraction from the relation of signs to objects

or interpreters” [Morris, 1938, p. 13].

Carnap restated Morris’s categorization for the specific case of the analysis of language, distin-

guishing between “the action, state, and environment of a man who speaks or hears, say, the German

word ‘blau’ . . . the word ‘blau’ as an element of the German language . . . [and] a certain property

of things, viz., the color blue, to which this man . . . intendsto refer” [Carnap, 1939, p. 4]. Carnap

suggested that all three aspects, which he called “pragmatics”, “semantics” and “logical syntax”,

should be studied as part of a theory of language.

2.9 The relationship between Turing’s work and logic

Turing’s 1936 paper has often been described as foundational to the subsequent development of

computing and computer science. This chapter has taken a different perspective, and has empha-

sized the close relationships between it and other work in mathematical logic. This section tries to

do justice to the originality of Turing’s work, not however by describing it as a ‘precursor’ or ‘antic-

ipation’ of later work, but by applying to it Pickering’s scheme for conceptual innovation, described

in Chapter 1.

The first stage in Pickering’s schema isbridging, the discovery of a way of using the concepts

and results of one field to guide the development of some new area. Turing wanted to take seriously

the idea of computation by machines as a basis for an analysisof computability, and his problem

was how to bridge the gap between the existing discipline of mathematical logic and the more
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concrete world of machines. He achieved this by the introduction of the machine table notation,

which provided textual equivalents of potentially physical machines. By treating machine tables as

texts in a formal language, it became possible for Turing to apply the well-developed resources of

formal logic to the study of machines.

Bridging is followed by a stage which Pickering describes astranscription, in which ideas and

techniques from the existing domain are applied, in a more orless routine manner, to the new area.

Illustrating this, Section 2.6 showed how the syntactic notions of variables, functions and recursion

were applied to machine tables, and Section 2.7 how Gödel’stechnique of arithmetization was used

in the definition of the universal machine. Because of the differences between machine tables and

conventional languages of logic such as Gödel’s languageP , however, Turing’s approach differs in

detail from Gödel’s.

The most significant difference stems from a basic semantic difference between the languages.

The atomic formulas in conventional languages are formed byapplying a predicate to one or more

terms, which are in turn made up from variables and constantscombined with function applications.

Semantically, terms denote objects in some domain of interpretation, and atomic formulas make

assertions which can be true or false. More complex formulascan be built up using truth-functional

connectives and quantifiers, and these formulas also represent assertions and are evaluated for their

truth value.

Turing’s machine table language is quite different. It contains three kinds of terms, representing

the symbols that can be written on the tape, them-configurations, and the primitive actions that can

be taken by a machine, and complex terms can be built up usingm-functions. However, there are

no predicates, and hence no atomic formulas and no way of expressing an assertion or a judgement

in a machine table. At this point, the transcription of ideasfrom mathematical logic breaks down

and reveals the need for what Pickering callsfilling, or the creation of new material to fill out or

complete the new theory.

The question is, how should the semantics of a machine table be understood? Turing wrote of

his first example, “[t]he behaviour of the machine is described in the following table” [Turing, 1936,

p. 233], and his informal annotations to subsequent tables take the form of a description of what the

machine would do when in the appropriatem-configuration. This suggests an interpretation where

machine tables and the lines comprising them are taken to be expressions denoting, or possibly

making assertions about, machine behaviour. Apart from informal descriptions, however, Turing
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gives no characterization of machine behaviour separate from the machine tables themselves, and

this interpretation is therefore left undeveloped.

Later in the paper, in the discussion of the universal machine, Turing makes use of an alternative

interpretation. Tables are translated into standard descriptions in order to be written on the tape of

the universal machine; this is a purely syntactical transformation, however, which we can assume

leaves the semantics of the table unchanged. Turing then writes that “[t]he S.D. [standard descrip-

tion] consists of a number of instructions, separated by semi-colons” [Turing, 1936, p. 243]. A very

similar interpretation is suggested by Post, who spoke in terms of a “set of directions” to be given

which would determine the operations performed by a worker [Post, 1936].

The use of the word ‘instruction’ to describe lines in machine tables suggests an interpretation in

which lines are treated not as denoting terms but as commands, as linguistic forms in the imperative,

not the indicative, mood. If machine tables are understood in this way, however, the question arises

of how to treat them semantically: commands are not naturally understood as making assertions, so

the kind of interpretation used for indicative sentences does not seem to apply in this case.

Speaking informally, what we do with commands is to obey them, or carry them out, actually

performing the actions that they specify: Post’s notion of aworker obeying a set of directions

captures this intuition. For the instructions contained ina machine table, we are interested in the

computation that would be performed and the results obtained by the machine whose behaviour

was described by the table. However, this is precisely what the universal machine does. Given a

machine table, the universal machine will go through the steps involved in obeying the instructions

in the table, and in so doing generate precisely the results that the original machine would produce.

From this perspective, the universal machine defines a formal semantic account of the meaning of

machine tables. This is not a semantic account of the denotational form assumed by Carnap and

Morris, but one appropriate to the imperative nature of machine tables.

Given this, the relationship between Turing’s work and Gödel’s can be presented by means of

the following structural analogy between their systems. Both begin by defining a formal language,

in Gödel’s case the languageP and in Turing’s case the machine table notation. The expressions

of the language are then coded by mapping them into the domainof interpretation of the language.

For Gödel,P is a formal language for number theory, so by means of arithmetization its formulas

are encoded as natural numbers. Turing’s notation describes the behaviour of machines computing

with symbols on a tape, so Turing encodes machine tables as standard descriptions which can be
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written on a tape, thus making them accessible to other tables in the same way that an arithmetized

formula ofP is accessible to other formulas. Finally, the encoding is used to express metalinguistic

properties of the object language in the object language itself. For Gödel this involved the definition

of recursive functions, which are known to be expressible inP . For Turing, this must involve the

definition of appropriate machine tables: the example he gave was the universal machine which, as

argued above, defines a semantic account of machine tables interms of what is involved in following

the instructions they contain.

Morris wrote in 1938:

[Logical syntax] has limited its investigation of syntactical structure to the type of sign
combinations which are dominant in science, namely, those combinations which from
a semantical point of view are called statements, or those combinations used in the
transformation of such combinations. Thus on Carnap’s usage commands are not sen-
tences: : : [Morris, 1938, p. 16]

In contrast, this chapter has argued that Turing’s work of 1936 can be understood as extending the

domain of mathematical logic by introducing the machine table notation as a formal, textual repre-

sentation of commands. Further, it has shown how Turing applied and generalized existing work in

logic, particularly that of Gödel, to give, in the form of the universal machine, a formalization of the

semantic notion of obeying a command.



Chapter 3

Logic and the invention of the computer

During the 1930s, the concept of computability was being investigated from both theoretical and

practical points of view. As described in the previous chapter, mathematical logicians had succeeded

in giving a precise logical characterization of the informal notion of effective computability, the

culmination of a long investigation in how to make logical procedures effectively calculable. At

the same time, Zuse and Aiken were beginning projects which would lead to the construction of

large-scale automatic computing machines.

These investigations were largely independent of each other. In particular, it appears that Zuse

and Aiken were principally motivated by the desire to avoid having to perform long calculations by

hand, and were, at least initially, ignorant of theoreticaldevelopments in logic. For example, Zuse

invented what he thought was a novel notation to describe certain features of the design of his ma-

chine, only to be later told that he had in effect rediscovered the propositional calculus [Zuse, 1993,

p. 46].

In contrast, at least some logicians were aware of the importance of practical computation. By

the 1930s, calculating machines and punched card machinerywere extensively used in industry

and commerce, and techniques for organizing large-scale calculations were widely known. Turing

used the example of a human performing complex calculationsto motivate the design of his ab-

stract machines, and it has been suggested that his use of themachine concept in the definition of

computability may have been partly motivated by his awareness of the processes of mechanization

employed, for example, in the British Civil Service [Agar, 2003].

In the following decade computing machinery developed extremely rapidly. A major cause of

this was the extensive computational requirements of the Second World War, not only in traditional

56
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areas of applied mathematics but also notably in cryptanalysis. By 1950, machines such as those

of Zuse and Aiken were becoming obsolete, partly because of their limited computational capacity,

but also because the design principles on which they were based had been superseded. Of particular

significance is the adoption of the so-calledstored programdesign: unlike the machines of Zuse

and Aiken, which read their instructions from an external medium such as punched cards or paper

tape, later machines stored their instructions internally, in the same medium that was used to store

the data being operated on. The stored program concept was evolved by a group working at the

University of Pennsylvania on a large electronic machine, the ENIAC, and was first described in a

proposal describing its successor, the EDVAC [von Neumann,1945].

During this period the logical and practical approaches to computation became increasingly

entwined. Turing was extensively involved in the practicaldevelopment of various machines in

Britain, and in the United States the mathematician John vonNeumann was from 1944 onwards

centrally involved in the planning and construction of new machines, starting with the EDVAC.

After 1950, it became a commonplace to describe computers asbeing instantiations of Turing’s

concept of a universal machine, and stored program computers are to this day described as being

based on the ‘von Neumann architecture’.

These observations raise the question of the extent to whichtheory and practice interacted in

the development of computing technology. A widely acceptedaccount sees the adoption of the

stored program design as being the crucial innovation, and one in which theory played a crucial

role. Michael Mahoney has expressed this view clearly:

it is really only in von Neumann’s collaboration with the ENIAC team that two quite
separate historical strands come together: the effort to achieve high-speed, high-precision,
automatic calculation and the effort to design a logic machine capable of significant
reasoning. [Mahoney, 1988]

This image was reinforced by Eloina Peláez, who wrote that “[t]he development of the stored-

program computer can be seen as the result of the coming together of two quite different tradi-

tions” [Peláez, 1999, p. 359]. In her account, the “two strands” had been separated by the increasing

formalization of mathematics since the nineteenth centuryand were then forced back together by

the practical demands of the war.

A number of writers have made the stronger assertion that thecoming together of the two strands

was a necessary precondition for the emergence of the computer in its modern form. For example,

Stan Ulam, a mathematician who became an early computer userthrough his involvement with the
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Manhattan project, wrote that “computer development became possible only by a confluence of at

least two entirely different streams” [Ulam, 1980], and in his biography of Turing, Andrew Hodges

describes Turing and von Neumann as “assembling thenecessaryideas for the digital computer out

of the conjunction of Hilbertian rationalism and Second World War technology” [Hodges, 1983,

p. 556, emphasis added]. Forceful arguments in favour of this ‘confluence’ theory have also been

made by the logician and computer scientist Martin Davis [Davis, 2000].

However, a widespread belief about the importance of logic to the practical development of the

computer seems only to have emerged some time after the fact.In the mid-1950s, for example, the

logician Hao Wang wrote that “Turing’s theory of computablefunctions antedated but has not much

influenced the extensive actual construction of digital computers. These two aspects of theory and

practice have been developed almost entirely independently of each other” [Wang, 1957, p. 63].

This chapter examines the interaction between theory and practice and the influence of logic in

the development of the computer. A number of distinct claimshave been made about this relation-

ship. The first concerns the nature or essence of the computer, and asserts that the computer can

best be characterized by its relationship with logic, as opposed, say, to its relationship with numer-

ical analysis or electronic engineering. Davis put this position bluntly, stating that “a computing

machine is really a logic machine” [Davis, 2000, p. xii].

A second claim concerns the causal role played by logic in thedevelopment of the computer, a

role emphasized by Mahoney: “[a]s logic machines, the first stored-program computers . . . emerged

as byproducts of theoretical inquiry into the nature and limits of logical thought” [Mahoney, 1989].

This idea was reinforced by Davis, who wrote as if the creation of the first computers was a relatively

straightforward implementation of Turing’s abstract machine concept.

A third claim relates to the general-purpose nature of computers, their ability to be used not only

for numerical computation, but for any task involving information processing. According to Davis,

the general applicability of computers is attributable to Turing’s concept of a universal machine.

This chapter will examine these three claims in detail. It isconvenient to start with the second

claim, which also provides an opportunity to review the relevant historical material.

3.1 The origins of the stored program computer

Historians have traditionally located the origin of the computer in its modern form in work car-

ried out at the Moore School of Engineering, part of the University of Pennsylvania, during the
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period 1943–1946 [Ceruzzi, 2001]. During this period, a team of electronic engineers and applied

mathematicians, led by John Mauchly and Presper Eckert, designed and constructed an electronic

calculator, the ENIAC [Goldstine and Goldstine, 1946]. This was not the first actual or proposed

device to use electronics for automatic calculation, but the ENIAC project was on a far larger scale

than its predecessors. It promised to remove a backlog in thecalculations required in the develop-

ment of new artillery weapons, and was supported financiallyby the Ballistics Research Laboratory

(BRL) at the nearby Aberdeen testing grounds. The construction of the ENIAC demonstrated once

and for all the feasibility of large-scale electronic computing devices.

The group soon recognized that there were several shortcomings in the design of the ENIAC,

and during 1944 work started on a follow-up project [Stern, 1981]. Later that year, the ENIAC team

came into contact with von Neumann, who joined the group as a part-time consultant. This appears

to have been a highly fruitful collaboration, which led in 1945 to the writing of theFirst draft of a

report on the EDVAC[von Neumann, 1945, hereafter ‘Draft Report’], an internal report describing

features of the design of a proposed successor machine to theENIAC. Although not intended for

publication, this report was widely circulated, and is generally credited with defining for the first

time the high-level design principles underlying virtually all computers subsequently built.

The ENIAC became operational at the beginning of 1946, and both it and the ‘von Neumann

design’ were described in detail at a summer school held later that year at the Moore School

[Campbell-Kelly and Williams, 1985]. Many of those attending this summer school were subse-

quently active in developing computers, including MauriceWilkes from Cambridge whose EDSAC

was very closely modelled on the machine described by von Neumann. TheDraft Reporttherefore

had an immediate and direct influence on subsequent computerdevelopments.

Recent historical writing has been concerned to place theseevents in a wider context and, rather

than describing a self-contained episode of technologicalinnovation, has emphasized continuities

within the wider history of computation. The history of pre-electronic calculating technology has

been extensively described [Aspray, 1990a], and links between the office automation industry and

the post-war computer emphasized [Agar, 2003]. However, even in this broader historiographical

tradition, the events at the Moore School are seen as a watershed. In their history, entitled simply

Computer, Campbell-Kelly and Aspray devoted a chapter entitled “Inventing the Computer” to the

topic [Campbell-Kelly and Aspray, 1996]. Similarly, Ceruzzi’s History of Modern Computingdated

the advent of the modern period to the completion of the ENIACand the writing of theDraft Report
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in 1945 [Ceruzzi, 1998], and Ceruzzi later wrote that “the stored-program principle remains a valid

focus for computing’s history” [Ceruzzi, 2001, p. 51].

The initial impetus for the Moore School work appears to havecome from John Mauchly. Be-

fore the war, Mauchly was a professor of physics at a small college near Philadelphia. He was

interested in meteorology, and in particular in the possibility of automating the very large calcula-

tions required in numerical meteorology. He explored the use of vacuum tubes to build electronic

counters [Stern, 1981, p. 9], and in 1941 visited the University of Iowa and examined an electronic

device intended to solve simultaneous equations developedby John Atanasoff. In the summer of

1941, Mauchly attended a training course in electronics at the Moore School, and subsequently

joined the faculty in the autumn of 1941. While on the course he came into contact with Eckert, and

succeeded in interesting him in the possible use of electronic technology for constructing very high

speed calculating devices.

In 1942, Mauchly wrote a report entitled “The Use of High-Speed Vacuum Tube Devices for

Calculating”, stressing the advantages to be gained from employing electronic technology to per-

form automatic calculation:

There are many sorts of mathematical problems which requirecalculation by formulas
which can readily be put in the form of iterative equations: : : a great gain in the speed
of calculation can be obtained if the devices which are used employ electronic means
for the performance of the calculation [Mauchly, 1942]

The report was submitted both to the Moore School and to the Army Ordnance Department, but

little action was taken until 1943, when it came to the attention of Herman Goldstine. Goldstine was

a mathematician with a background in ballistics who in 1942 was posted to the US Army Ordnance

Department at the BRL. There had been liaison between the Moore School and the BRL since before

the war.

A significant computational problem faced by the BRL was the timely production of firing

tables for new artillery. The development of new weapons wasproceeding at such a pace that the

computational resources of the BRL could not keep up with thedemand. Early in 1943, Goldstine

came across Mauchly’s report, and became convinced that electronic technology could provide a

solution to the BRL’s computational needs. A joint project was initiated in April 1943 between

the Moore School and the BRL to develop the ENIAC, or Electronic Numerical Integrator And

Computer.
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The ENIAC was developed over the subsequent two years, beingused to perform calcula-

tions for the Manhattan Project in the autumn of 1945, and waspublicly demonstrated on Febru-

ary 14, 1946, when it was able to “compute the trajectory of a shell faster than the shell itself

flies” [Burks, 1947, p. 756]. It was subsequently transferred to the Ballistics Research Laboratory

and was extensively used until finally being decommissionedin 1955 [Fritz, 1994].

The ENIAC consisted of 40 distinct units. Of these, 20 were accumulators, each capable of

storing a number and carrying out programmable operations of addition and subtraction on the

stored number. Other units implemented more complex operations, such as multiplication or taking

square roots, and the progress of a computation was controlled by a unit known as the ‘master

programmer’. It deviated significantly from other machinesof the time, such as those of Zuse and

Aiken, in the way in which instructions for a calculation were given to it. It did not seem feasible to

use external paper tape or punched cards because the speed atwhich instructions would be read in

would be so much slower than the electronic speed of computation that the advantages of computing

electronically would be lost.

Instead, the ENIAC was manually reconfigured for each different problem it was applied to, a

time-consuming and laborious process. This was recognizedby its developers to be a problem, but

it was felt that in the ENIAC’s intended context of use the approach was tolerable, because it was

assumed that the machine would be running the same program, to calculate firing tables, for long

periods of time. This was noted in a progress report written at the end of 1943:

No attempt has been made to make provision for setting up a problem automatically.
This is for the sake of simplicity and because it is anticipated that the ENIAC will
be used primarily for problems of a type in which one setup will be used many times
before another problem is placed on the machine. [Anonymous, 1943]

The inconvenience of programming the ENIAC was soon recognized as being a significant limi-

tation, however, and the desire to come up with a better method was one of the goals for subsequent

development. In a document written in January 1944, Eckert described a device that was partly

mechanical and partly electronic and that made use of magnetic storage devices [Eckert, 1944].

The device described consisted of a rotating shaft with a number of “discs or drums” mounted

on it, of various types. So-called type (a) devices were to becapable of being magnetized and

demagnetized quickly, thus providing “a method of storing,in some usable code, those characters

or digits which must be used later or indicated”. Type (b) devices would be engraved in some

suitable way to “generate such pulses or other electronic signals as were required to time, control
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and initiate the operations required in the calculations”.These descriptions suggest that different

storage media were envisaged for data and program code, numbers being stored on the volatile type

(a) discs with the type (b) discs playing the role of punched cards or paper tape in other machines,

holding the program instructions. Eckert’s proposal therefore clearly addressed the problem of

reprogramming the ENIAC: the machine he described could be reprogrammed simply by changing

the disc containing the program code. However, he went on to say:

If multiple shaft systems are used, a great increase in the available facilities and for
allowing automatic programming of the facilities and processes involved may be made: : : this programming may be of the temporary type set up on alloy discs or of the
permanent type on etched discs. [Eckert, 1944]

The statement that “this programming may be of the temporarytype”, i.e. the type (a) discs,

seems to imply that data and instructions could be stored in the same medium, but Eckert does

not appears to view this as an intrinsic feature of his machine. It is hard to draw firm conclusions

from such a short document, but it does not appear from this document that Eckert is thinking of a

machine characterized by being based round a single, integrated store.

In 1944, the Moore School group was joined on a part-time basis by von Neumann. Although

originally a pure mathematician, von Neumann became extensively involved in consulting activities

to the US government concerned with various aspects of applied mathematics, an activity which

during the war years occupied much of his time [Aspray, 1990b]. His consulting activities began

in 1937 at the BRL, coincidentally enough, and after the outbreak of war quickly intensified. A

significant involvement was with the Manhattan project at Los Alamos, where he advised on the

shaping of explosions by the appropriate placement of explosive charges.

Many of these projects brought with them significant computational challenges, and von Neu-

mann developed a serious interest in the current state of computational equipment. This interest

was fostered by a visit to England in April 1943, when he visited the Nautical Almanac Office in

Bath and helped to work out a program for an interpolation formula to be run on the punched card

equipment being used there [Todd, 1974]. Following this visit, von Neumann wrote to Oswald Ve-

blen that “I have also developed an obscene interest in computational techniques” [Aspray, 1990b,

p. 27].

During 1943 and 1944, von Neumann carried out on behalf of theManhattan project a survey of

the existing technology for automatic computation. In January 1944, he contacted Warren Weaver,

then head of the Applied Mathematics Panel of the Office of Scientific Research and Development,
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asking for information about the current situation. Weaverdirected him to research groups at IBM

and Harvard, Bell Labs and Columbia University, which von Neumann subsequently visited. None

of these projects however seemed to be in a state enabling them to be of immediate use to Los

Alamos. Von Neumann also gained first hand experience of the computational equipment currently

in use at Los Alamos. In a letter of 1 August, 1944 to Robert Oppenheimer, von Neumann summa-

rized his findings, and demonstrated a “deep and practical understanding of many of the important

concepts of high-speed digital computation” [Aspray, 1990b, p. 33].

Curiously, it appears that despite this interest in automatic computation, von Neumann had not,

before August 1944, either been told about or come across theENIAC. Weaver had not mentioned

the project, despite the fact that he undoubtedly knew of itsexistence. Various arguments have

been put forward for this omission. In a book emphasizing thecontributions made by Eckert and

Mauchly, Nancy Stern has suggested that this was because theENIAC project was held in low

esteem by the scientific establishment, partly because neither Eckert and Mauchly had at this stage

much of a scientific reputation [Stern, 1981]. Alternatively, it has been suggested that Weaver would

not have known of any significant progress on the ENIAC, as he would have been unlikely to have

read the first progress report, dated 31 December 1943, before responding to von Neumann’s enquiry

in January 1944 [Aspray, 1990b, p. 35]

Whatever the reason, it appears that von Neumann did not knowof the ENIAC project until he

met Herman Goldstine, apparently by chance, and was told about Goldstine’s involvement in the

development of an electronic calculating device [Goldstine, 1972, p. 182]. Aware of the limitations

of the electromechanical technology he had been investigating, von Neumann was quick to appre-

ciate the potential of the electronic speeds of computationpromised by the ENIAC and its planned

successor, and soon became involved with the ENIAC group as aconsultant.

Von Neumann therefore brought to his work on the EDVAC proposal a detailed practical knowl-

edge of current calculating technology, and a keen appreciation of the need in many areas of applied

mathematics for greater computational capacity than was then available. This complemented the

orientation of the ENIAC group towards the applications of automated calculation in areas such as

ballistics and meteorology.

Progress reports on the EDVAC project give some insight intovon Neumann’s contributions to

the work. The first report, in March 1945, does not mention thestored program idea specifically,

but does indicate what the group was expecting from theDraft Report:
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The problems of logical control have been analyzed by means of informal discussions
among Dr. John von Neumann,: : : Dr. Mauchly, Mr. Eckert, Dr. Burks, Capt. Gold-
stine and others.: : : Points which have been considered during these discussionsare
flexibility of the use of EDVAC, storage capacity, computingspeed, sorting speed, the
coding of problems, and circuit design.: : :Dr. von Neumann plans to submit within the
next few weeks a summary of these analyses of the logical control of the EDVAC to-
gether with examples showing how certain problems can be setup. [Eckert et al., 1945]

A second report, in September 1945, is more explicit about the historical background of the

project, and claims that the stored program concept dates from Eckert’s 1944 disclosure, though

describing it in terms which go beyond what Eckert had originally written:: : : in January, 1944, a “magnetic calculating instrument” was disclosed. : : : An im-
portant feature of this device was that operating instructions and function tables would
be stored in exactly the same sort of memory device as that used for numbers. : : :
[Von Neumann] has contributed to many discussions on the logical controls of the ED-
VAC, has prepared certain instruction codes, and has testedthese proposed systems
by writing out the coded instructions for specific problems.Dr. von Neumann has
also written a preliminary report in which most of the results of earlier discussions are
summarized. [Anonymous, 1945]

The attribution of credit for the invention of the stored-program concept has proved to be very

controversial. In retrospect, Turing’s universal machinehas been interpreted as embodying the no-

tion, and some writers have therefore argued that credit ought ultimately to be given to Turing. The

relationship between Turing and von Neumann and the extent to which von Neumann’s contribution

to the EDVAC was influenced by his knowledge of Turing’s work are discussed further below.

In his autobiography, Zuse quoted diary entries made in 1937and 1938 which appear to state,

very briefly, the idea of holding both program and data in the same store [Zuse, 1993, p. 53].

However, Zuse did not build a machine based on these principles before 1945, and his work was in

any case unknown to the EDVAC team.

Prior to 1945, other computer developers in the USA do not seem to have been aware of the

stored program concept. Like Zuse, Aiken and George Stibitz’s team at Bell Research Laborato-

ries designed machines which were programmed by means of externally supplied programs. In

1940, Norbert Wiener described an automatic digital computing machine which would use elec-

tronic technology and contain data stored on a rewritable tape, in a manner very reminiscent of

Turing’s machines [Wiener, 1940]. Wiener’s proposal was for a special purpose machine, however,

and despite incorporating many of the features of the post-1945 machines, his proposal did not

include the idea of the stored program.
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Testimony from the members of the Moore School group themselves is mixed, and appears to be

largely coloured by the subsequent split between von Neumann and Eckert and Mauchly. Goldstine

and Burks, both with a mathematical and logical background,went to work with von Neumann at

Princeton, and were clear that credit should be given to von Neumann. Eckert and Mauchly, on the

other hand, contested this. Von Neumann himself appears never to have claimed credit for the idea,

and in the EDVAC progress reports, as quoted above, he was consistently credited primarily for his

work on logical control and coding.

The documentary evidence, summarized above, does not give an unequivocal answer. Draw-

ing on Eckert’s 1944 disclosure in particular, some writershave concluded that priority should be

assigned to Eckert and Mauchly [Stern, 1980, Metropolis andWorlton, 1980]. This places a heavy

weight on a rather thin text, however, and neglects the substantial differences between the disclo-

sure and the laterDraft Report. A reasonable compromise position, which seems to go as far as the

evidence will allow, was given by Ceruzzi, who wrote that “Eckert and Mauchly had conceived of

something like a stored-program principle by 1944, but . . . it was von Neumann who clarified it and

stated it in a form that gave it great force” [Ceruzzi, 1998, p. 22]. The relationship between logic

and the stored program concept is discussed further in Section 3.4.

3.2 The early development of cybernetics

The previous section described the emergence of the stored-program computer against the back-

ground of research in the field of automated calculation, andfound little evidence for the explicit

involvement of logic in this process. One area in which an interest in logic and computers did come

together in this period, however, was the emerging subject of cybernetics. This section briefly de-

scribes the origins of cybernetics, and in particular the involvement of Turing and von Neumann

with the subject in the period before 1945.

Von Neumann first met Turing in Cambridge in 1935, and they later came into contact in

Princeton, where Turing spent two years between 1936 and 1938 working with Alonzo Church

[Hodges, 1983]. In his thesis, Aspray relates testimony from Stephen Rosser about this period, in

which the interaction between Turing and von Neumann is described in the following terms:

Even as early as his student days at Princeton, Turing arguedvociferously that comput-
ing machines could be built which would adequately model anymental feature of the
human brain. Von Neumann: : : was attracted to Turing because of their common in-
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terest in mathematical logic. Turing’s view on the computerand the brain was disputed
by von Neumann, and the two discussed the issue on many occasions while Turing was
completing his dissertation. This is purportedly what inspired von Neumann’s interest
in computing. Von Neumann and Turing separated when Turing returned to England,
leaving both determined to build computers to test the possibility of mathematically
modelling the human brain. [Aspray Jr., 1980, p. 147-8]

There are a number of anecdotal references testifying to vonNeumann’s continuing interest

in Turing’s work, and the high regard in which he held it. According to Stan Ulam, von Neu-

mann spoke highly of Turing’s work and “played with Turing machine-like mechanical descriptions

of numbers” in the summer of 1938 [Aspray, 1990b, p. 178]. In aletter quoted by Brian Ran-

dell, Stan Frankel describes how in 1943 or 1944, while working at Los Alamos, von Neumann

urged him to read Turing’s 1936 paper. Frankel went on to say that an “essential role” played

by von Neumann was “in making the world aware of these fundamental concepts introduced by

Turing” [Randell, 1972, p. 10].

It is striking, however, that it appears to have been the analogy between Turing’s machines and

the brain that caught von Neumann’s imagination. This analogy was also central to the work of

Norbert Wiener who at the start of the war was investigating ways of improving the performance

of anti-aircraft artillery. As Paul Edwards has described,this was of importance because of the

increasing speed and complexity of modern technological warfare [Edwards, 1996]. Anti-aircraft

batteries in particular were handicapped because human gunners were unable to track fast aircraft

with sufficient accuracy. The solution adopted was to develop mechanisms which would automati-

cally carry out some of the processing required, such that the resulting ‘cyborg’, a system consisting

of both mechanical and human components, would achieve a level of performance beyond what each

component was independently capable of.

In the course of this work, Wiener and his collaborators cameto view the phenomenon of

negative feedback as playing a crucial role. In 1942, in a paper summarizing their results, they

argued that “a uniform behavioristic analysis is applicable to both machines and living organ-

isms” [Rosenblueth et al., 1943, p. 22]. They outlined a hierarchical taxonomy of behaviour and

argued that “[a]ll purposeful behavior may be considered torequire negative feedback”, a principle

which was later commonly seen to encapsulate the central message of cybernetics [Wiener, 1948,

Wisdom, 1951].

At about the same time, the psychologist Warren McCulloch and logician Walter Pitts described

a model according to which aspects of the behaviour of a network of neurons, such as that found
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in the brain, could be captured in a logical calculus. McCulloch later described the work as having

been directly inspired by Turing’s paper on computability,claiming that they had viewed themselves

as “treating the brain as a Turing machine” [McCulloch, 1948]. The paper concluded by claiming

that neural nets equipped with a tape could “compute the samenumbers as can a Turing machine”,

a result viewed as providing a “psychological justificationof the Turing definition of computability

and its equivalents” [McCulloch and Pitts, 1943, p. 129].

Von Neumann read this paper in 1943, apparently at the recommendation of Wiener and Bigelow

[Aspray, 1990b, p. 180], and according to Bigelow, was “enormously impressed” with the work of

McCulloch and Pitts [Aspray, 1990b, p. 313, note 23]. In 1948he described the main result of

the work as being the demonstration that behaviour which canbe “defined at all logically, strictly,

and unambiguously in a finite number of words can also be realized by: : : a formal neural net-

work” [von Neumann, 1948, p. 412]. In other words, McCullochand Pitts had linked the earlier

work on computability with a plausible model of the brain, thus involving logic centrally in the

emerging cybernetic framework.

Von Neumann immediately became involved in the area. An early result of this involvement was

a conference organized by Wiener, von Neumann and Howard Aiken, held in Princeton in January,

1945. This meeting was described by Wiener as follows:

The first day von Neumann spoke on computing machines, and I spoke on communi-
cation engineering. The second day Lorente de Nó and McCulloch joined forces for a
very convincing presentation of the present status of the problem of the organization of
the brain. In the end we were all convinced that the subject embracing the engineering
and neurology aspects is essentially one, and we should go ahead with plans to embody
these ideas in a permanent program of research [Wiener, 1945]

Plans to found a research institute subsequently came to nothing, however, and the most concrete

outcome of the 1945 was a series of conferences held over the next few years under the auspices

of the Macy foundation. These conferences were of great importance to the history of cybernetics

but of less immediate relevance to the development of the computer, and so will not be discussed

further here.

Because of constraints on travel during and immediately after the war, and the classified nature

of his other work, Turing himself was only peripherally involved in these developments. However,

he was visited by Wiener and McCulloch during the war, and spent the early months of 1944 in the

US, visiting Claude Shannon at Bell Labs [Hodges, 1983].
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3.3 Von Neumann’s design for the EDVAC

By 1945, then, von Neumann was not only deeply involved in thefield of automatic calculation,

but was also playing a leading role in an informal group of scientists exploring analogies between

computing machines and neuronal structures. This section illustrates how these two approaches

were made explicit in theDraft Report, which presented not simply an electronic calculator, but

rather a machine in which, to echo Wiener, “the engineering and neurology aspects were essentially

one”.

The report began by defining the purpose of the EDVAC, characterizing it as “avery high speed

automatic digital computing system” [von Neumann, 1945,x1.1, emphasis in original]. The phrase

“automatic computing system” is glossed as meaning “a device, which can carry out instructions to

perform calculations of a considerable order of complexity—e.g. to solve a non-linear partial differ-

ential equation in 2 or 3 independent variables numerically” [von Neumann, 1945,x1.2]. Later, von

Neumann wrote that “the device is primarily a computer” [vonNeumann, 1945,x2.2]. The EDVAC

was therefore designed to be a machine to automate mathematical calculation: the report nowhere

suggests any wider uses for it.

Von Neumann next addressed the overall structure of the machine. The design is based on a

small number of relatively high-level components, each identified with a single, clearly defined

function. This contrasts strongly with the ENIAC, which wasbased upon a set of 20 identical

accumulators, each capable of storing data, performing arithmetic operations, and controlling the

sequencing of subsequent operations. In the EDVAC, by contrast, components would not be repli-

cated, and each would have a single clearly defined functional role.

The first component that suggested itself was derived explicitly from the EDVAC’s intended role

as a calculator:

Since the device is primarily a computer, it will have to perform the elementary opera-
tions of arithmetic most frequently. These are addition, subtraction, multiplication and
division : : : It is therefore reasonable that it should contain specialized organs for just
these operations. [von Neumann, 1945,x2.2]

In a discussion of an advanced electronic device, the use of the word ‘organ’ is striking. It

introduces a metaphor that runs through the text of the draftreport, that of the machine viewed as a

body. As in the body, the ‘organs’ of the EDVAC are characterized primarily by the functions they

perform. Observing that the list of operations that the machine should be able to perform directly
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is debatable, von Neumann concluded that “[a]t any rate, acentral arithmeticalpart of the machine

will probably have to exist, and this constitutesthe first specific part: CA.” [von Neumann, 1945,x2.2, emphases in original]

The report then went on to consider how the course of a computation would be controlled:

The logical control of the device, that is the proper sequencing of its operations, can be
most efficiently carried out by a central control organ. If the device is to beelastic, that
is as nearly as possibleall purpose, then a distinction must be made between the specific
instructions given for and defining a particular problem, and the general control organs
which see to it that these instructions—no matter what they are—are carried out. The
former must be stored in some way: : : the latter are represented by definite operating
parts of the device. By thecentral controlwe mean this latter function only, and the
organs which perform it formthe second specific part: CC. [von Neumann, 1945,x2.3,
emphases in original]

Again, this distinguished the EDVAC from the ENIAC, in whichthe instructions for particular

problems were represented in the reconfigurable circuitry of the machine. Instead, the EDVAC

design drew upon established practice in automatic computation. Babbage’s analytical engine had

been designed to read the instructions for a computation from punched cards, and punched paper

tape was used for this purpose by Zuse and Aiken.

In its portrayal of a machine which will be supplied with and will carry out instructions for

different computations, this passage is evocative of Turing’s universal machine. Von Neumann

does not draw attention to this analogy, however, and as the comparison with other contemporary

machines makes clear, this was not a particularly innovative feature of the EDVAC design.

The report then continued by noting that “[a]ny device whichis to carry out long and compli-

cated sequences of operations: : : must have a considerable memory” [von Neumann, 1945,x2.4],

using a term perhaps calculated to reinforce the machine/body metaphor. Among other require-

ments, it was noted that the instructions for the current calculation must be remembered as well as

any intermediate results generated during the calculation, and this raised the question of whether

different types of memory would be required:

While it appeared that various parts of this memory have to perform functions which
differ somewhat in their nature and considerably in their purpose, it is nevertheless
tempting to treat the entire memory as one organ, and to have its parts as interchange-
able as possible for the various functions enumerated above. : : : At any rate, the total
memoryconstitutesthe third specific part of the device: M. [von Neumann, 1945,x2.5,
emphases in original]
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This decision to have a single uniform memory is the innovation that makes theDraft Report

the canonical source of the stored program idea. Again, although von Neumann did not comment

on this, the design is reminiscent of Turing’s universal machine, which used its single tape to store

both the information required for, and that generated in thecourse of, a computation.

Von Neumann then refined the machine/body metaphor by makingexplicit reference to neurons

in the central nervous system. The metaphor was used to motivate the introduction of the remaining

components of the EDVAC design, the input and output devicesI and O which transfer information

from some external recording medium R to the internal parts (CA, CC and M) of the device.

The three specific parts CA, CC (together C) and M correspond to theassociativeneu-
rons in the human nervous system. It remains to discuss the equivalents of thesensory
or afferentand themotoror efferentneurons. These are theinput andoutputorgans of
the device: : : [von Neumann, 1945,x2.6, emphases in original]

This refinement aligned the internal parts CA, CC and M with the associative neurons, or in

other words equated the central components of the EDVAC withthe brain. This analogy was re-

inforced in the next section of the report where von Neumann turned to consideration of detailed

structure of the three internal parts and the elements out ofwhich they were built. Rather than

moving straight to a description of this structure in terms of electronic components and circuits,

however, he noted that computing devices were typically built out of elements which had two or

more stable states, and could switch between states in response to various stimuli, commenting that

“[i]t is worth mentioning, that the neurons of the higher animals are definitely elements in the above

sense” [von Neumann, 1945,x4.2], thus reinforcing the connection between brains and computers.

To substantiate this claim, Von Neumann referred at this point, in the only technical reference in

theDraft Report, to McCulloch and Pitts’s abstract model of the neuron [McCulloch and Pitts, 1943].

Vacuum tubes were then presented as components which sharedthe properties of abstract neurons

and were suitable for the construction of electronic computers. The details of the EDVAC’s circuits

in the remainder of the report are not presented in terms of tubes, however, as von Neumann wanted

to separate issues of design from detailed considerations of electronics. Instead:

The analogs of human neurons, discussed in 4.2-3: : : seem to provide elements of
just the kind postulated at the end of 6.1. We propose to use them accordingly for the
purpose described there: As the constituent elements of thedevice, for the duration of
the preliminary discussion. [von Neumann, 1945,x6.2]

In other words, the ‘machine as brain’ metaphor is now being presented as a substantial struc-



CHAPTER 3. LOGIC AND THE INVENTION OF THE COMPUTER 71

tural equivalence. It is being proposed that at an appropriate level of abstraction, an electronic

computer can be described as being built out of the same sort of elements as the human brain.

Von Neumann later described this strategy as a form of axiomatization [von Neumann, 1948].

He described the problem of understanding the functioning of the brain as consisting of two parts:

the first part would consider the physiological details of the neurons, the ‘elements’ of the brain,

while the second would describe the overall organization ofthe elements, and the behaviour emerg-

ing from this organization. Linking the two parts is a abstract description of the elements, such as

that given by McCulloch and Pitts. This should be framed in such a way as is convenient for build-

ing up the higher-level theory, while at the same time remaining faithful to the lower-level properties

of the elements. Turing made a similar point, distinguishing between the roles of “mathematicians”

and “engineers” in the design and use of automatic computers[Turing, 1946].

As this discussion has shown, then, the underlying cybernetic assumption of a fundamental

analogy between natural organisms and machines was explicitly written into the first presentation

of the architecture of the modern computer, and von Neumann was at pains to demonstrate that the

new machines could be understood, at one level, as being artificial brains. TheDraft Reportwas in

this respect part of a much wider discourse in which advancedelectronic machines, and computers

in particular, were figured as ‘giant brains’; this issue will be discussed further in Section 3.6.

The community of applied mathematicians who were the primary users of the early com-

puters, and presumably very conscious of their limitations, were rather resistant to seeing com-

puters as brains, however, and in von Neumann’s later reports on computer design, coauthored

with Burks and Goldstine, much less is made of the analogy [Goldstine and von Neumann, 1946,

Burks et al., 1946]. It continued to play an important role invon Neumann’s thinking, however,

notably in the paperThe General and Logical Theory of Automata, presented to an audience of

cyberneticians in 1948 [von Neumann, 1948].

The role of logic in theDraft Report, then, is rather indirect. Rather than situating the EDVAC

in an explicitly logical tradition, as Turing had his abstract machines, von Neumann presented the

computer as simultaneously a calculator and an artificial brain. The connection between the stored-

program computer and the Turing machine was left implicit, mediated by McCulloch and Pitts’s

work on the application of logic to the modelling of neuronalstructures.
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3.4 Logic and the stored program concept

Two conclusions can be drawn from this overview of the history of computers in the decade leading

up to the writing of theDraft Report. Firstly, the report was grounded in a very practical pro-

gramme of research into automatic computation, of which Mark I and the ENIAC are perhaps the

two best-known examples. Secondly, the focus of this research was on the automation of numerical

calculation. The seems to have provided the impetus which led several individuals to enter the field,

and it was a tendency which was massively amplified by the military demands of the war. These

computer was not, as Mahoney and Davis suggest, developed explicitly as a practical logic machine.

A weaker claim, however, would be that aspects of the design were adopted for reasons that

were specifically logical, and it is the case that a number of aspects of theDraft Reporthave been

characterized as being ‘logical’ in one way or another. For example, Aspray has described a sense

in which von Neumann’s influence could be described as involving logic:

Von Neumann was interested in presenting a “logical” description of the stored-program
computer rather than an engineering description; that is, his concern was the overall
structure of a computing system, the abstract parts it comprises, the functions of each
part, and how the parts interact to process information. [Aspray, 1990b, p. 40]

The abstract description of a computer’s architecture as a set of functionally distinct subsystems

is not original to the EDVAC, however. In particular, the idea of an architecture based around

an extensive memory and a control or arithmetic unit operating on the contents of that memory

appears to have occurred independently to several people. Babbage’s Analytical Engine is perhaps

the earliest example of such an architecture, containing a “store” and a “mill” which are functionally

very similar to the EDVAC’s memory and control, and in the 1930s Turing and Zuse independently

came up with similar designs. Given this, it would be implausible to assert that this represented a

specific influence of logic on the design of the EDVAC.

In the EDVAC progress reports, von Neumann’s particular contributions are described as being

in the area of logical control. The phrase ‘logical control’is defined in theDraft Reportas signifying

“the proper sequencing of [the EDVAC’s] operations” [von Neumann, 1945,x2.3], and referred to

the control circuits that ensured that operations were carried out in the intended order and to the

sequencing of operations required in particular problems.Elementary logic was certainly a useful

tool in the design of such circuits, as Zuse and Claude Shannon had discovered [Shannon, 1938],

but again, this does not point to a specific influence of logic on the design of the EDVAC.
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Perhaps the strongest arguments in support of the influence of logic are based on the introduction

in theDraft Reportof the stored program principle. Before considering these arguments, however, it

is necessary to distinguish three distinct concepts which this term is sometimes used to refer to. The

first is the notion of universality, of a single machine whichcan be made to simulate the work of any

other. A universal machine requires access to some representation of the machine it is simulating,

but this representation does not need to be in the same mediumas the data generated in the course

of the simulation. Turing’s arguments in 1936 would not havebeen affected if he had equipped the

universal machine with a second tape to hold the coded table of the machine being simulated.

The stored program principle itself was defined above to be the decision to store the program

and data of a computer in the same storage medium. Turing’s universal machine does have this

property, but this is not an essential part of its universality. This distinction is not always made

clear: for example, Ceruzzi appears to conflate the two notions, writing that “the reason [for the

importance of the computer] is the stored-program principle. A computer is not a single machine,

but one of an infinite number of machines, depending on the software written for it” [Ceruzzi, 2001,

p. 50].

The third concept is a consequence of the colocation of program code and data, namely the

possibility for a program to manipulate its own code as if it were data, and hence to modify itself

as it is being executed; this can be described asself-modifying code. Turing’s universal machine

makes no use of this possibility: the symbols in the squares on the tape which hold the table of the

machine being simulated are left unchanged by the operations of the universal machine.

The earliest example of self-modifying code occurs in theDraft Report, which made use of

a restricted form of self-modification known asaddress modification. This made it possible for a

program to modify a instruction which retrieved a data valuefrom a given location, say, so that

the next time it was executed it would retrieve data from a different location. The use of address

modification offered great advantages in the writing of programs which processed repeated sets of

data such as vectors or matrices.

Different arguments for the influence of logic on the development of computers have been based

on these concepts. For example, Davis argues that universality is what distinguishes the later ma-

chines from “earlier automatic calculators”, writing that“[t]hese post-war machines were designed

to be all-purpose universal devices capable of carrying outany symbolic process” [Davis, 2000, p.

185]. As a statement about the EDVAC, this assertion appearsto be false: as discussed above, the
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Draft Reportmakes it clear that the EDVAC was primarily designed as a numerical calculator. The

relationship between universality and the computer is discussed further in Section 3.7.

Arguments related to the stored program principle are basedon the decision in theDraft Report

to equip the EDVAC with a single memory which would contain both the code of the program being

executed and the data on which it was working. As noted above,this was a feature of Turing’s

universal machine, and it has been suggested that von Neumann’s knowledge of Turing’s work led

directly to the incorporation of this feature in the design of the EDVAC.

Evidence for or against this position appears to be wholly circumstantial. On the one hand, von

Neumann was aware of and admired Turing’s work, and would certainly have been familiar with

the design of the universal machine. On the other hand, thereis no explicit mention of Turing in the

Draft Reportwhich, as discussed above, was concerned to link the new machine with the developing

area of cybernetics rather than directly to logic.

One way to address the question is to ask why this particular design feature was adopted, when

other aspects of Turing’s design, such as the restriction onmovement to adjoining tape positions,

were not echoed in the EDVAC proposal. Explanations of this given by members of the EDVAC

team did not stress the similarity of the two forms of stored information, numeric data and stored

instructions, and give abstract or logical reasons for holding both in a single store; rather, the two

forms were clearly distinguished and pragmatic reasons, based on engineering concerns, given for

holding the two in a single store.

For example, in one of the Moore School lectures in the summerof 1946 Eckert explained as-

pects of the EDVAC’s design [Eckert, 1946]. He identified a number of distinct uses for the memory

of a computer, including the need to store data and instructions, and compared the characteristics of

the memory required for these purposes. In particular, he noted that instructions must be available at

high speed, so as not to hinder the progress of the computation. He then observes that different types

of problem can have significantly different memory requirements, in terms of the relative amount of

space required for these two purposes. Maximum flexibility and economy in construction could be

obtained by combining both data and code in a single store, rather than providing separate memory

components for each.

In another report dating from 1946 [Goldstine and von Neumann, 1946], Goldstine and von

Neumann gave a similar account. They noted that the memory used to store instructions should

provide the flexibility of media like paper tape, which couldstore an indefinitely large number of
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instructions and allow a machine to be easily reprogrammed,and also the ability to access these

instructions at a high speed. They then noted that instructions on paper tape are already digitally

encoded, and hence that there was no reason why they should not be stored in the same memory

that is used for storing numerical data. The same point was also made in another report:

Conceptually we have discussed above two different forms ofmemory: storage of num-
bers and storage of orders. If, however, the orders to the machine are reduced to a nu-
merical code and if the machine can in some way distinguish a number from an order,
the memory organ can be used to store both numbers and orders [Burks et al., 1946].

None of the writings originating from the Moore School groupmention a specifically logical

or theoretical rationale for the development of the stored program concept. It remains a possibility,

of course, that the idea was suggested by von Neumann’s knowledge of Turing’s work, but even

if that was so, its inclusion in the design was subsequently justified by practical, not theoretical,

arguments; an influence from logic would not be sufficient, onits own, to explain this inclusion.

3.5 Turing and the ACE

The importance of theDraft Report lies in the concepts and approach it put forward, not in the

specific details of the design presented. Later in 1945, whenvon Neumann was working on the

code for a sorting and collating program, he assumed a slightly different machine structure and

instruction set [Knuth, 1970], and the design for a machine at the Institute of Advanced Study,

developed by von Neumann, Goldstine and Burks, differs fromthe EDVAC proposal in several

significant ways [Burks et al., 1946], as did designs produced by others. Although important to the

history of computer architecture, these alternative designs did not introduce anything new into the

relationship between logic and the computer. The situationis slightly different, however, in the case

of a design produced by Turing in 1946.

At the end of the war in 1945, Turing joined the National Physical Laboratory (NPL). He was

given a copy of von Neumann’sDraft Reportand by the end of the year had produced a report

outlining the design of a stored-program computer that he proposed the NPL should build, the

Automatic Computing Engine, or ACE [Turing, 1946]. The ACE report is in many ways comparable

in scope and ambition to von Neumann’sDraft Report, and a comparison of the designs presented

in the two reports is a good way of highlighting some of the characteristic features of each.

The influence of theDraft Reportis apparent in the ACE report, and Turing recommends that
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they be read together. In many ways, the ACE is similar to the planned EDVAC. Both designs use

mercury delay lines as the principal high-speed storage mechanism, and have a basic structure pre-

sented as a number of functionally distinct units, including a store, an arithmetic unit and a central

control unit. Further, Turing uses von Neumann’s abstract neuron-inspired notation for describ-

ing the logical circuits of the ACE, extending the notation in various ways for his own purposes.

Nonetheless, the proposed ACE is in many ways quite different from the EDVAC, and it has been

argued that these differences are not merely technical, butreflect a fundamental difference in the

approaches of von Neumann and Turing [Carpenter and Doran, 1977, Peláez, 1999].

As discussed above, von Neumann in theDraft Reportpresented the EDVAC as fundamentally

a calculator. Turing, by contrast, makes a very clear link between the ACE and his earlier analysis

of computability as a formalization of certain more generalpractices:

The class of problems capable of solution by the machine: : : are those problems which
can be solved by human clerical labour, working to fixed rules, and without understand-
ing : : : [Turing, 1946, p. 39]

He then goes on to list a number of possible applications of the machine, ranging from mathe-

matical calculations to the solution of jigsaws and the playing of chess. In 1947, he was even more

explicit and described the ACE as a “practical version” of the type of machine described in the 1936

paper [Turing, 1947, p. 107].

This difference in orientation is reflected in the design of the ACE in a number of ways, most

noticeably in the way the machine is structured as a number offunctional units. Turing ini-

tially describes the ACE as containing a memory, a logical control and a central arithmetic part

in a manner virtually identical to von Neumann’s description of the internal structure of the ED-

VAC [Turing, 1946, p. 21-22]. However, Turing’s later treatment of the memory and the arithmetic

unit is rather different from von Neumann’s.

In both designs, it was proposed that the majority of the storage required would be provided by

mercury delay lines. Delay line storage had the advantages of being cheap and relatively perma-

nent, but the disadvantage of providing slow access to data because of the latency time involved as

the data circulated round the delay line. More importantly,delay lines provided a passive storage

medium, rather reminiscent of the tape in a Turing machine: data could be written to and retrieved

from a delay line, but in order to add two numbers together, say, the numbers had first to be moved

to a special location where the arithmetic circuits could gain access to them. Both designs there-
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fore included provision for additional memory capability in order to get round this problem, but

approached it in different ways.

In the EDVAC design, the arithmetic unit itself contained storage for three numbers, the two

operands of the desired operation and the result. Instructions were provided to move data from

the delay line storage into the arithmetic unit, and to move the result back to the delay lines. The

arithmetic unit therefore functioned as a sort of ‘black box’: numbers were inserted into and the

result extracted from it, but its internal workings were quite independent of the rest of the computer.

The design of the ACE is rather different. The ACE contained anumber of “quick reference

temporary storage units (TS)” [Turing, 1946, p. 22] in addition to the delay lines, but these were

not associated with any particular functional unit of the computer. Rather, they were part of the

memory, which was therefore divided between the delay line storage and the temporary storage.

Operations were provided for moving data between the delay lines and the temporary storage.

Some of the TS locations were reserved for particular purposes. For example, Turing proposed

that the arithmetic circuits should operate on the data found in TS 2 and TS 3 and store the results

in TS 4 and TS 5. Similar conventions were proposed for some ofthe other TS units. Whereas the

EDVAC could be described as having special purpose memory encapsulated within the arithmetic

unit, the ACE by contrast did not have a specialized arithmetic unit, but rather a set of conventions

governing the use of some locations in the general purpose memory. The ACE therefore maintained

a strict distinction between memory and control reminiscent of the universal machine, whereas the

EDVAC complicated this basic design with special-purpose units.

A second striking difference between the two reports concerns the way in which they viewed

programs. Although its code supports looping programs and subroutines, theDraft Reportcon-

ceived of a program as primarily a sequence of instructions invoking the basic arithmetic operations

provided by the machine, in a way reminiscent of earlier machines such as Aiken’s Mark I. In con-

trast, Turing’s model of programming emphasized the idea that the basic operations required for the

task being programmed should be defined as subroutines builtfrom the ACE’s primitive instruc-

tions. This is the same procedure that he followed in the 1936paper, in which machine tables to

perform simple tasks, such as copying or erasing symbols on the tape, were first defined and then

extensively reused. It was argued in Chapter 2 that this technique was derived from existing practice

in the definition of recursive functions, and in the ACE report we can see this approach being car-

ried forward into the sphere of practical computation. Turing recognized that this approach could be
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applied even to basic arithmetical operations: the arithmetic circuits in the ACE were therefore not

viewed as fundamental components, as they were in theDraft Report, but rather as conveniences to

increase the speed at which arithmetic could be carried out.

Thirdly, the two designs differed in the use made of the ability provided by the stored-program

design to modify the code of a running program. In theDraft Report, instructions and data were

clearly distinguished and only a limited form of instruction modification was allowed. Turing on

the other hand allowed unrestricted operations to be performed on instructions, and referred more

generally to the possibilities created by allowing the machine to write its own orders. As discussed

above, this more free-wheeling approach would be enabled bythe design of the universal machine,

although in 1936 Turing made no mention of the possibility ofinstruction modification.

It appears plausible, then, that a number of features of Turing’s design for the ACE were derived

from his earlier theoretical work, and hence that the ACE could in a sense be described as more

influenced by logic than the design of theDraft Report. In practice, however, the EDVAC design

was vastly dominant. Like the EDVAC, the ACE was never implemented in precisely the form

described in the initial report. The first machine completedat the NPL was the ‘Pilot ACE’, which

was built on a smaller scale than Turing’s proposed ACE and differed from it in a number of ways.

The ACE itself was completed in the early 1950s, and the design principles it embodied were used in

a small number of later machines. After the mid-1950s, however, the line of machines that directly

made use of Turing’s design died out.

This raises the question of why von Neumann’s design, in someways less logical than the

ACE, proved so much more successful in practice. This question was addressed by Pelaéz, who

downplayed ‘internal’ factors, such as the increase in complexity inherent in Turing’s approach to

programming, in favour of ‘external’ factors, and suggested that the primary reason for the greater

success of the EDVAC design was its “instrumentality” [Pel´aez, 1999]. In emphasizing the pro-

vision of high-speed calculation von Neumann was addressing an immediate social need, and the

EDVAC design was therefore picked up as a solution to a practical problem.

However, the ACE was as capable as the EDVAC of carrying out high-speed arithmetic, if not

even faster, so this cannot be the whole story. Other relevant external factors include the wide

circulation of the principles of the EDVAC design at the Moore School course in 1946, and the

prestige lent to the whole project by von Neumann himself. A more internal consideration is that

theDraft Reportpresented the EDVAC as a relatively straight-forward evolution from well-known
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machines such as the Mark I, in terms of application area, internal design and programming style.

In contrast, the ACE was in many ways a more radical design putforward by a relatively unknown

researcher, and the more ‘logical’ nature of its design doesnot appear to have been sufficient to

ensure its widespread adoption. At the very least, this suggests that the connection between stored

program computers and the universal machine was not widely appreciated in 1946: this point and

its implications are considered in more depth in the following sections.

3.6 Giant brains

During the war, most research into computers was carried outin secret, and little information about

the new machines was made publicly available. This situation changed rapidly after 1945, and it is

possible to trace the reception and representation of computers in both the technical and more pop-

ular literature. Firstly, however, it had to be recognized that a significant development in computing

technology had taken place. In January 1946, an article in the journal of the American Institute of

Electrical Engineers discussed the “Impact of the War on Science”, but made no mention of comput-

ing technology [Briggs, 1946]. Later that year, however, the journalMathematical Tables and other

Aids to Computationnoted, in a review of a conference on ‘Advanced Computation Techniques’

held at MIT in October 1945, that:

During the recent war there was a tremendous development of certain types of com-
puting devices: : : these and other similar developments suggest that there will soon be
available mechanical and electrical computing equipment which, in terms of speed and
flexibility, will completely outdistance anything thoughtof before. [Archibald, 1946]

The new machines, in particular the ENIAC and Mark I, were widely reported in the press, and

one prominent aspect of the coverage was the analogy drawn between high-speed calculators and

the brain. During the war, various devices had been described as ‘electronic brains’, and the term

was immediately applied to computing devices, as the following quotation from the psychologist

Edwin Boring reveals:

We have heard so much during the late war about electronic brains. The electronic
computer on a range-finder figures the range and course and speed of a target, setting the
fuses and aiming and firing the gun, all at a speed of which the human brain is incapable.
There are now huge electronic mathematicians which will solve mathematical problems
with a speed and accuracy and lack of fatigue that puts the mere headwork of the human
mathematician out of the running. [Boring, 1946]
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The press coverage of electronic computers in this period has been surveyed by Dianne Martin,

who concludes that “during the critical early years of 1946 to 1948, the predominant characterization

of the computer was as a mechanical or electronic brain or robot” [Martin, 1993, p. 130]. This

phenomenon was not restricted to journalistic accounts, however. For example, Edmund Berkeley

was deeply involved in the use and promotion of the early computers, and wrote one of the first

books to provide a popular account of the new machines. He called the book “Giant Brains, or

Machines that Think” [Berkeley, 1949].

Computer developers themselves often viewed such characterizations as inappropriately an-

thropomorphic. In a letter to theTimes, Douglas Hartree opined that use of the term ‘electronic

brain’ obscured the distinction between the thought and judgement involved in planning and set-

ting up a computation and the labour of carrying it out and “ascribes to the machine capabilities

that it does not possess” [Hartree, 1946a]. Mauchly, Turingand Aiken all gave newspaper inter-

views during 1946 and 1947 in which they were at pains to pointout the limitations of the new

machines [Martin, 1993, p. 129].

Such arguments were often supported by an appeal to a principle first enunciated by Babbage’s

collaborator Ada Lovelace: in Hartree’s words, “[t]hese machines can only do precisely what they

are instructed to do by the operators who set them up” [Hartree, 1946a]. Along with the related

question of whether machines could think, this generated a substantial public discussion in the

following years.

In Section 3.2, it was shown that the cybernetic conception of the computer, which was explicitly

drawn upon by von Neumann and Turing, depended on the belief that, considered in the abstract as

information processing machines, a strong identification could be made between the brain and the

electronic computer. The description of computers as ‘giant brains’ can therefore be viewed, not

as irresponsible anthropomorphism, but rather as a faithful representation of the cybernetic point of

view.

A striking feature of the situation at this time is that it wasthe early machines, such as Mark I

and ENIAC, which were described as revolutionary. Machinesbased on the stored program design

did not become at all widely available until the early 1950s.At the point at which they entered public

discourse, then, computers were not represented or understood as logic machines. Rather, the way in

which they were described reflects the dual heritage of the machines that von Neumann emphasized

in theDraft Report: as scientific devices for carrying rapid and autonomous calculations, and also
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as models or analogues of the brain.

3.7 Universal machines

Davis’s third claim about the influence of logic on the development of computers draws attention

to an important difference between modern computers and earlier calculating devices, namely that

computers are intended to be, and are used as, universal computing devices rather than as purely

numerical calculators [Davis, 1988, Davis, 2000]. The argument plays slightly on an ambiguity in

the word ‘universal’, which can refer specifically to Turing’s concept of a universal machine while at

the same time suggesting less formally the very wide range ofapplications that computers are used

for. This section will examine how stored-program computers came to be understood as ‘universal’,

in Turing’s sense, and the following section will consider the argument that this led to the use of

computers in applications more general than calculation.

In Turing’s 1936 paper, the word ‘universal’ is applied to a specific machineU which is able

to simulate the behaviour of any other machine, given a suitable representation of the table of the

machine to be simulated.U is only universal relative to the class of machines described in the paper,

however. Presented with a description of a configuration of the ENIAC, say, it would be unable to

simulate the resulting computation: for this purpose, a different universal machine would have to be

defined.

A machine such as the EDVAC can also be described as universalin this sense. We can imag-

ine specialized machines which have the same memory and repertoire of basic operations as the

EDVAC, but whose control units are configured, like that of the ENIAC, to perform only the basic

operations required by one particular computation. An EDVAC program serves as a representa-

tion of such a machine, in the same way that a machine table serves as a representation of a single

Turing machine. The EDVAC itself, whose control unit is wired up in such a way as to interpret

the program and reproduce the coded sequence of basic operations, is therefore acting in a manner

precisely analogous to Turing’s machineU .

As pointed out above, a computer does not have to incorporatea stored program in order to be

universal in this sense. The argument of the previous paragraph could be applied to machines such

as Zuse’s Z3 or Mark I, and leads to the conclusion that they can also be described as universal,

despite reading their programs from external storage devices.

In both the examples above, the machine being described as universal belongs to the same
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class of machines as those being simulated:U is itself a Turing machine, for example. It would

be perfectly possible for a machine to be universal relativeto the machines of a different class,

however: for example, the ENIAC could be wired up to interpret standard descriptions of Turing

machines, and in fact something similar to this was done in 1948 when it was reconfigured to operate

as a stored program computer [Rope, 2007]. A condition of this being possible is that the machine

doing the interpretation must be able to simulate the memorystructure and basic operations of the

machines being simulated, thus creating a ‘virtual machine’ whose behaviour it will then emulate.

The notion of a virtual machine has found a number of applications, notably in the semantics of

programming languages, as will be discussed in Chapter 5.

This consideration leads to another sense in which a machinecan be described as ‘universal’,

namely that it is capable of simulating the behaviour of any other machine whatsoever. It does

not follow automatically that a machine which is universal in the first, technical, sense has this

property. Rather, this is a consequence of an argument that the machine can perform, within the

limits of finiteness, all the computations that can be performed by Turing machines, and hence,

by the Church-Turing theses, all effectively computable processes. Early discussions of electronic

computers tended not to distinguish these two senses of ‘universal’, nor to demonstrate the ‘Turing-

completeness’ of the machines under discussion.

The characterization of stored-program computers as universal provides one way in which the

claim that computers are ‘really’ logic machines can be understood. It is striking, however, that

this characterization was not immediately obvious, and it was not until the early 1950s that it was

common for computers to be described as universal machines.As Jon Agar has written, “the good

historical question to ask is not ‘Are stored-program computers universal Turing machines?’ but

‘Why have electronic stored-program computers been cast asuniversal, as general-purpose ma-

chines?’ ” [Agar, 2003, p. 7]. This remainder of this sectionwill describe the process by which this

took place, and suggest an answer to Agar’s question.

Turing was quite clear about the connection between his earlier theoretical work and the prac-

tical post-war computer developments, and on a number of occasions he explicitly compared the

ACE with the universal machine. In a report written in 1948, for example, he gave a classification

of “logical” and “practical” computing machines, considering in some detail the question to what

extent a finite machine such as the ACE could be considered to be universal [Turing, 1948].

Turing evidently imparted this understanding to his close collaborators. In 1946, a semi-popular
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account of the ACE project explicitly linked the construction of automatic computing machines with

On Computable Numbers:

Although this Harvard machine [the Mark I] is an independentand original develop-
ment, the possibility of the construction of such machines,and, indeed, more elab-
orate ones, had already been foreseen in this country. Dr. A.M. Turing, a fellow
of King’s College, Cambridge, had written in 1936 a severelymathematical paper in
which he had discussed the properties of such machines in connection with certain
problems of mathematical logic, without considering practical problems of construc-
tion. [Department of Scientific and Industrial Research, 1946]

This report makes no mention of the universal property, however. In a review article written

in 1948, Harry Huskey, who had worked at the NPL for a year during 1947/8, described a ma-

chine resembling the new machines but with an infinite memoryas “absolutely general in the sense

that it could be made to imitate any other computing machine merely by giving it the appropriate

instructions” [Huskey, 1948, p. 976], citingOn Computable Numbersin support of this claim. Con-

fusingly, however, he later refers to computers as providing a “universal model” for a large class

of physical experiments, as opposed to specific models such as wind tunnels. This would appear

to refer to the distinction between digital and analogue calculation, rather than the more technical

notion of universality.

Another long-term collaborator of Turing, Max Newman, madethe connection explicit in 1948

in a discussion on computing machines held at the Royal Society:

[a] universal machine is a single machine which, when provided with suitable instruc-
tions, will perform any calculation that could be done by a specially constructed ma-
chine : : : subject to this limitation of size, the machines now being made in America
and in this country will be ‘universal’—if they work at all; that is, they will do every
kind of job that can be done by special machines [Newman, 1949, p. 271-2]

However, despite these statements, the connection betweenthe new computers and the universal

machine was not appreciated more widely. At the same discussion at which Newman made the

statement quoted above, Maurice Wilkes described the EDSAC, a machine then under construction

at Cambridge. He made no mention whatsoever of Turing’s work, focusing instead on the expected

influence of the EDSAC on scientific research [Wilkes, 1949].

A more detailed presentation can be found in the bookCalculating Instruments and Machines

published by Douglas Hartree in 1949 [Hartree, 1949]. In 1946 Hartree had travelled to the USA

and made practical use of the ENIAC [Hartree, 1946b]. His book was based on a series of lectures
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given at the University of Illinois in 1948 and, as the title suggests, Hartree was primarily interested

in the mathematical applications of computers.

Hartree referred to the computer designs of both von Neumannand Turing, and his presentation

of the ideas underlying computers derived from them in a number of ways. For example, when

introducing digital computing machines, he first considered their functional design very much in

the style of von Neumann, even drawing the same analogy between the structure of computers and

that of living organisms. He then motivated the particular design of the computer by referring to

Turing’s analogy with the procedures carried out by human computers [Hartree, 1949, p. 56-7].

Later, when giving a more detailed description of the structure of computers, he used the neuron-

inspired notation of computing elements “introduced, in this context, by von Neumann and extended

by Turing” [Hartree, 1949, p. 97].

Hartree did not, however, refer to Turing’s 1936 paper, and appears not to have had a very clear

notion of the concept of the universal machine. He describedthe problem caused by the need to

set programs up manually on the ENIAC, and went on to suggest that this would be replaced by

“a means by which the machine can set up for itself the connections required for the sequence of

computing operations” [Hartree, 1949, p. 94]. Perhaps thisphraseology was an attempt to make the

concept accessible to a non-specialist audience, but it is striking that it does not make the point that

a universal machine removes the need to alter any connections at all from one calculation to another.

Later, in the context of a discussion of whether machines work with decimal or binary numer-

als, Hartree commented that, with the exception of the UNIVAC, the proposed computers “work

in the scale of two, though the A.C.E. is intended as a universal machine and will be able to be

programmed to work in scale of ten—or any other scale—and this may also be the case for the

others” [Hartree, 1949, p. 97]. This rather contorted sentence suggests on the one hand that Hartree

was aware of Turing’s characterization of the ACE as universal, but on the other that its significance

was lost on him. Given Hartree’s first hand experience of electronic computing and intellectual

standing, this is strong evidence that the characterization of computers as universal machines was

not at all obvious or straight-forward.

A different perspective was offered by Claude Shannon in an article discussing work carried

out in 1948 on “the problem of constructing a computing routine or ‘program’ for a modern gen-

eral purpose computer which will enable it to play chess” [Shannon, 1950, p. 256]. Shannon did

not define what he means by “general purpose”, however, and immediately introduced a contrast
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between such computers and machines which would carry out specific non-numerical tasks, stating

that “[m]achines of this [latter] general type are an extension over the ordinary use of numerical

computers in various ways”. Later in the paper, when discussing the need to “represent chess as

numbers and operations on numbers, and to reduce the strategy decided upon to a sequence of com-

puter orders”, Shannon concluded that “[i]deally, we wouldlike to design a special computer for

chess containing, in place of the arithmetic organ, a ‘chessorgan’ specifically designed to perform

the simple chess calculations” [Shannon, 1950, p. 265].

It is not easy to extract a single consistent view on universality from Shannon’s paper. On the

one hand, the computer is described as ‘general-purpose’ and the paper demonstrates the feasibility

of programming such a machine to play chess. On the other hand, Shannon stated that “the rather

Procrustean tactics of forcing chess into an arithmetic computer are dictated by economic consid-

erations” [Shannon, 1950, p. 265] and made clear that his preference would be to develop special

purpose machines. The paper makes no reference to Turing’s work, and it seems clear that Shannon

views the machines being designed in 1948 as numerical calculators, not as universal machines.

In September 1950, both Shannon and Turing attended a Symposium on Information Theory,

organized by the Ministry of Supply in London. In a historical presentation, Colin Cherry made

the following observation, suggesting that Shannon was notalone in his view that special-purpose

machines would ideally be developed for various purposes:

Just as arithmetic has led to the design of computing machines, so we may perhaps
infer that symbolic logic may lead to the evolution of “reasoning-machines” and the
mechanization of thought processes. [Cherry, 1950]

At the same symposium, Turing made a comment in discussion inwhich he distinguished spe-

cial purpose machines for playing chess from the task of programming a computer to perform the

same task [Turing, 1950b], but in 1950 his most significant contribution was in a paper discussing

the relationship between machine thought and intelligence. In discussing the question “Can ma-

chines think?”, Turing proposed to limit the discussion to electronic computers, and to motivate this

included a section on “The Universality of Digital Computers”. He concluded:

This special property of digital computers, that they can mimic any discrete state ma-
chine, is described by saying that they areuniversalmachines. The existence of ma-
chines with this property has the important consequence that, considerations of speed
apart, it is unnecessary to design various new machines to dovarious computing pro-
cesses. They can all be done with one digital computer, suitably programmed for each
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case. It will be seen that as a consequence of this all digitalcomputers are in a sense
equivalent. [Turing, 1950a]

This paper appears to have been widely read, and very quicklychanged the way in which com-

puters were described. In August 1951, Wilkes wrote an article for theSpectatoron the question

“Can Machines Think?” in which he referred to Turing’s paper, classified “modern automatic-

calculating machines” as universal, and wrote that:

Provided that the basic operations form a logically complete set, a universal machine
can be programmed to do anything which could be done by a specially built machine.
The tendency nowadays is, therefore, to ask whether a universal machine could be pro-
grammed to perform a particular function, rather than to askwhether it would be pos-
sible to design a special machine for the purpose. The universal machines which have
been built so far have been designed for performing arithmetical calculations rather
than the logical operations which would be involved if they were to simulate human
behaviour. This is not, however, a matter of fundamental importance. [Wilkes, 1951b]

Although Wilkes is here clearly influenced by Turing, he appears, like Shannon, to be envisag-

ing different classes of machines specialized for different tasks, while simultaneously recognizing

the universality of particular machines within each class.The required specialization is in the set of

basic operations that the machine provides. As Wilkes put itlater in 1951, “[a] machine primarily

intended for experiments on ‘thinking’ would not differ in any fundamental way from an automatic

calculating machine. The choice of basic order code would, perhaps, be somewhat different, since

the emphasis would be on logical rather than arithmetical operations” [Wilkes, 1951a, p. 88]. Tur-

ing, however, is quite explicit that a single machine could be used for all purposes: as pointed out

above, this point of view is implicit in his design for the ACE.

Over the next few years, Turing’s view gained ground. In a 1952 article about chess programs,

D. G. Prinz wrote of:

‘electronic brains’ or, to give them their proper name, universal high speed electronic
digital computers. The emphasis here is on the ‘universal’: : : The problem is no longer
‘making a machine to play chess’ but rather ‘making a machineplay chess’ [Prinz, 1952,
p. 261]

In the same year, Tony Oettinger spent a year with Wilkes in Cambridge working on programs

which simulated learning. One of these simulated the ability of a machine to go shopping, but

rather than suggesting that the EDSAC be supplemented with a‘shopping organ’, Oettinger was

happy to represent shops and products by integers and to write a purely numerical simulation. In
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documenting this work, he cited Turing’s 1950 paper and wrote that universal machines “have the

important property of being able, when provided with a suitable programme, to mimic arbitrary

machines in a very general class” [Oettinger, 1952, p. 1243].

By 1953 Wilkes himself had adopted the more general view: “machines of this kind are some-

times known asuniversalmachines. Given a suitable program a universal machine can do anything

which could be done by a specially built machine” [Wilkes, 1953a, p. 1232]. Shannon, however,

retained an interest in special purpose machines, developing a physical machine to solve simple

mazes rather than writing an equivalent program. In a surveypaper written in 1953, he stated that

“[m]ost digital computers, provided they have access to an unlimited memory of some sort, are

equivalent to universal Turing machines and can, in principle, imitate any other computing machine

and compute any computable number” [Shannon, 1953, p. 1236], but significant parts of the paper

are devoted to a consideration of ‘machines’ for various purposes, not programmes. More gener-

ally, this preference for special purpose machines has beennoted as a feature of the cybernetics

community [Pickering, 2002].

Turing’s paper of 1950 was therefore a turning point in the characterization of the computer

as a universal machine. Before its publication, this link was only made by Turing and his close

associates, and other writers, even those intimately connected with computers and familiar with the

relevant literature, did not make the connection, or think it important. Following 1950, however,

Turing’s paper was widely cited, and his characterization accepted and put into circulation.

3.8 General purpose machines

The third claim to be considered in this chapter is most clearly stated by Davis, who states that

the fact that the computer is now thought of and used as a general-purpose machine rather than,

say, a specialized calculator is attributable to Turing’s characterization of it as a universal machine.

However, automated computation was applied in a wide variety of areas, both before and after 1945.

As discussed above, modern digital computers emerged from the two fields of automatic com-

putation and cybernetics. The majority of the early computers were built specifically for performing

numerical calculations; the best known exception is perhaps the Whirlwind, developed at MIT as a

flight simulator [Redmond and Smith, 1980]. Cybernetics suggested a wider range of applications:

Wiener had originally been inspired by the problems posed byautomated support for anti-aircraft

guns, and the cybernetics-inspired analogy between the computer and the brain naturally suggested
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that a wide range of mental tasks could be performed by computer.

A third influence on the application of computers came from the data processing industry. Even

before the first electronic computers were completed, punched card equipment was adapted or de-

veloped to provide a greater capability for automatic computation. Such machines continued in

use well in to the 1950s, when electronic machines were stillscarce and expensive resources. The

possibility of carrying out commercial applications on computers was encouraged by these devel-

opments, and the company started by Eckert and Mauchly had this as its focus.

Turing himself had a very clear idea of the range of applications that computers could be used

for, and in a lecture in 1947 gave as an example the possibility of computers being used to solve

jigsaw puzzles [Turing, 1947]. As Davis comments, it is possible that Turing’s outlook here was

coloured by his computing experience during the war which, unlike von Neumann’s, was not pri-

marily concerned with numerical calculation. The details of this work remained classified, but it

is striking that Turing’s design for the ACE made many fewer assumptions about the intended use

than the EDVAC design, and in described a computer which could have been more easily used for

non-numerical applications [Turing, 1946].

3.9 Conclusions

This chapter has focused on a particular episode in the development of modern computers, namely

the articulation of the so-called ‘stored program principle’ in 1945. This episode has been given

great prominence by historians of computing, and the involvement of von Neumann makes it a

plausible place to look for a logical influence on computer design. However, it should be stressed

that this episode represents a moment ofclosureas much as a moment of invention, a point when

the efforts of many people over the preceding decade to design machines capable of large-scale

automatic calculation reached a widely accepted conclusion. The Draft Report was a concrete

paradigm which, as the response to it at the Moore School course showed, enabled workers in the

field to agree on the basis of the design of computers and focusin a concentrated and collaborative

way on their implementation.

Outside the world of computer builders, however, the storedprogram principle attracted little

immediate attention. In the scientific literature before 1950, the new machines and those under de-

velopment were treated together, and characterized firstlyby their ability to perform computation

automatically, leading to the discussion about ‘giant brains’, and secondly by the high speed ob-
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tainable with electronic technology. The stored program property was seen as a technical feature

required by the use of electronics, and slightly later as onethat made programming easier in some

respects, not as the defining property of a new technology as it later became.

The details of the history of the development of the computerlend little support to the claim of

Mahoney and Davis that the computer was developed as a byproduct or application of theoretical

work in mathematical logic. Instead, the majority of the early work was inspired by the desire

to automate numerical calculation. The interaction between von Neumann and the ENIAC group

raises the possibility that logical concerns played a part in the design of theDraft Report, and while

this cannot be ruled out, it is striking that in the immediately following period arguments for the

design were based on practical concerns of engineering rather than logic. It seems quite plausible

that something like the stored program design would have emerged even without von Neumann’s

involvement with the ENIAC group.

Similarly, the claim that the general-purpose nature of thecomputer stems from Turing’s uni-

versal machine concept seems to overstate the role of logic.Automatic computation using punched

card machinery was widespread between the wars, and the emergence of the computer from a back-

ground in automatic calculation, cybernetics and data processing made it inevitable that a range of

applications would be considered for the new machines.

In both areas, of the design and application of computers, the influence of logic seems to have

been indirect, mediated by the ideas of cybernetics and in particular the idea that the electronic

stored-program computer could be understood not merely as an electronic calculator, but as a de-

vice essentially analogous with the brain. Von Neumann wrote this analogy explicitly into the first

description of the new computer, in theDraft Report. Although more constrained by security re-

strictions, Turing seems to have inspired many of his co-workers at Bletchley with a similar vision

of the meaning of the computer and the scope of its potential application. The success of this strat-

egy can be seen in popular representations of the new technology which was very widely described

as being an “electronic brain”.

Finally, it was argued that in the 1950s, stored-program computers became widely characterized

as universal machines, a development that seems to be largely attributable to the writings of Turing

himself. To this extent, then, Davis’s comment that “computers are logic machines” can be sup-

ported, but with the important proviso that this does not describe a fact about the nature or origins

of the computer, but rather the way in which scientific culture came to think of the new machines.
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Again, we can note the importance of cybernetics: Turing’s 1950 paper was not specifically logical

or technical, but rather a philosophical contribution to the discussion of the cybernetic question of

whether machines could think.



Chapter 4

Machine-level programming and logic

The task of programming the new machines, or ‘coding’, was understood to be that of specifying

the sequence of operations that a machine would carry out in the course of a computation. The

available operations were defined by the machine’s ‘order code’, a list of the instructions out of

which programs could be constructed. Many different order codes were possible, however, and it

was only through practical experience that the features of asuccessful code could be identified, as

the von Neumann and his collaborators realized:

It is easy to see by formal-logical methods that there exist codes which arein abstracto
adequate to control and cause the execution of any sequence of operations which are
individually available in the machine and which are, in their entirety, conceivable by the
problem planner. The really decisive considerations from the present point of view, in
selecting a code, are of a more practical nature: simplicityof the equipment demanded
by the code, and the clarity of its application to the actually important problems together
with the speed of its handling of those problems. [Burks et al., 1946, p. 100]

By 1950, broad agreement had been reached about the basic features that a successful and usable

code should provide. A book published by Wilkes and his colleagues in Cambridge described the

programming system devised for the EDSAC, but its authors pointed out that “for the main part [the

methods] may readily be translated into other order codes” [Wilkes et al., 1951, preface]. This book

was widely read, and contributed to the further spread of this model of programming.

The first half of this chapter describes the evolution of thismodel; the historical development

of the key features of the early machine codes is described, emphasizing the experimentation and

consideration of alternatives that preceded the acceptance of a ‘standard model’. The second half of

the chapter considers the more logical and philosophical aspects of this programming style.

91
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4.1 Sequencing

In his proposal for an automatic calculating machine, written in 1937, Howard Aiken observed that

the design of existing calculating machinery made it easy tocarry out a small number of operations

repeatedly on the elements of large data sets, typically held as decks of punched cards. In many

scientific applications, however, Aiken believed that the opposite procedure was required, namely

the ability to carry out an extended sequence of operations on individual numbers [Aiken, 1937].

This requirement strongly influenced the design of the first large-scale, automatic digital calculators.

Aiken and Grace Hopper wrote of the completed Mark I that:

The development of numerical analysis: : : [has] reduced, in effect, the processes of
mathematical analysis to selected sequences of the five fundamental operations of arith-
metic: addition, subtraction, multiplication, division,and reference to tables of previ-
ously computed results. The automatic sequence controlledcalculator was designed to
carry out any selected sequence of these operations under completely automatic con-
trol. [Aiken and Hopper, 1946, p. 386]

and Arthur Burks described the ENIAC in similar terms:

the ENIAC can solve any problem which can be reduced to numerical computation, i.e.
to a finite sequence (of reasonable length) consisting of additions, subtractions, multi-
plications, divisions, square-rootings, and the looking up of function values. [Burks, 1947,
p. 756]

Specifying the required sequence of operations was therefore a basic aspect of coding problems

for these machines. Prior to 1945, however, the majority of calculating machines and installations

had units which were capable of operating in parallel, and hence they could carry out more than one

operation simultaneously. This introduced a conflict between the need to describe a computation

as a sequence of operations, and the desire to make the most efficient use possible of the available

machinery.

For example, Mark I contained a number of storage registers,or counters, each of which stored a

number and allowed other numbers to be added to it. A program was viewed as a simple sequence of

instructions in a standard form, each specifying that a number be copied from one register to another,

along with some operation that might be performed on the number, such as taking its complement

to enable subtraction rather than addition to be performed.This sequence of instructions was read

from a paper tape by a sequence mechanism which was incapableof skipping instructions or going

backwards in the sequence.
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As well as the storage registers Mark I possessed a number of specialized units for carrying

out other operations, such as a unit which performed multiplication and division. These specialized

units were controlled by multiple instructions: for example, performing a multiplication required

two instructions to load the multiplier and multiplicand into the multiplying unit, followed by a

third instruction to retrieve the result. As Aiken commented, “no longer does each line of coding

correspond to a single operation of the machine” [Aiken and Hopper, 1946, p. 449].

Once started, multiplication was carried out by the dedicated unit quite independently of the

main sequence mechanism. In general, this would take much longer than a simple operation to copy

a number from one register to another, and until the multiplication was complete the main sequence

unit would be idle. This was seen as a waste of computing resource, and the technique was adopted

of ‘interposing’ unrelated instructions between the instructions specifying a multiplication, thus

allowing the main body of the machine to perform useful work while waiting for the multiplication

unit to finish.

Thus, despite Aiken’s emphasis on sequence control, a program for Mark I could not be read as

a straightforward sequence of the operations carried out bythe machine, and the parallelism in its

architecture was reflected to some extent in the way it was coded. Although increasing the efficiency

of machine usage, however, the technique of interposing instructions created problems in writing

and maintaining programs, as Richard Bloch, an early Mark I programmer, noted:

Although I tried to annotate my coding sheets thoroughly, itwas at times almost impos-
sible for an operator running a program to decipher exactly what was going on. Aside
from the fact that the logical flow of the program was at times terribly difficult to fol-
low, the compaction of code made the task of analysing and tracking down the cause of
a sudden machine stoppage doubly difficult. [Bloch, 1999, p.87]

Hardware parallelism was also a feature of the ENIAC. The machine was built around 20 ac-

cumulators which, like Mark I’s storage registers, both stored a number and carried out simple

operations on it. It also possessed several separate units for carrying out specialized tasks, includ-

ing multiplication. The ENIAC was not programmed by means ofinstructions read from a tape,

however, but was physically reconfigured for each differentproblem. Individual instructions could

be placed on accumulators, and transfer of information or carrying out a multiplication were en-

abled by connecting units together in the appropriate way. The sequencing of operations when

the machine was running was controlled by special ‘program pulses’ that circulated round the ma-

chine. Depending on the configuration, any number of distinct operations could be carried out
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in parallel, and the setup for a particular problem could be described in a two-dimensional dia-

gram [Goldstine and Goldstine, 1946].

Like Bloch, however, the ENIAC team felt that the advantagesof parallelism were outweighed

by the complications it introduced into the programming, asEckert explained in a lecture in 1946:

In thinking out the various operations of the machine, if they can be thought out in a
purely serial fashion, it is not necessary to worry about anyirrelevant timing between
the various steps. For example, if two steps A and B are being done together, A and
B start at the same time but do not necessarily end at the same time since a different
length of time may be required to do each step.: : : The human brain does not think
in several parallel channels at the same time: it usually thinks these things out step by
step. Therefore, in all ways, it is found exceedingly desirable to build the machine so
that only single steps are performed at any time. The ENIAC isusually used in this
way. [Eckert, 1946, p. 114]

As Eckert went on to note, the relay machine developed by the Bell Telephone Laboratories

was programmed in a purely sequential manner [Alt, 1948]. Sequential, step-by-step processing

emerged in theDraft Report as a fundamental design principle, there motivated by a desire to

minimize the amount of physical equipment used:

The device should be as simple as possible, that is, contain as few elements as possible.
This can be achieved by never performing two operations simultaneously, if this would
cause a significant increase in the number of elements required. The result will be
that the device will work more reliably: : : It is also worth emphasizing that up to
now all thinking about high speed digital computing deviceshas tended in the opposite
direction: Towards acceleration by telescoping processesat the price of multiplying the
number of elements required. [von Neumann, 1945,x5.6-7]

This principle was applied at all levels of the design. Numbers were no longer stored in separate

units with some processing capability, but in a passive memory. A single arithmetic unit performed

all calculations, so the possibility of parallel executionof operations was removed. Further, the

individual digits of the operands to an operation were handled sequentially, one at a time. As a

consequence of this, in the proposed code for the EDVAC thereis a strict correspondence between

instructions and operations carried out.

Mitchell Marcus and Atsushi Akera have suggested that the emphasis on sequential processing

was motivated by the desire to increase reliability by usingas little physical equipment as possi-

ble [Marcus and Akera, 1996, p. 23]. As shown by the quotationabove, some support for this

view can be found in theDraft Report. However, many computer designs after the EDVAC rein-

troduced parallel processing in some areas: for example, for the machine built at the Institute of
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Advanced Studies, von Neumann and his collaborators proposed handling the digits of a number in

parallel [Burks et al., 1946]. This suggests that reliability was not the only issue. In 1947, without

mentioning reliability, Mauchly articulated a view which balanced the desire for efficiency with the

need to simplify programming, making it clear that parallelprocessing was acceptable as long as

program structure remained strictly sequential:

the machine should be kept serial as far as the operator is concerned. That is, no two
instructions which the operator gives the machine are to be carried out at the same
time. Any particular instruction which the operator gives,however, may involve the
simultaneous operation of numerous parts. [Mauchly, 1947,p. 204–5]

The model that finally emerged, then, viewed a program as a sequence of instructions each spec-

ifying a single operation which was carried to completion before the next instruction was obeyed.

This approach was natural in machines whose design followedthe Draft Report in having a pas-

sive store and a single arithmetic unit: this virtually ruled out the possibility of two operations

being carried out simultaneously. Although reliability was initially a consideration, this model was

subsequently justified by reference to its role in simplifying the task of programming.

Two main approaches were adopted to the problem of specifying the sequence of instructions in

a program. On machines which read instructions from an external tape, such as Mark I, the sequence

of instructions was simply defined by their order on the tape.TheDraft Reportcopied this approach,

storing instructions in contiguous locations in memory: when an operation was complete, the next

instruction was automatically read from the following memory location. This approach introduced

an inefficiency on the delay-line storage that was commonly used at the time, however, as there

was no guarantee that the next instruction would be immediately available when it was required.

To avoid these delays, an alternative approach to coding included in every instruction the address

of the next instruction to be executed. As this could be anywhere in memory, by careful planning

it was possible to avoid delays by ensuring that the requiredinstruction was available just as it

was needed by the program, an approach known as ‘optimum coding’. A few machines adopted

this approach [Bloch et al., 1948], but as random access memory technology became available the

practical advantages of optimum coding became less crucialand sequential placement of program

instructions in memory became the norm.

Ceruzzi has discussed the transition from “an architecturethat processed data in parallel to

one that processed data serially” [Ceruzzi, 1997]. This section has examined this transition from

the point of view of programming, and shown that it took some time for the notion of instruction
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sequencing to reach a stable form. The concept that did emerge was influenced by experience in

programming the new machines as much as by considerations ofmachine architecture.

4.2 Transfers of control

It quickly became apparent that programs for automatic calculators could not be a simple list of the

desired sequence of operations. In 1947, Mauchly describedthe problem and its solution as follows:

Calculations can be performed at high speed only if instructions are supplied at high
speed. Thus many instructions must be made quickly accessible. The total number of
operations for which instructions must be provided will usually be exceedingly large: : : However, such an instruction sequence is never a random sequence, and can usually
be synthesized from subsequences which frequently recur. [Mauchly, 1947, p. 204]

All the automatic calculators shared this model, accordingto which a computation was built

up from a number of distinct subsequences of instructions. Normally, one sequence was thought

of as defining the structure of the entire computation: thereneeded therefore to be some way to

execute the other sequences when necessary and to cause a given sequence to be repeated as often

as required. These requirements were met in different ways by different machines.

For example, Mark I’s sequence control unit read instructions from paper tape. Computations

were normally split across multiple tapes, each containinga particular instruction sequence, but

there was no mechanism for automatically transferring fromone tape to another. Instead, the pro-

grammer had to leave detailed instructions for the operators specifying what tapes should be loaded

on to the machine and when, among other pieces of information. Aiken and Hopper described a

simple program for evaluating a polynomial, which consisted of a “starting tape”, which would read

initial data from cards, and a “main control tape”, which would compute the value of the polynomial

for particular data values. The operator was instructed to restart the calculator after the starting tape

had completed, and then to run the main control tape “until the card forF (9.99) has been punched,

then press stop key” [Aiken and Hopper, 1946, p. 528]. The repetition of the instructions on the

control tape in this process was achieved by making the tape “endless” [Aiken, 1946, p. 156]: in

practice this was done by simply gluing the ends of the tape together, so forming a loop.

On the ENIAC, the high-level structure of a program was expressed physically in the machine’s

hardware in a unit known as the “master programmer”. This consisted of devices known as “step-

pers”, which allowed a sequence of up to six distinct subsequences to be defined, each of which
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could be repeated a specified number of times. By using more than one stepper, programs could

be constructed in which the subsequences themselves had a similar internal structure. The master

programmer contained a total of 10 steppers, thus allowing for the definition of highly complex

program structures [Goldstine and Goldstine, 1946]. By 1946, Aiken recognized the need to supply

Mark I with multiple sequence mechanisms, and in 1947 a “subsequence mechanism” was added,

which allowed the machine to be configured with more than one instruction tape, and provided the

ability to switch between them automatically [Bloch, 1947].

In the early machines, then, the logical structure of a program was expressed physically in

some aspect of the machines’ setup. In the subsequence mechanisms employed by Mark I and

the Bell Labs relay machine, for example, transfer of control was effected by an instruction which

made explicit reference to the tape reader containing the next subsequence to be executed. With

the adoption of the stored program design, in which a complete program was stored in a single,

uniform memory, a different approach to the question of the transfer of control became necessary.

The code defined in theDraft Reportmade use of the fact that instructions could be referred to by

the address of the storage location holding them. A generalized transfer instruction was provided

which had the effect of transferring control to the instruction at a specified address. Eckert explained

the distinction as follows:

The only big difference between this control on a relay machine and the control in the
EDVAC is that the control words in the EDVAC are read from its internal memory,
and that some of the operations may send the control from one point in the memory
to another. In other words, the main routine tape in a relay machine may indicate that
the operations on a certain sub-routine tape are to be done, while in the EDVAC there
may be a symbol in the memory which instructs the control to goto another place in
the memory and do what is indicated there. [Eckert, 1946, p. 116]

The EDVAC included in its code an order� which had the effect of connecting the control organ

to a specified memory location from which program execution would continue [von Neumann, 1945,x15]. This location could either be a previously executed instruction, or the beginning of a distinct

sequence, so this single order supported both the executionof a new subsequences and the repeti-

tion of the current sequence. (Machines in which each order specified the address of its successor in

effect made unconstrained transfer of control the default mechanism, and their codes did not need a

specific transfer instruction.)

A significant aspect of transfer orders is that they allow theflow of control within a program to

be specified without making reference to particular features of the machine on which the program
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is running. The stored program design therefore made possible a more abstract understanding of

program structure, where an entire program, including all necessary subsequences of operations, is

thought of as a single sequence of labelled instructions. This in turn made it possible to think of a

program separately from the machine it will run on. The generalized transfer instruction therefore

marks a significant step towards a complete logic of control,a notation independent of any particular

hardware configuration and capable of expressing both the elementary operations and also the order

in which they will be performed.

Two other points can be noted about the transfer instruction. Firstly, although it appeared in

conjunction with the stored program design, it does not require it: there is no reason in principle

why relay machines should not have labelled each instruction on a tape, in the same way that certain

forms of data, such as function values, were already labelled. The stored program design made it

easier to implement, however, as all instructions were stored in a memory location and the address

of the current instruction was stored in the control unit.

Secondly, although more flexible than, and capable of reproducing the effect of, any particular

machine design, the use of transfer instructions could makeit harder to perceive the structure of a

program. The use of subsequences and repetition of instruction sequences were not made explicit in

the programming notation: by replacing both with a more general, lower level instruction, programs

became harder to read and understand.

4.3 Condition testing

The simple transfer instruction was soon found to be insufficiently expressive to define all common

computational patterns. In many cases, the future course ofa computation will depend on the results

obtained so far: a commonly cited example was where it was necessary to carry out a sequence of

instructions until the results fell within a certain tolerance, the precise number of iterations needed

to achieve this not being known in advance.

A variety of approaches were adopted to provide this capability. In Mark I, for example, counter

72 was known as the ‘automatic check counter’, and an instruction code was provided which would

halt the computation if the last result calculated in that counter was less than zero. This was typi-

cally used to test whether a computed quantity fell within desired limits. After halting, the overall

computation could be restarted manually by the operator, and the conditions for doing this were

stated in the operating instructions provided with the program [Aiken and Hopper, 1946].
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As originally designed, the ENIAC did not include any mechanism for testing the values cur-

rently held in the accumulators. This capability was provided, apparently at a late stage in the

development, by adding a ‘direct input line’ to the master programmer. A signal on this line caused

computation to continue with the next defined subsequence, regardless of whether the current se-

quence had been repeated the specified number of times. By connecting the numerical output from

an accumulator to the direct input line, it became possible to use numerical data to trigger the master

programmer and thus affect the course of the computation [Marcus and Akera, 1996].

By 1945, then, experience had demonstrated the utility of instructions which would enable the

course of a computation to depend on the result of a test, typically of the sign or magnitude of a

number, applied to some data value. Von Neumann summarized the situation as follows:

A further necessary operation is connected with the need to be able to sense the sign
of a number, or the order relation between two numbers, and tochoose accordingly
between two (suitably given) alternative courses of action[von Neumann, 1945,x11.3]

The code defined in theDraft Reportprovided this capability indirectly, however, relying on the

fact that in the stored program design instructions and their addresses can be treated as numeric data,

and so, in principle at least, examined and modified just as numbers can. A basic operation,s, of

the arithmetic unit was defined which would take four numbers, x, y, u andv as input; ifx � y the

operation would have as resultu, and ifx < y the result would bev. Von Neumann argued that “the

ability to choose the first or the second one of two numbersu, v depending on such a relation, is quite

adequate to mediate the choice between any two alternative courses of action” [von Neumann, 1945,x11.3]. This was achieved by supplying the addresses of two instructions asu andv: once the

desired address had been selected by thes instruction, it could be copied into the address field of a�
transfer instruction. When the modified� instruction was executed, control would be transferred to

whichever address had been selected, thus allowing the behaviour of the program to vary according

to the outcome of a purely numeric test.

In the ACE report, Turing adopted a similar indirect approach to conditional tests. Rather than

providing a specific operation to choose between two numbers, however, he suggested that the

destination address could be calculated using existing numerical instructions before being copied

into an unconditional transfer instruction [Turing, 1946].

By the middle of 1946, however, codes had been proposed whichdid not require program-

mers to construct alternative transfer instructions explicitly, but instead included a single instruction
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to carry out a conditional transfer. Eckert and Mauchly’s ‘Code A’ contained instructions which

would jump to a specified instruction depending on the resultof a comparison between two other

numbers [Eckert, 1946], and the code used by von Neumann’s group at Princeton had similar in-

structions which effected a transfer depending on the sign of the number stored in the accumula-

tor [Burks et al., 1946]. Conditional transfer instructions of these or similar types were found in all

subsequent codes.

It is a striking fact that the utility of coding a conditionalpattern of control such as “transfer

to instruction 53 if the value of the number at address 256 is negative” as a single instruction ap-

pears not to have been obvious, the Bell Labs machine being the only one of the early automatic

calculators to provide such an instruction [Alt, 1948, p. 72–3]. Carpenter and Doran have com-

mented that “[i]t is strange that conditional branching wasa stumbling block to both von Neumann

and Turing, especially since the program for an abstract Turing machine is just one large decision

table” [Carpenter and Doran, 1977, p. 271]. From a Whiggish perspective, this presents a problem

requiring an explanation which does not seem to be immediately forthcoming. However, it is bet-

ter seen as a piece of evidence of the potential difficulty of making innovations that later come to

seem self-evident and of the extended process of exploration and negotiation that often accompanies

conceptual innovation.

4.4 Instruction modification

The stored program design raises the possibility of manipulating instructions programmatically, a

capability exploited by both von Neumann and Turing to provide conditional jumps, as discussed

above. As with other programming concepts, however, the idea of modifying the instructions mak-

ing up a program as it progressed underwent considerable evolution before reaching a definitive

form.

In the Draft Report, a rather complex chain of design decisions led to the proposed machine

possessing only a partial ability to treat program orders asdata. Von Neumann first considered the

desired memory capacity of the machine, and concluded that 32 “memory units”, or binary digits,

would be sufficient to store a real number to an appropriate degree of precision. He then wrote

that “[t]he fact that a number requires 32 memory units, makes it advisable to subdivide the entire

memory in this way: First, obviously intounits, second into groups of 32 units, to be calledminor

cycles. . . It will therefore be necessary to formulate the standardorders in such a manner than each
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one should also occupy precisely one minor cycle, i.e. 32 units” [von Neumann, 1945,x12.2].

No theoretical principle was invoked to justify treating orders as data. Rather, a pragmatic deci-

sion was taken to constrain orders to be the same size as numbers, in order to make the engineering

of the memory as simple as possible. Underlining the distinction between the two forms of data,

von Neumann went on to write that “[m]inor cycles fall into two classes:Standard numbersand

orders. These two categories should be distinguished from each other by their respective first units

i.e. by the value ofi0. We agree accordingly thati0 = 0 is to designate a standard number, andi0 = 1 an order” [von Neumann, 1945,x15.1]. Far from being treated in the same way, orders and

numbers were clearly demarcated and treated separately.

Nevertheless, there were two cases where this demarcation broke down. Firstly, when consid-

ering the orders needed to transfer numbers from memory intothe arithmetic unit, von Neumann

decided that “[i]t is simplest to consider a minor cycle containing a standard number . . . as such

an order per se” [von Neumann, 1945,x15.3]. In other words, in certain contexts a number would

be interpreted as if it expressed an implicit order. Secondly, when a number was transferred from

the arithmetic unit back to memory, the way in which this transfer was effected was to depend

on whether the minor cycle it was being transferred to held a number or an order. In the first

case, the entire minor cycle would be overwritten with the new data, but in the second case only

those parts of the order which held the address of the minor cycle being operated on would be

modified [von Neumann, 1945,x15.6]. This facility for ‘address modification’ was the onlyway

provided by the code to modify the orders making up a program,and was used among other things

to provide conditional jumps, as discussed above.

Turing defined the ACE’s memory in essentially the same way asvon Neumann, as “minor

cycles” of 32 binary digits grouped into “major cycles”, andwrote that “[s]uch a storage will be

appropriate for carrying a single real number as a binary decimal or for carrying a single instruc-

tion” [Turing, 1946, p. 24-5]. When discussing the way in which numbers would be encoded in the

store he further stated that a minor cycle might contain someinformation which would “distinguish

between minor cycles which contain numbers and those which contain orders or other informa-

tion” [Turing, 1946, p. 25].

However, the ACE report assumes that programs will have an unrestricted ability to modify their

own orders, using the same operations as are used on numbers.For example, when describing how

to perform a conditional jump, Turing did not rely on a specific facility for address modification,
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but instead suggested performing arithmetical calculations directly on the minor cycles containing

the instructions. He gave the following example where it is required to carry out instruction 33 or

50 depending on whether a certain digitD is 0 or 1:

One form the calculation can take is to pretend that the instructions were really numbers
and calculate D � Instruction 50+ (1�D)� Instruction 33:
The result may then be stored away, let us say in a box which is permanently labelled
‘Instruction 1’. We are then given an order: : : saying that instruction 1 is to be fol-
lowed, and the result is that we carry out instruction 33 or 50according to the value of
D. [Turing, 1946, p. 35]

In the ACE proposal, then, Turing made use of an unrestrictedability to manipulate instructions

as numbers, and for a program’s instructions to be constructed and modified by the program itself as

it runs. This approach was also taken by several speakers in the Moore School lectures in mid-1946.

Mauchly mentioned the requirement to store instructions and numerical data in the same device and

the pragmatic reasons for doing so, but then stated that:

A much more fundamental reason for this requirement is that the instructions them-
selves can then be operated on by the use of other instructions. It should be possible
to carry out such operations upon instructions by the use of the same instructions as
would be utilized when operating upon numbers [Mauchly, 1946, p. 455].

Calvin Mooers made this point even more bluntly, stating that the modification of orders should

be “a simple arithmetic operation between numbers and orders” [Mooers, 1946, p. 470]. The actual

codes described by Mauchly and Mooers did not differentiatenumbers and data in the way that von

Neumann’s EDVAC code did, but despite the generality of the statements above, made only rather

limited use of operation modification in copying bits from one word to another, to set up subroutine

parameters, and incrementing address fields in operations.Whereas Eckert and Mauchly’s Code

A included a specific operation for doing this [Eckert, 1946,p. 122], Mooers used straightforward

numerical addition, thus simplifying his code slightly.

Von Neumann and his collaborators gradually came to adopt a more relaxed approach than that

of theDraft Report. In the design of the Institute of Advanced Studies computerthey distinguished

“two different forms of memory: storage of numbers and storage of orders” [Burks et al., 1946, p.

98] before observing that orders, suitably coded, could be stored in the same memory as numbers.

Orders and numbers were no longer formally distinguished, but specific orders were defined to

rewrite the address field in an order. Functionally, the codedefined was very similar to that in the
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Draft Report. In 1947, however, von Neumann and Goldstine stated that control could “modify any

part of the coded sequence as it goes along” [Goldstine and von Neumann, 1947, p. 153].

Despite these statements of principle, however, the importance of instruction modification and

the range of its application was often limited to the modification of addresses in individual in-

structions [Bloch et al., 1948, p. 293], [Bowden, 1953, p. 29]. A good example of the power of

unrestricted modification is the “Initial Orders” written by David Wheeler to load programs into the

EDSAC when it was started up [Wheeler, 1950]. This program included such techniques as the use

of “ambiguous words”, which at different times were treatedas numbers or instructions, and repeat-

edly formatted a “transfer order” which would carry out quite different tasks on different occasions

of use.

In summary, then, the first order code for a stored program machine, that of von Neumann’s

Draft Report, made an explicit distinction between numbers and orders, and only permitted a limited

form of modification of orders for specific purposes. Gradually, codes evolved which permitted

unrestricted manipulation of instructions as numerical data, but except in a few cases, this facility

was usually made use of only to modify the address contained in an order.

4.5 Subroutines

It was universally recognized that certain computational routines were of general utility, and that the

programming task would be simplified if such routines could be reused rather than being repeatedly

coded. From the Mark I onwards, programs were typically viewed as containing a ‘master routine’

which invoked a range of subroutines which were not necessarily specific to the problem being

solved, and computing installations aimed at having a ‘library’ of subroutines which could easily be

applied to new problems.

As discussed in Section 4.2, subroutines, as reusable sequences of instructions, were physically

distinct program tapes on Mark I and the Bell Labs machine. One consequence of this was that

every time a subroutine was called, exactly the same instructions were executed. On stored program

machines, however, subroutine instructions were stored inthe same memory as the master routine,

and the ability on such machines to modify program instructions led to a much more flexible use of

subroutines.

Subroutines were not mentioned in theDraft Report. By contrast, they were central to the

approach to programming described by Turing in the ACE report:
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We also wish to be able to arrange for the splitting up of operations into subsidiary op-
erations. This should be done in such a way that once we have written down how an op-
eration is to be done we can use it as a subsidiary to any other operation. [Turing, 1946,
p. 34]

This approach requires the ability to transfer control to the beginning of a subroutine and to

return to the calling routine on completion of the subroutine. The former task can be accomplished

by a straightforward transfer instruction, but the latter is more complex because control will have to

return to different places at different times. Turing’s solution was as follows:

When we wish to start on a subsidiary operation we need only make a note of where
we left off the major operation and then apply the first instruction of the subsidiary.
When the subsidiary is over we look up the note and continue with the major opera-
tion. [Turing, 1946, p. 35]

The notes of the return addresses were to be “buried” in storage, and a record kept of the most

recent one. On completion of a subsidiary routine, the most recent note would be “disinterred” and

control returned to that point. It is characteristic of Turing’s approach to programming that both

these operations were themselves to be performed by subsidiary routines, known as BURY and

UNBURY.

A second problem with the use of subroutines in stored program machines was that in general a

subroutine would be located at different places in the memory on different occasions of use. How-

ever, subroutines typically make reference to addresses internal to the subroutine: the commonest

occasion for this is when control transfers from one location to another inside the subroutine, some-

thing that would be necessary in all but the simplest cases. The problem then is how to reconcile the

need to provide a fixed address in the transfer instruction with the fact that that address will vary in

different programs, depending on where the subroutine is located in memory.

Turing’s solution to this problem was to propose a two stage process of program assembly.

Instructions were to be written on cards in a “popular”, or relatively human-readable, form and

identified by “group name” and “detail figure”, or line numberwithin the group. Transfer instruc-

tions would refer to their destination by group name and detail figure. When a program was being

constructed, all the cards required would be collated, and sorted by group name and detail figure.

The instructions would then be renumbered sequentially, and the popular group name and detail

figure references would be replaced by the actual binary addresses used in the program. Turing

recognized that “[i]t would be theoretically possible to dothis rearrangement of orders within the

machine” [Turing, 1946, p. 38], but did not propose to do thisin the first instance.
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Goldstine and von Neumann considered the use of subroutinesin detail in a report circulated in

1948 [Goldstine and von Neumann, 1948]. They described the changes that would have to be made

to a subroutine when it was being used as a constituent of a newproblem, and classified them into

those that would be made before the subroutine was used in a particular problem, and those that

would have to be made while the program was running.

The first type of change was that already identified by Turing,namely that a subroutine would

typically appear at different locations in memory on different occasions of use, and that references

to addresses internal to the subroutine would need to be modified before the subroutine could be

successfully used. Unlike Turing, Goldstine and von Neumann considered how this could be done

automatically. They proposed a procedure for subroutine reuse which involved loading the various

instruction sequences into the machine, and running a special “preparatory routine” which would

make the required changes to the code before the complete program was executed.

The second type of change was due to the fact that a subroutinewould in general be called more

than once during the execution of a program. As well as the problem of returning control to the

correct place on completion of the subroutine, Goldstine and von Neumann noted that subroutines

need to be supplied with parameters, or data which can vary from one call to the next. Unlike

the first type of change, which was handled by the preparatoryroutine, the changes required by

parameters and return locations can only be dealt with when aprogram is running. Goldstine and

von Neumann do not describe in detail how this could be done, but it is clear that they assume that

some form of instruction modification while the program is running will suffice.

It is worth noting that this approach is in general less flexible than Turing’s proposal to store

return addresses separately, which permits recursive calls to subroutines. This difference is perhaps

accounted for by a different philosophy of program design. Whereas Turing, as noted above, viewed

the use of subroutines as ubiquitous, Goldstine and von Neumann considered subroutines which

performed significant amounts of computation, and seemed tohave in mind a hierarchical structure

in which the main routine would call subroutines, but references between subroutines would be rare.

In 1949, once the EDSAC was operational, a detailed scheme for handling all these aspects

of subroutines was worked out by David Wheeler. Rather than reading the complete program into

memory and then modifying it, as proposed by Goldstine and von Neumann, Wheeler wrote a set of

“initial orders” which were loaded into the EDSAC when it wasstarted, and which read a program

from paper tape and placed it in memory before executing it [Wheeler, 1950]. Rather than modify-
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ing a complete program, in the style of Goldstine and von Neumann’s preparatory routine, however,

the initial orders interpreted a coded version of the program read from the tape and constructed

the complete program in memory. Wheeler also invented coding techniques for modifying the re-

turn addresses in subroutines and allowing parameterized data to be used in subroutines. These

were later described in the textbook issued by the Cambridgegroup, and became highly influen-

tial [Wilkes et al., 1951].

The adaptation of the familiar idea of a subroutine for use onthe new stored program computers,

then, can be characterized by two main features. Firstly, itturned out that subroutines could not be

reused without a stage of processing prior to execution, where the required form of a complete pro-

gram including subroutines was constructed in some way. Secondly, in the complete program thus

constructed, the existing capabilities provided by transfer instructions and instruction modification

were sufficient to make use of subroutines. In other words, inmachine code, subroutines were not

marked syntactically in any way, and apart from certain conventional patterns of usage, were not

distinguished in any way from other code.

4.6 Machine code and program structures

Between 1945 and 1950, then, a widely accepted ‘standard model’ of order codes for stored program

computers emerged. This standard model had three main aspects. Firstly, each code defined a

number of basic instructions. The commonest of these controlled the transfer of data from one

location in the computer to another and the various arithmetic operations that could be carried out.

From the programmer’s point of view, the important properties of basic instructions were that only

one could be executed at any time, and that they were atomic, in the sense that the execution of a

basic instruction could not be interrupted by any other instruction in the program.

Secondly, control instructions defined the order in which the basic instructions were carried out.

Some codes assumed that instructions would be executed in the sequence that they were found in

memory, and provided an unconditional transfer instruction to allow variations from this sequence.

An alternative approach was for each instruction to specifyexplicitly the location of its successor.

In addition, conditional transfer instructions were provided to allow the sequence or orders executed

to depend on the current state of the computation.

Finally, instructions could be modified programmatically in the course of a computation. There

were a number of standard situations in which this was known to be necessary, but rather than
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provide special instructions for these situations, most codes simply allowed instructions to be treated

as numeric data, and placed no restrictions on the manipulations that could be performed on them.

Various extensions to this standard model had been proposed. For example, at the Moore

School course in 1946, Mauchly presented a code which included “index counting instructions”

to make the control of loops easier [Campbell-Kelly and Williams, 1985, p. 452], and Mooers

described a modification to the von Neumann design using a device called a “sentinel” and a

code which included “stop order tags” to facilitate the detection of boundary conditions in cer-

tain applications [Mooers, 1946]. Neither of these innovations were widely, if at all, adopted;

for example, the very influential EDSAC code was essentiallythat of the standard model outlined

above [Wilkes et al., 1951].

A striking feature of the standard model was that the facilities it provided for controlling the

flow of a program did not coincide with the ways in which peoplethought about computational

structure. For example, in the ACE report Turing stated thatinstruction modification and branching

were together sufficient to carry out all required computations [Turing, 1946, p. 35]. In a lecture

given to the London Mathematical Society in 1947, however, he described a number of “tactical

situations that are met with in programming” [Turing, 1947,p. 117]. These described the way that

a programmer thought about the overall structure of the computation that is being coded, and their

use predated the stored program computer and even automaticcomputation.

A fundamental computational structure was the subprogram or subroutine, a set of instructions

that could be written once and then executed whenever required by the demands of the computation.

As described above, all automatic machines incorporated some method for structuring a computa-

tion out of a number of subroutines. The standard model of machine code contained no explicit

representation of subroutines, however: instead, the required behaviour had to be implemented us-

ing the more primitive notions of transfer of control and instruction modification.

Another key computational structure is the ability to repeat instructions as often as required.

Turing describes this situation as being “like an aeroplanecircling over an aerodrome, and asking

permission to land after each circle” [Turing, 1947, p. 118]. This situation can easily be coded

using a conditional transfer, but this same instruction canbe used in quite different situations, such

as choosing between alternative courses of action, where noloop is involved. As this illustrates,

there was no simple correspondence between the high-level computational structures in terms of

which computations were planned, and the low-level instructions provided by standard machine
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codes. Programming textbooks explained how to implement the high-level structures using machine

code [Wilkes et al., 1951], but this meant that it was not easyto grasp the structure and design of a

program simply by inspecting the code.

4.7 Machine code and logic

Turing and von Neumann both commented on the relationship between the new activity of cod-

ing for automatic computers and the existing discipline of formal logic. Speaking to the London

Mathematical Society in 1947, Turing stated that:

I expect that digital computing machines will eventually stimulate a considerable in-
terest in symbolic logic and mathematical philosophy. The language in which one
communicates with these machines, i.e. the language of instruction tables, forms a sort
of symbolic logic. [Turing, 1947, p. 122]

and Goldstine and von Neumann made a similar point:

Since coding is not a static process of translation, but rather the technique of provid-
ing a dynamic background to control the automatic evolutionof a meaning, it has to
be viewed as a logical problem and one that represents a new branch of formal log-
ics. [Goldstine and von Neumann, 1947, p. 154]

However, Turing, von Neumann and Goldstine did not spell outexactly what the force of this

comparison was. As discussed in Chapter 2, one of the achievements of logic had been to demon-

strate how important aspects of mathematical language could be captured by formal, or ‘mechanical’

rules. A possible link between order codes and logic, then, derives from the fact that the former were

defined in such a way as to be readable by machines, and so by definition ‘mechanical’. Machine

code programs and the instructions they contain bear littleresemblance to the sentences of proposi-

tional and predicate logic, however, so it is worth exploring in a bit more detail what was understood

by the analogy.

The terms ‘logic’ and ‘logical’ were used in discussions of computers in a number of senses,

without necessarily implying a connection with mathematical logic. For example, it was common

to distinguish the ‘logical’ from the ‘physical’ design of amachine, the distinction being that the

logical design made no reference to specific circuits or electronic devices [Bloch et al., 1948]. From

this, however, it is only a short step to a consideration of the notation in which the logical description

of a machine can be expressed, a transition exemplified in thefollowing quotation:
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Babbage invented a new algebra with which to describe the movements of the intercon-
nected parts of the machine—to evaluate theirlogic to use the modern phrase [Bowden, 1953,
p. 17].

This emphasis on the activity of the machine echoes the earlier emphasis that von Neumann

had placed on the sequencing of operations. TheDraft Reportdefined “[t]he logical control of the

device” to be “the proper sequencing of its operations” [vonNeumann, 1945, p. 2], and Goldstine

and von Neumann later wrote of an example program that “[t]his extension will bring in a simple

induction, and thus the first complication of a logical nature” [Goldstine and von Neumann, 1947,

p. 113]. An explicit distinction was made between the ‘arithmetical’ or ‘mathematical’ opera-

tions of a computer and its ‘logical’ operations: Goldstineand von Neumann describe “arithmetical

operations and transfers of numbers” as being the “properlymathematical (as distinguished from

the logical) operations of the machine” [Goldstine and von Neumann, 1947, p. 115], and Edmund

Berkeley included among the logical operations those of detecting a relation of inequality between

two numbers, and providing for conditional branching and the automatic detection of the end of a

calculation [Berkeley, 1950].

The analogy between order codes and logic, then, appears to have been based on an under-

standing of machine code as a formal language for defining thesequence of basic operations to be

carried out by a machine. The view of logic as the study of formal languages was well established,

having been put forward in works such as Carnap’sLogical Syntax of Language[Carnap, 1937], but

nevertheless formal languages of machine processes are different in many ways from the traditional

logical calculi of deduction, and the question arises of whyit seemed natural at this time to widen

the denotation of the term ‘logic’.

On possible explanation is that something like the following analogy was being appealed to.

Just as deductive calculi provided rules of inference describing a formal relationship, that of en-

tailment, between sentences, so the ‘logical’ aspects of machine code described a particular formal

relationship, the order of execution, holding between the basic instructions of a program. Support

for this interpretation is provided by the terminology usedby Konrad Zuse. His programming no-

tation, the Plankalkül, was named by analogy with the predicate calculus, orPrädikatenkalk̈ul in

German. Zuse is quoted as stating that his aim was “to providea purely formal description for any

computational procedure” [Giloi, 1997, p. 18], implying that the influence of logic was not to be

found in the details of any particular calculation, but rather in the properties that are common to all,

namely the ways in which computations can be organized.
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An alternative interpretation of the naming of the Plankalkül has been offered by Bauer, who

states that the “Plankalk̈ul is an instrument for reasoning about programs – quite a modern point of

view” [Bauer, 2000, p. 278]. This comment does not seem to be valid if interpreted as meaning that

Zuse was concerned with proving or validating properties ofhis programs: unlike Goldstine and

von Neumann or Turing [Turing, 1949], Zuse never tried to formalize properties of the data being

used in a computation, for example. Zuse was very interestedin logic, both at the level of computer

design and also as an application—for example, one of his example programs was to check the

well-formedness of a formula in propositional logic—but his programming notation does not seem

to have been specifically related to more traditional logical notions of proof and reasoning.

The remainder of this chapter will consider in more detail the ways in which, drawing on the

analogy with logic, the metalogical categories that had been developed for formal logic were applied

to machine codes.

4.8 Syntax

Early automatic computers were thought of primarily as numerical calculators, and the store was

correspondingly understood as a repository for numbers. With the advent of stored program ma-

chines, however, instructions were also placed in the store. This was often described as a process of

coding the instructions as numbers, but this does not make explicit the fact that numbers also had

to be coded before they could be stored. A variety of coding schemes had been used, even on the

early relay computers [Booth, 1949]. A more accurate view ofthe store was as a neutral medium in

which different types of information could be represented and whose “[w]ords may be interpreted

as numerical information or as instructions” [Huskey, 1951].

The details of these coding schemes fall into the category ofsyntax, defined by Carnap as

concerned only with the kind and order of symbols used in the expressions of a language, the

symbols in this case being the individual digits held in the store. Accounts of specific machines

typically explained how numbers were coded, and gave a description of the machine’s order code

in the form of a table listing the basic machine operations, accompanied by a more or less detailed

account of how an instruction to the machine to perform one ofthese operations would be coded.

The structure of a typical order code was extremely simple. Individual orders contained a num-

ber of fields: one field specified the operation to be carried out, and other fields contained the

addresses of one or more locations in the store. In addition,some codes contained digits used to
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verify the data stored in a word or for other internal purposes. In some cases the coded form of

an instruction did not correspond exactly to the word size ofthe machine and some parts of the

word would be left unused. Alternatively, on some machines it was possible to store more than one

instruction in a single word.

Order codes were often envisaged as existing in a variety of symbolic representations. For

example, in theDraft Reportvon Neumann distinguished between “short symbols” used fordis-

cussing code and setting up problems for the device, and “code symbols”, which were the strings

of binary digits holding instructions in the machine [von Neumann, 1945,x15.6]. Turing distin-

guished the “machine form” of the code both from the “permanent form”, used for example to store

subroutines for reuse, and also from a more readable “popular form” used when instructions were

to be listed [Turing, 1946,x13]. The input tapes used in the EDSAC programming system rep-

resented addresses in decimal notation, not the binary formused inside the machine, and used a

single-character mnemonic representation of basic operations [Wheeler, 1950]. The various ‘pop-

ular’ forms represented only the functional details of codes, ignoring for example the presence of

check digits in instruction words or the details of placing multiple instructions in one word.

Machine codes had little, if any, syntactic structure abovethe level of the individual instruction.

The sequence of instructions making up a program was usuallyshown by listing actual or illustrative

memory locations and showing the instruction stored at each. These memory locations, however,

were those denoted by the addresses appearing in individualinstructions: the overall program struc-

ture could therefore only be grasped by referring to an aspect of the meaning of the code, and not

through purely syntactic means. It was impossible, in otherwords, to understand what a program

did by simple inspection of the instructions making it up: itwas also necessary to know where in

memory these instructions were stored.

There was very little theoretical analysis of the syntax of machine code, a more pressing concern

being the best choice of basic operations for a code. The mostwidely discussed syntactic issue con-

cerned the number of address fields contained in a single instruction. Codes which contained three

addresses allowed a single order to express an instruction like “add the numbers stored in locationsx andy and store the result in locationz”. In a code which provided only a single address field, this

would require three instructions: “add the number stored inlocationx into the accumulator; add

the number stored in locationy into the accumulator; transfer the number stored in the accumula-

tor to locationz”. A further variant, to support optimum coding, allowed theaddress of the next



CHAPTER 4. MACHINE-LEVEL PROGRAMMING AND LOGIC 112

instruction to be stored explicitly in each instruction, leading to two and four address codes.

There appeared to be no clear advantage, in terms of overall code size or execution time, between

one and three address codes, and both schemes were widely adopted. A theoretical result to this

effect was published by Calvin Elgot in 1954; this is of interest as being an early application of

formal language theory to computer programs [Elgot, 1954].Elgot’s proof involved the definition

of a formal language intended to represent the relevant differences between the two forms of code,

but did not, however, give a formal syntactical descriptionof a complete or realistic machine code.

The most notable application of logical syntax to computersat this time was made by George

Patterson, who explicitly drew on Carnap’s work to outline ageneral theory of “syntactical ma-

chines” [Patterson, 1949]. He described a class of machines, described as “linguistic transducers”,

which accepted input data and transformed it into output data. By viewing this data as symbolic ex-

pressions, Patterson hoped to use Carnap’s approach to develop a logical theory of such machines.

Analogue computers were ruled out from this treatment, but the class of syntactical machines was

wider than just digital “calculating machines”, and Patterson listed a number of other machines,

including cryptographic machines and switching systems, to which his approach could be applied.

Patterson listed a number of problems whose solution he feltcould be aided by a unified syn-

tactical approach. These included problems in machine analysis and synthesis, as well as the design

of suitable order codes for machines and the coding of specific problems. The applications de-

scribed in the paper were concerned with formalizing and verifying properties of basic electronic

circuits for computer arithmetic, however, and Patterson described no applications of his ideas to

the formalization of machine code or the construction of programs.

An interesting terminological difference between Patterson and Carnap marks the shift to the

application of the ideas of logical syntax to a type of formallanguage very different from conven-

tional logic. For Carnap, transformation rules are intended to capture aspects of the consequence

relation between complete sentences. Patterson does not explicitly describe a class of sentences

however, nor discuss relationships between sentences. Instead, he is concerned with a class of “nu-

merical expressions”, or numerals in a specified base, and hegives a recursive definition of a “quasi

successor” relation between numerical expressions. This definition is subsequently referred to as

a “transformation rule”, a usage which clearly marks a breakwith logic’s concern with truth and

consequence. A more subtle difference is that for Carnap transformation rules provided a way of

capturing non-recursive relationships such as logical consequence. In Patterson’s usage, however,
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the term is used as a synonym for a recursive definition, suggesting that in the context of comput-

ers, the only transformations of interest are those that arecomputable, or definable by recursive

functions.

4.9 Semantics

Perhaps the most obvious interpretation of the meaning of a program is that a program denotes

the computation that it performs, or more concretely, the sequence of operations performed by a

computing machine when running the program. In 1947, Goldstine and von Neumann elaborated a

sophisticated account of this notion of program semantics,together with a notation of flow diagrams

which expressed such meanings and could be used as a way of developing a program.

They began by pointing out the complexity of the relationship between the instructions in a

program and the mathematical operations performed when it was executed. This was due to cer-

tain features of the order code, such as transfers of controlwhich caused variations in the written

sequence of instructions, and address modification which meant that the sequence of instructions

itself could be expected to vary as the computation proceeded.

These observations highlighted two significant differences between the tasks of giving a se-

mantic account of predicate logic and of programs. In logic,semantics can be characterized as a

mapping from a stable, syntactic expression to some domain of meanings. Because of the possibility

of a program modifying its own instructions, however, the situation with programs is more complex.

Executing a program can cause the program text itself to change, and the meaning, in the sense of

the operations subsequently carried out, depends on the modified text, and hence only indirectly

on the original program text. In other words, “coding is: : : the technique of providing a dynamic

background [i.e. the changing instructions] to control theautomatic evolution of a meaning [i.e.

the operations automatically carried out by the computer]”[Goldstine and von Neumann, 1947, p.

154].

Secondly, semantics for logic are typically compositional: the meaning of an expression can be

derived in a systematic way from a knowledge of the meanings of its constituent subexpressions and

the way they are put together. Machine code programs could not be understood in this way, however.

Even in the simplest case of two adjacent orders it could not be concluded that the operations they

denote will be performed in sequence: even leaving aside thepossibility of instruction modification,

a transfer from elsewhere in the program might cause the second to be executed independently of
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the first.

Faced with the relative obscurity of the relationship between program code and the operations

executed by the program, Goldstine and von Neumann developed a diagrammatic formalism to help

in the development of programs. The method they proposed was“to plan first the course of the pro-

cess and the relationship of its successive stages to their changing codes, and to extract from this the

original coded sequence as a secondary operation” [Goldstine and von Neumann, 1947, p. 84]. The

flow diagram notation they developed was therefore intendedto provide a graphical representation

of the behaviour of the running program, the required sequence of operations, a “schematic of the

course of C [the control] through that sequence”. In effect,the flow diagrams were a technique for

expressing the semantics of a program, and Goldstine and vonNeumann proposed a development

method which would derive from this a sequence of orders which when executed would result in

the required operations being carried out.

Flow diagrams as proposed by Goldstine and von Neumann were directed graphs in which the

nodes represented groups of operations that were always executed in the default, sequential order;

the arcs represented transfers between these blocks of operations. A node with two arcs leading

from it represented a block with two possible continuations, and hence a conditional jump, and loops

were represented by cycles in the graph. Because of the possibility of the dynamic modification of

instructions, however, the structure of the graph might change as the program ran, and in an attempt

to deal with this, Goldstine and von Neumann introduced so-called “variable remote connections”

into the flow diagrams. These were intended to show that particular arcs should be considered to

link different pairs of nodes at different times.

On top of this basic expression of structure, flow diagrams contained a lot of information about

the properties of the data being manipulated by the program.A strict distinction was maintained

between the mathematical expression of the problem being coded, described in terms ofvariables,

and the actual data being manipulated, which was referred toby reference tostorage locations. The

operations required, and the numerical values stored at each point of the program’s execution, were

described mathematically. A distinction was drawn betweenfree and bound variables, the termi-

nology being explicitly linked with that of “formal logics”[Goldstine and von Neumann, 1947, p.

91]; free variables were those whose value could be set from outside the routine being considered,

and bound variables those which were considered ‘private’ to the routine. Unlike in logic, however,

where variables become bound by being used in a quantification, there was no syntactic means of
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distinguishing free from bound variables in the flow diagramnotation, the distinction being purely

contextual.

Flow diagrams usedassertion boxesto state properties that were expected to hold at various

times during program execution. This formed a bridge between programming and traditional log-

ical notations: an assertion could be any logical formula making use of the program variables.

These assertions could be understood by treating the mapping between program variables and the

corresponding stored values at the moment when the assertion came into effect as giving an inter-

pretation of the variables. The use of assertions was also adopted by Turing in 1949 as a method

for checking correctness of programs [Turing, 1949], but then faded from view until reemerging in

the mid-1960s. A third difference between programs and conventional logic can be noted at this

point, namely that whereas the meaning of a predicate logic formula is given with respect to a sin-

gle interpretation, or mapping from variables to objects, the interpretation given to the variables in

a program changes as the program executes.

The flow diagram notation developed by Goldstine and von Neumann can therefore be viewed

in part as an attempt to assimilate machine code programmingto the theory and practice of conven-

tional logic. Flow diagrams are an attempt to create a formalrepresentation of program semantics,

conventional logic in the form of assertions is built in to the notation and to the methodology of

program construction based upon it, and analogies are drawnwith logic even in relatively minor

details of terminology, such as the distinction between free and bound variables.

In later comments on this work, Arthur Burks described the use of “bound variables” in loops

as being related to the bounded quantifiers introduced by Gödel [Aspray and Burks, 1987]. This

observation derives from the fact that in many programs, variables are used to control loops by

counting the number of iterations that the program has made through the loop. In a similar way,

the variables in bounded quantifiers index all the integers in the range of the quantifier. The use of

variables to control loops was a universally adopted programming technique, however, and clearly

related to the variables used in interactive schemes for manual computation. It does not seem likely

that this feature of programs needs to be explained by reference to formal logic.

A striking feature of the flow diagram notation is that it constrained the freedom theoretically

available in programming for stored program machines. Flowdiagrams were well adapted to ex-

press high-level computational structures such as loops and conditional branching, but only permit-

ted the expression of a limited form of instruction modification, by means of the variable remote
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connections. It is not clear that an arbitrarily complicated program could be perspicuously depicted

in a flowchart. Furthermore, flow diagrams seem most suitablefor describing the flow of control

within a single routine, and do not appear to have been used toshow the high-level structure of a

program as a set of subroutines, or the calling relationshipbetween subroutines.

The flow diagram notation was widely adopted, but usually in asimpler form than that proposed

by Goldstine and von Neumann. For example, in 1949 Renwick used flow diagrams to explain an

example program for the EDSAC [Renwick, 1949]. However, thediagrams showed only operation

boxes and alternative boxes, and the connections between them: no distinction was made between

program variables and storage locations, and assertions were not used. With the exception of Tur-

ing’s paper [Turing, 1949], these more ‘logical’ aspects ofthe notation were not on the whole taken

up.

4.10 Programs as metalinguistic expressions

As noted above, Arthur Burks later speculated on the relationship between Goldstine and von

Neumann’s work and some of Gödel’s logical ideas, writing that “I think it likely that, in his

programming work, von Neumann was guided by his knowledge ofGödel’s work, at least intu-

itively” [Aspray and Burks, 1987, p. 384-5]. In particular,Burks saw in the ability of stored data to

refer either to a number or an instruction “an instance of themetalanguage versus object language

distinction” [Aspray and Burks, 1987, p. 385]. The situation is slightly more complicated than this,

however.

As discussed in Chapter 2, Turing adopted Gödel’s strategyof arithmetization to encode ma-

chine tables as data which could be stored on the tape of the universal machine, and the same

strategy is adopted by stored program computers. Rather than being an instance of thedistinction

between object and metalanguage, however, this means that astored program can simultaneously

be viewed as belonging to the object language, when it is manipulating numerical data for example,

and the metalanguage, when it is modifying its own instructions.

The possibility that a language could express its own syntaxby means of arithmetization initially

appeared paradoxical, and one result of Carnap’s work was toshow that in the case of conventional

logic this gave rise to no problems [Carnap, 1937]. A programwhich is capable of modifying its

own instructions, however, seems to take a step beyond what is possible in logic, and to further

blur the distinction between syntax and semantics. For Carnap, syntax was concerned only with
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the classification and ordering of symbols in expressions, uncontaminated by any considering of

the meaning of the expressions. If the meaning of a program isconsidered to be the operations it

carries out, however, then instruction modification represents an infection of the syntactic domain

by semantics: execution of the program is able to change the syntactic representation of the program

itself.

For many people in the late 1940s and early 1950s, the possibility of self-modifying programs

was an extremely significant feature of the stored program design. This was so for both practical

and theoretical reasons. The ability to change instructionaddresses made the coding of iterative

programs much easier and more flexible than it had been on machines such as Mark I, but self-

modification was also invoked, for example by Turing, as having the potential to explain higher

cognitive functions such as the ability to learn.

This chapter has described the different approaches adopted to instruction modification in early

order codes, and it is striking that von Neumann consistently adopted a conservative attitude towards

it. This conservatism can be understood as an effect of applying the metalogical structure created

for conventional logic to the new ‘logics’ of computer codes, and in particular as an attempt to keep

separate the domains of syntax and semantics. Further evidence in support of this line of thought

will emerge in subsequent chapters, which describe the simultaneous emergence of programming

language theory modelled on metalogic and the elimination of the ability to write self-modifying

programs.

Leaving aside the issue of instruction modification, there were other programs which could

more straightforwardly be described as metalinguistic, asBurks suggested. In logic, a metalanguage

provides the capability to express the syntax and possibly also the semantics of another language.

Programs do not make statements, and so cannot declaratively represent syntax in the way logical

metalanguages do, but it would appear reasonable to describe a program which can manipulate

syntactic representations of other programs as metalinguistic.

Examples of such metalinguistic programs appeared early on, the best documented early exam-

ple perhaps being the Initial Orders for the EDSAC, a programwhich translated input programs ex-

pressed as a mixture of letters and decimal numbers into a purely binary form [Wheeler, 1950]. This

approach was quickly recognized as providing great benefitsin programming productivity: a num-

ber of systems defined ‘interpretative codes’ for various purposes such as floating point arithmetic,

for example. These enabled the programmer to write code in one notation which would be translated
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by an interpretative program into the machine’s native code. This approach was generically known

as ‘automatic programming’, and throughout the 1950s many such codes were produced, gradually

evolving into what became known as programming ‘languages’. This development is discussed in

detail in the next chapter.

4.11 Conclusions

TheDraft Reportis widely recognized to have marked a turning point in the development of com-

puter hardware. It represents a moment of closure, where a number of elements, largely present in

earlier work, were for the first time put together in a form that became a definitive model for most

if not all subsequent developments.

The role of the report in the development of programming techniques is less dramatic, however.

This chapter has described the gradual evolution of the basic concepts of machine code program-

ming from the late 1930s to about 1950, and it is apparent thatthere is a much greater continuity

between the way in which Mark I and the EDSAC were programmed,say, than there is in their

hardware. The nearest analogue to theDraft Reportin the field of programming is perhaps the text-

book written by the EDSAC group [Wilkes et al., 1951]. Like theDraft Report, this summarized in

a particularly clear form the principles on which contemporary programming was based, and served

as a model for much later work.

Although there was at this period little theoretical reflection on order codes, a connection was

made between these codes and formal logic, particularly by Turing and von Neumann. Awareness

of this connection inspired a certain amount of rather unsystematic research into the application of

metalogical ideas to machine codes. The most significant attempt was that of Goldstine and von

Neumann to give a semantic account of programs using flowcharts. The immediate influence of this

work, however, seems to have been rather limited.



Chapter 5

Programming notations as formal

languages

It quickly became apparent that the task of creating machinecode programs was one that most

humans would find very taxing, and techniques for simplifying and automating parts of this process

were soon developed. Symbolic abbreviations for operationcodes were frequently defined and some

programming systems, such as the EDSAC, provided special programs to translate the symbolic

form into the internal machine representation automatically.

These developments automated certain aspects of the production of machine code, but still re-

quired programmers to define the sequences of basic operations making up the program. A further

stage of automation was envisaged in which this task, described as ‘programming’ to distinguish it

from the more mechanical activity of ‘coding’, would itselfbe performed by machine. Stanley Gill

expressed the goal as follows: “One might say that an ideal programming scheme would allow one

merely to state the problem to be solved . . . existing systems. . . still require the user to specify a

series of steps to be performed by some conceptual computer”[Gill, 1959].

This problem was first addressed in connection with mathematical formulas. A number of

systems were developed which allowed programmers to include in programs formulas written in

some approximation to standard mathematical notation; these formulas would then be automatically

translated into a sequence of instructions to perform the desired calculations. The most ambitious

and successful of these systems was Fortran, which first became available in 1957 for the IBM 704

machine [IBM, 1956].

By the end of the 1950s many automated programming systems existed, most designed for

119
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and implemented on a particular type of computer. A number ofgroups had discovered the ben-

efits of sharing programs, but the existence of many different programming notations made this

difficult. This situation gave rise to a number of initiatives aimed at developing a universal pro-

gramming notation; the best-known and most influential of such developments was the Algol 60

language [Naur et al., 1960].

This chapter examines these technical developments and theparallel evolution in theoretical

accounts of programming notations. At the beginning of thisdevelopment, programming notations

were understood relative to a machine, whether real or imaginary; at the end, they were thought of

free-standing notations, or ‘languages’, which could be studied independently of any machine. Both

natural languages and formal languages were taken as modelsfor programming languages. Whereas

natural languages inspired developments in notations intended for use in data processing applica-

tions, formal logic was taken as a model for programming languages intended for mathematical and

theoretical uses, such as Algol and Lisp.

5.1 Automatic coding

At the beginning of the 1950s, the term ‘coding’ was used to refer to the process of translating

the instructions of a program into the coded form used insidethe machine. In some cases this

was carried out entirely by hand, but following the example of the EDSAC [Wheeler, 1950], many

installations devised a set of ‘initial orders’ which wouldtranslate instructions from a more human-

friendly form into machine code.

In simple cases, this translation required little more thana correspondence between symbols and

codes, but the use of subroutines made the task more complex.If subroutines are to be reused freely,

it must be possible to place their instructions at differentlocations in the store in different programs.

However, this means, for example, that instructions in the subroutine that refer to specific storage

locations or jumps to another instruction within the subroutine, will differ from one occasion of use

to another. The EDSAC’s initial orders automated the process of calculating the required addresses,

so that subroutines were correctly translated depending ontheir location in any given program. A

further refinement was provided by an ‘assembly subroutine’which calculated the location of each

subroutine in a program, so that the programmer would not have to decide where in the store each

subroutine should be placed.

These and related techniques, such as ‘floating addresses’ [Wilkes, 1953b], were based on ma-
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nipulating a program before it was run. From an input tape consisting of a master routine and

a number of subroutines, a complete translated machine codeprogram would be produced, and

then executed. An alternative approach made use of so-called ‘interpretive routines’. When an

interpretive subroutine was called, the processing to be carried out was specified by a number of

‘pseudo-orders’, or instructions that in fact did not belong to the machine’s order code. The job of

an interpretive routine was to read these pseudo-orders andensure that appropriate code was exe-

cuted in response to each one. In contrast with the approaches described above, the pseudo-orders

were not translated in advance into machine code; instead, the interpretation process was carried

out during program execution.

For example, the EDSAC subroutine library contained interpretive routines to facilitate calcula-

tions with complex and floating-point numbers. The codes interpreted by these routines bore a very

strong relationship to the basic machine code, being in the same format and even using the same

code letters to refer to analogous operations in most cases [Wilkes et al., 1951]. Presumably this was

intended to make the use of the subroutines as natural as possible to programmers, as well as allow-

ing input of the interpreted codes without having to change the initial orders [Campbell-Kelly, 1980,

p. 29]. More generally, interpretive routines raised the possibility of designing codes that were

adapted for specific purposes, and which would therefore diverge further from the underlying ma-

chine code. Wilkes and his collaborators give an example where the instructions in the interpreted

code were so small that two orders could be placed in a single machine word [Wilkes et al., 1951,

p. 162–164].

In the EDSAC system, the interpretive routines were intended to be called as part of a larger

program, and the interpreted codes therefore formed only part of the complete program. In effect,

a single program could be written using an extended code, where the basic order code was supple-

mented by the pseudo-orders handled by one or more interpretive routines. An alternative approach

was to enable an entire program to be written in a single interpreted code. The earliest such system

to have been implemented appears to have been the so-called ‘Short Code’, which first ran on the

UNIVAC in 1950 [Schmitt, 1988, p. 11].

Short Code evolved from a proposal made by John Mauchly in 1949 to develop a “special code

chosen to simplify the work of the human programmer and throwmuch of the tedious detail of

coding onto the computer” [Mauchly, 1949]. Mauchly’s argument in favour of an interpreted code

was primarily economic: he identified a class of “small” problems where the cost of programming
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far outweighed the cost, in terms of computer time, of running the program. He anticipated that the

use of an interpreted code would make programming easier, and therefore significantly reduce the

overall cost of such programs.

A disadvantage with interpreted codes was that the translation to machine code was performed

as the program was running, and therefore increased the timetaken to run programs. An alterna-

tive approach was to perform the translation as a separate step before running the program. Wilkes

described this approach as follows: “[t]he programmer writes down ‘orders’, here calledsynthetic

orders, which the control circuits of the machine are incapable of executing. The necessary ex-

pansion into sequences of ordinary machine orders: : : takes place once for all in advance of the

execution of the programme” [Wilkes, 1952]. Wilkes gave an example of synthetic orders designed

for the EDSAC, but stated that the technique had not yet been used to any significant extent.

Related developments, associated particularly with GraceHopper, were being carried out on

the UNIVAC. Again motivated by a growing awareness of the cost of programming, Hopper hoped

that “[t]he programmer may return to being a mathematician”[Hopper, 1952, p. 244]. This was

to be achieved by what Hopper called “compiling routines”, which were “designed to select and

arrange subroutines according to information supplied by the mathematician or by the computer”

[Hopper, 1952, p. 248]. A series of such routines were developed and ran on the UNIVAC from

1952 onwards.

From 1950 on, then, a wide variety of schemes and tools were developed to implement vari-

ous approaches to automatic coding. Interpreted and compiled schemes shared the property that

programs were not written directly in the code of the target machine, but in apseudo-code. It was

widely hoped that this would make programming easier and less time-consuming, although poten-

tially decreasing the run-time efficiency of the machine. This trade-off was widely seen as having

overall economic value.

5.2 Virtual machines: the semantics of pseudo-codes

Machine codes were, naturally, understood as being notations for expressing, or specifying, the

behaviour of particular computing machines. Pseudo-codeshowever broke the correspondence be-

tween instructions and machine operations, so a more complex understanding of the meaning of

pseudo-code programs was required.

Syntactically, pseudo-codes were often very similar to actual machine codes: “[n]o example of
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a programme of interpretive orders need be given since it would look just like an ordinary pro-

gramme” [Wilkes, 1952]. In these cases, pseudo-codes were treated as extensions of machine

codes: “the [interpretive] sub-routine executes the ‘orders’ in the list in a similar fashion to the

way that the machine obeys ordinary orders” [Wheeler, 1952]. Even simple subroutines could be

understood in this way: “[b]y deciding to place a closed subroutine in the store, the programmer

effectively extends the order code of the machine so as to cover the operation performed by the

subroutine” [Wilkes, 1952].

Unlike the EDSAC interpretive codes, Mauchly’s Short Code was syntactically quite distinct

from machine code. Nevertheless, it was initially understood in a similar way, as a more powerful

code than that understood directly by the machine. Mauchly wrote that a computer “may be made

to interpret and execute instructions given in the simple code” [Mauchly, 1949], and in a similar

vein Wilkes and his colleagues stated that “the use of interpretive routines effectively extends the

order code of the machine by increasing the complexity of theoperations which may be performed

in response to a single ‘order”’ [Wilkes et al., 1951, p. 35].

An alternative interpretation was available, however, in which an interpretive routine was un-

derstood as an extension or modification not to an order code,but to the underlying machine itself.

Turing put this as follows “[a]n interpretive routine is onewhich enables the computer to be con-

verted into a machine which uses a different instruction code from that originally designed for the

computer” [Turing, 1951, p. 192]. These two interpretations were aligned by Earl Isaac: “[t]he use

of subroutines permits the coder to think in terms of functions that are complex combinations of the

elementary arithmetic and logical operations of the machine. This is in effect a different structure

than that permitted by the basic machine” [Isaac, 1952].

The second interpretation gained some of its force from the desire to simulate on one machine

the hardware of other, more powerful machines. For example,the floating-point interpretive routine

designed by Brooker and Wheeler simulates in the EDSAC’s memory a floating point accumu-

lator and the so-called ‘B tube’ developed in Manchester [Williams, 1951, p. 176], and permits

recursive subroutine calls, even though these capabilities were not provided by the EDSAC’s hard-

ware [Brooker and Wheeler, 1953]. John Backus may have been thinking of this case when he later

wrote that “[t]he purpose of the early systems was to providesynthetic machines which had floating-

point operations and often index registers (B-tubes), since the real machines did not” [Backus, 1958,

p. 234]. Backus himself had designed an interpretive schemefor the IBM 701, introducing it in
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terms of the “synthetic” machine that it simulated: “[t]he IBM 701 Speedcoding System is a set of

instructions which causes the 701 to behave like a three-address floating point calculator. Let us call

this the Speedcoding calculator” [Backus, 1954].

Compilers as well as interpretive routines were understoodas creating synthetic machines. Hop-

per later described the compiling routines by saying that “the compiler: : : effectively converted the

UNIVAC from a single-address, fixed-decimal computer into athree-address, floating-decimal com-

puter” [Hopper, 1959, p. 167]. The introduction of later pseudo-codes was commonly explained or

motivated by an appeal to the notion of a synthetic machine. For example, Laning and Zierler,

whose system is described in more detail below, wrote that “[t]he effect of our program is to create

a computer within a computer: : :” [Laning Jr. and Zierler, 1954, p. 1], and in a later description of

programming the DEUCE, the descendant machine of Turing’s ACE, Robinson wrote that “it is con-

structive to look upon [three interpretive schemes] as three alternative machines” [Robinson, 1960,

p. 115].

Pseudo-codes, then, came to be understood in the same way as machine codes, namely as being

the instruction codes of particular computing machines. The machine corresponding to a given

pseudo-code would usually not have been built, however, butwould be simulated on an existing

machine. When a pseudo-code program was run, the job of the interpreter or compiler was to ensure

that the same results were produced that would be obtained ifthe ‘synthetic’, or virtual, machine

assumed by the writer of the pseudo-code had been operational and the pseudo-code program run

directly on it.

As noted above, Turing was an early advocate of this point of view, and the idea of an inter-

pretive routine enabling one machine to simulate another later became associated with the universal

machine concept:

the founder of [the field of automatic programming] was the late A. M. Turing, who: : :
first enunciated the fundamental theorem upon which all studies of automatic program-
ming are based: : : it states that any computing machine which has the minimum proper
number of instructions can simulate any other computing machine, however large the
instruction repertoire of the latter. All forms of automatic programming are merely
embodiments of this rather simple theorem [Booth, 1960]

It is debatable whether this ‘theorem’ was in fact stated by Turing, however. Turing demon-

strated the existence of a universal machine within a certain class of machines which shared the

same physical structure. He only argued informally, however, that the machines he had defined
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were capable of simulating all forms of computational machinery, commenting for example that a

two-dimensional grid of data values could be represented ona one-dimensional tape.

A number of the linguistic features of pseudo-codes of this type are worth noting. Firstly, the

idea of self-modifying code lessened in importance, or at least became something that the program-

mer no longer had to worry about explicitly. For example, Backus listed as one of the features

of Speedcoding that it provided “automatic address modification” [Backus, 1954] handled by the

interpreter and not by the programmer.

Secondly, the idea of pseudo-codes extending machine code introduced a rather vague notion

of subroutines existing at different levels. Sometimes this was simply a question of whether one

routine called others, or was itself written purely in machine code, but more ambitious proposals

were also put forward. For example, Hopper described the basic compiling routines as being of

‘Type A’, and described more sophisticated routines which appeared to be capable of writing new

subroutines: “the mathematician . . . sends the informationdefining the function itself to the UNI-

VAC. Under the control of a ‘compiling routine of type B’ . . . the UNIVAC delivers the information

necessary to program the computation of the function and itsderivatives” [Hopper, 1952, p. 244].

Higher levels were also envisaged: “[t]ype B routines at present include linear operators. . . . It

can scarcely be denied that type C and D routines will be foundto exist adding higher levels of

operation” [Hopper, 1952, p. 249].

Thirdly, the job carried out by interpretive routines and compilers was frequently described

as one of translation. For example, in 1951, Jack Good asked whether anybody had “studied

the possibility of programme-translating programmes, i.e. given machinesA and B, to produce

a programme for machineA which will translate programmes for machineB into programmes for

machineA” [Good, 1951]. Translation is usually conceived as a meaning-preserving relationship

between expressions in distinct languages. Applying the metaphor of translation to interpretive rou-

tines encouraged people to think of programming codes as languages in their own right. In 1952, a

group at Manchester described their work on developing a code for a new machine in precisely these

terms: “[w]e are: : : developing a scheme which will enable us to test the new programmes on the

old machine and this will be done by means of an interpretative [sic] scheme which translates the

new routine from the new code back into the code of the existing machine” [Bennett et al., 1952],

and in the same year Earl Isaac offered the general opinion that “[c]oding for digital computers is a

process of translating from one language to another” [Isaac, 1952].
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Towards the end of the 1950s, Gill summarized the way in whichpseudo-codes were understood,

explicitly bringing together the notions of translation and virtual machines: “[t]he net effect may be

looked on either as a translation of the original program language into that required by the machine,

or as a way of making the machine imitate another machine which recognizes the original language

directly” [Gill, 1959, p. 111].

5.3 Formula translation

In some ways, programming in a pseudo-code was a similar experience to machine code program-

ming. Problems had to be broken down into small steps which could be expressed as individual

instructions in the code being used, whether or not it was thecode of a real machine. This low-level

coding soon became seen as a routine and rather unrewarding task, but one for which there was an

increasing demand as applications of computers became morewidespread. One strategy to address

this situation was to make programming more interesting andaccessible by using programming

notations that were more related to the problems that users were trying to solve.

In the 1950s, this approach was applied with considerable success to the specific task of evalu-

ating mathematical formulas. A basic step in many calculations is to use values already calculated

to compute the value of a new variable. Such steps can be formalized as equations of the formx = F (y; z; : : :), wherex is the variable to be computed andF is a formula expressed in terms of

known values. Many such formulas can be interpreted as expressing algorithms, specifying what

arithmetical operations have to be carried out and in what order. Rather than translating this algo-

rithm into code by hand, it seemed that it should be possible to have the computer itself generate the

coded instructions. In addition to the perceived economic benefits of using interpreted codes, this

raised the possibility of allowing mathematicians to program computers directly using a familiar

notation, thus reducing the demand for skilled coders.

Automatic formula translation seemed more challenging technically than the interpretation of

pseudo-codes. Earl Isaac broke it down into two steps, the “translation of grammar” producing a

sequence of instructions coding the operations required toperform the calculation, and the “trans-

lation of words” generating machine code, for example by replacing variable names by machine

addresses. He noted that the translation of grammar appeared to be the harder problem and one on

which little progress had been made [Isaac, 1952].

Developers of formula translation systems in the early 1950s made different decisions about
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the ‘grammar’ of formulas. Some assumptions were widely shared, for example that formulas

should resemble standard mathematical notation as far as possible, using the four basic arithmetical

operations and, where necessary, parentheses to control the order of evaluation, and that it should be

possible to include standard functions, such as trigonometric and exponential functions, in formulas.

Systems varied greatly in detail, however, partly as a result of the different ambitions and goals of

their authors, and partly because of technical difficultiesuncovered while writing a program to

translate formulas.

For example, a program written in the UNIVAC’s Short Code consisted of a number of state-

ments, such asX = Y + ZW [Schmitt, 1988]. The interpreter associated numerical values with

variables, and a statement allowed these values to be used tocalculate a new value. Initially, expres-

sions could use the only the four basic arithmetical operators and parentheses, but other operators

and functions were soon added. Equations were transliterated by hand and presented to the inter-

preter in coded form; the interpreter would then scan the expression, replacing variables by their

current values and calling the appropriate subroutine whenever an operator or function was encoun-

tered. Multiplication was expressed by the juxtaposition of variables, presumably with the intention

of making the code resemble conventional notation; in general, however, the behaviour of the in-

terpreter had to be taken into account when writing expressions, to ensure that the expected value

would be computed.

A later system, developed by Laning and Zierler at MIT, allowed a more natural use of math-

ematical notation, interpreting equations as complex asz = 1 � zx2=y(y � 1) correctly, although

the system was limited to four levels of nested parentheses [Laning Jr. and Zierler, 1954]. A wide

range of functions were predefined as subroutines and subscripted variables could be used. This

system went beyond the evaluation of single expressions, and certain systems of differential equa-

tions could be solved automatically. For example, the system dy1=dt = y2 + 1, dy2=dt = �y1
could be solved by writing the following two equations in a program:

D yj1 = yj2 + 1
D yj2 = – yj1

The different formula translation systems proposed in the 1950s, therefore, varied considerably

in what grammatical forms they interpreted. At one extreme,the autocode for the Pegasus com-

puter permitted only one operator to be written in each formula. It was argued that this made the

code very easy to learn [Felton, 1960]. Other systems, like that of Laning and Zierler, went beyond



CHAPTER 5. PROGRAMMING NOTATIONS AS FORMAL LANGUAGES 128

the evaluation of functional expressions in various ways. For example, formula translation sys-

tems were based on the fact that mathematical formulas encode algorithms which can be translated

into machine code. A number of authors pointed out, however,that an ‘implicit’ formula such asy � 2 = 3x encodes an algorithm for working out the value ofy just as clearly as the equivalent

‘explicit’ formula y = 3x + 2. There seemed to be no reason in principle why translators could

not be written to generate machine code from implicit formulas, and techniques for doing this were

proposed [Cleave, 1960].

By contrast, later programming languages show much less variety, supporting little if anything

more than functional expressions written using arithmetical operators, parentheses and calls to sub-

routines. This ‘standard form’ first appeared in the Fortranlanguage: the next section will describe

this, and offer an explanation for the subsequent success ofthis form.

5.4 Fortran and the definition of expressions

Fortran’s definition of expressions can be characterized bytwo features. Firstly, the language only

supported ‘explicit’ equations:

A FORTRAN arithmetic formula resembles very closely a conventional arithmetic for-
mula; it consists of the variable to be computed, followed byan= sign, followed by an
arithmeticexpression. For example, the arithmetic formula

Y = A-SINF(B-C)

means “replace the value of y by the value of a-sin(b-c)” [IBM, 1956, p. 12].

This definition distinguishes two aspects of the formula, namely the specification of the calcula-

tion to be performed and the identification of the storage location that is to hold the resulting value.

A number of writers appear to have found this distinction a potential source of misunderstanding,

because of the possibility of writing formulas such asn = n + 2. Viewed from the mathematical

point of view as an identity, such an equation is meaningless, or at least has no solution. From

the computational point of view, however, it defines a straightforward procedure, as the Fortran

definition explains.

The= sign in an arithmetic formula has the meaning “is to be replaced by”. An arith-
metic formula is therefore a command to compute the value of the right-hand side and
to store that value in the storage location designated by theleft-hand side. [IBM, 1956,
p. 16]
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This computational interpretation of an apparent equation, however, rules out the possibility of the

system handling implicit equations such asy � 2 = 3x.

The second significant feature of Fortran’s definition of formulas is the way in which the syn-

tactic form of expressions was specified. Unlike many other systems, the Fortran manual gave a

recursive definition of expressions which is very similar instyle to the definitions of the terms of

formal languages given in logic texts. Constants, variables and subscripted variables are first de-

fined, and then the following definition of expressions is given; note that expressions could be of

either fixed or floating point mode, but this does not affect the discussion.

Formal Rules for Forming ExpressionsBy repeated use of the following rules, all per-
missible expressions may be defined.

1. Any fixed point (floating point) constant, variable, or subscripted variable is an
expression of the same mode. Thus 3 and I are fixed point expressions, and AL-
PHA and A(I,J,K) are floating point expressions.
. . .

4 If E is an expression, then (E) is an expression of the same mode as E. Thus (A),
((A)), (((A))), etc. are expressions.

5 If E and F are expressions of the same mode . . . thenE + FE � FE � FE = F
are expressions of the same mode. . . . The characters+, �, � and= denote addi-
tion, subtraction, multiplication and division. [IBM, 1956, p. 14]

The influence of formal logic seems clear here; the definitionof expressions and their translation

into machine code was largely the work of Peter Sheridan [Sheridan, 1959], who before joining IBM

had completed a Masters degree in logic [Weiss, 1993]. It is striking that the recursive definition

is given in the manual intended for programmers to read: thisbrought a level of precision to the

definition of programming notations that was at the time unusual.

An important feature of this definition is its generality: there is no question of restricting ex-

pressions to a fixed number of operators or levels of parentheses. In one respect the syntax diverges

from normal mathematical usage: whereas other systems allowed multiplication to be represented

by juxtaposition, as inXY , in Fortran it must be represented explicitly asX �Y. Both these proper-

ties are consequences of the recursive definition, and this suggests that in some respects the desire

for formal consistency was taking precedence over other goals, such as preserving conventional

notation.
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This raises the question of why this particular definition ofexpressions turned out to be so

influential. It is tempting to answer this question by pointing to the success of Fortran and the

consequent adoption of many of its features in later languages. The explanatory power of this

answer is limited, however: many other features of Fortran were not so influential, and the language

has subsequently changed in many ways, incorporating features derived from later languages and

research. What was special about the definition of formulas given by Fortran that might account for

its differential success and persistence?

One possible answer is that it was precisely the use of logic that gave rise to the success of the

Fortran definition. Although a number of writers had perceived a general similarity between logic

and programming, this was the first time that techniques fromformal logic had been applied to a

relatively mundane task like syntax definition. As well as providing a concise and general definition

of expressions, this suggested a general approach to the design of programming languages, one

which made use of the authority and established results and techniques of the discipline of logic.

At around this time, a reciprocal interest in programming notations was developing among lo-

gicians. The Summer Institute for Symbolic Logic, held at Cornell University in 1957, included a

number of papers on computer-related topics, including programming notations, formal represen-

tations of computing machines, and mechanical theorem proving. These included a short talk by

Sheridan describing the Fortran system [Sheridan, 1957].

Fortran’s use of logical techniques was limited to definition of expressions, however, and the

syntax of the remainder of the language was not given a recursive definition. In other respects, too,

Fortran occupies an intermediate position between pseudo-codes and formal languages: despite

being described as a language, it was viewed as an integral part of a wider system whose role was to

“transform . . . the 704 into a machine with which communication can be made in a language more

concise and more familiar than the 704 language itself” [IBM, 1956, p. 2]. This description situates

Fortran firmly in the semantic tradition of 1950s pseudo-codes, as described above. Furthermore,

the design of many of the features of the language was influenced not by logic but by the desire to

produce object code that was as efficient as possible [Backusand Heising, 1964].

5.5 Universal languages

By the end of the 1950s, a large number of automatic programming systems had been developed,

and surveys showed that the overwhelming majority of them were only available on a single type of
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machine [Bemer, 1959]. At the same time, user groups for particular machines were discovering the

advantages of being able to share programs and were beginning to distribute routines among the user

community. For example, the group SHARE was started in 1955 as a “cooperative programming

group for IBM 704 users” [SHARE, 1958a]. As the name chosen for the group implies, one aim

of the group was to enable users to benefit from the work of other programmers. For example,

in 1958 “SHARE agreed to accept for distribution self-contained routines in FORTRAN language.

However, since appropriate conventions were not agreed upon, it was decided to defer distribution

of subroutines for the time being” [SHARE, 1958b].

This last comment indicates recognition of the fact that forcode to be easily shared between dif-

ferent groups, common languages and standards had to be agreed. Whereas mathematical formulas

provided a standard notation for encoding simple computational procedures, traditional mathemat-

ics defined no universally accepted method for expressing the sequencing of operations in more

complex algorithms. Machine code programming did provide astructure for expressing computa-

tions, but both machine codes and the later pseudo-codes were highly machine specific. Fortran

marked a significant step forward: it was initially only available for the IBM 704, but by the early

1960s Fortran compilers had been written for a wide variety of machines.

A number of machine-independent programming notations hadin fact been defined. Many of

these originated in Europe, in circumstances suggesting that lack of easy access to a actual working

machine was a factor in encouraging more theoretical work. For example, as early as 1948 Zuse had

published a short description of hisPlankalk̈ul notation, based on work he had carried out immedi-

ately after the war [Zuse, 1948]. These proposals do not appear to have influenced the development

of programming notations, however, in part because they could not be used on contemporary tech-

nology.

By the latter half of the 1950s, however, it had become feasible to experiment with new notations

by writing an interpreter, and in some cases this even led to the construction of new machines

based on the order code suggested by the new notation. Often,these experimental proposals were

explicitly related to logic. For example, in 1957 Charles Hamblin observed that formula translation

schemes were only necessary because of the obscurity of machine code, and reasoned that a better

solution would be to design a machine whose basic operationswere better adapted to the needs of

programmers. He viewed this as “primarily a problem in applied formal logic” [Hamblin, 1957, p.

135], and proposed using an adapted version of a notation introduced by Łukasiewicz, which he
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dubbed ‘reverse Polish’ notation. As presented by Hamblin,this notation had the properties that

every symbol could be viewed as denoting a machine operationand that an expression could be

evaluated by performing the specified operations in the sameorder as the symbols were written in

the expression. After being used in interpreted form on the DEUCE computer [Hamblin, 1958],

Hamblin’s ideas for a so-called ‘zero-address’ computer were implemented in the architecture of a

later computer, the KDF9.

Another factor leading to diversity in the field of programming notation was the perception

that different notations were required for different application areas. Fortran was the first language

to be implemented on more than one computer, and it became ade factostandard for scientific

programming. It was felt that the language was too mathematically oriented for business users,

however, whose primary concern was data processing, and a number of proposals were made aimed

specifically at such users. Specialized requirements were also found in the new area of artificial

intelligence, where programs needed to handle memory with greater flexibility than in scientific

applications. Again, this led to the development of specialized programming notations.

Against this background, there were a number of calls for thedevelopment of ‘common’ or ‘uni-

versal’ languages. For example, following a conference in 1955, the German/SwissGesellschaft f̈ur

angewandte Mathematik und Mechanik (GAMM)established a committee to define a common for-

mula translation language. In 1957, members of this committee wrote to the AmericanAssociation

for Computing Machinery (ACM)proposing a conference with the aim of fixing on a common for-

mula translation language [Bauer et al., 1957]. This led to ameeting in Zurich in 1957, attended

by four delegates each from ACM and GAMM. The result of this meeting was a language proposal

known officially as the International Algebraic Language (IAL) [Perlis and Samelson, 1958]. In the

light of subsequent developments, this language is often referred to as Algol 58.

Following extensive discussion of this proposal, a furtherconference was held in Paris in

January 1960, resulting in the publication of a report whichdefined a new language, Algol 60

[Naur et al., 1960]. Unlike other languages of the time, Algol 60 was not designed as part of a pro-

gramming system for a particular type of computer, but was intended as a universal language for the

expression of algorithms. There was considerable institutional support for this proposal: for exam-

ple, even before the publication of the Algol 60 report theCommunications of the ACMhad started

a “new editorial department . . . to publish algorithms consisting of ‘procedures’ and programs in the

ALGOL language” [Wegstein, 1960]. Initially algorithms were published in Algol 58, but following
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the publication of the Algol 60 report, the required language was changed to Algol 60.

The details of Algol 60 will be considered in more detail in the next section. The definition of

a single programming notation was not the only way to tackle the problem of diversity, however.

An alternative approach was suggested by the UNCOL project.It had already been noted that “the

scope of activity for SHARE was expanded with the advent of the IBM 709 and with the univer-

sal acceptance of Fortran as a language common to both the 704and the 709” [SHARE, 1958a].

At a meeting in February, 1958, discussion took place on “ways to develop a universal language

for the computing field” [SHARE, 1958b], and over the coming year a sub-committee of SHARE

developed proposals to address this need.

The UNCOL project distinguished between machine-orientedlanguages and problem-oriented

languages. Rather than defining a single problem-oriented language, like Algol, the idea was to

define a single machine-oriented language which would be used to implement a variety of problem-

oriented languages (POLs). This was seen as promising two benefits: firstly, problem-oriented

languages would be better tailored to the needs of programmers, and could be expected to make the

task of programming quicker and easier. Secondly, it was anticipated that the implementation of

a new POL would require only a POL-to-UNCOL translator to be written, not a full compiler for

every machine that the POL ran on. It would therefore be more economical to develop new POLs

using the UNCOL approach [Steel, 1961]. It proved impossible at the time to develop a practical

system based on these proposals, however, and Algol became seen as the most promising and fully

developed proposal for a universal programming notation.

5.6 Algol 60 as a formal language

Subsequent chapters describe the influence of Algol 60 on thesubsequent development of program-

ming and programming notations in the 1960s. This influence is sometimes attributed to the way

in which the language was defined rather than its practical success. Unlike most, if not all, of its

predecessors, Algol 60 was consciously presented as a formal language; for example, in 1959 Puyen

and Vauquis wrote of the emerging Algol definition in an manner very reminiscent of Carnap:

Pour ce langage unique, il faudra, tout comme pour les systèmes de programmation,
commencer par en définir les éléments: d’abord les symboles élémentaires et leurs
divers rôles, ensuite les règles de formation d’agrétats de ces symboles pout obtenir des
termes, enfin des règles de construction d’expressions á partir des termes ou á partir
d’expressions plus simples. Il semblerait que l’expérience des auto-programmations
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actuelles puisse accélérer l’étude purement logique dulangage en tant que système
formel. [Puyen and Vauquois, 1960, p. 134]

By the end of the 1950s, the relationship between programming notations and formal languages

was increasingly being commented upon, Woodger for exampleclaiming that all order codes were

formal languages [Woodger, 1960]. Woodger described a formal language as one defined by rules

specifying its syntax and semantics; most order codes were not fully defined in this way, however,

and relied for their semantic definition in particular on informal descriptions of the behaviour of a

machine or interpreter. By contrast, the Algol 60 definitionmade a significant step forward in the

explicit formalization of programming languages. This section describes the method of language

description adopted for Algol, and the next section describes some of the ways in which logic

influenced the features included in the language.

The alphabet

Tarski’s first criterion for formal languages concerned theset of symbols used for constructing

expressions in a language. Order codes and pseudo-codes usually adopted a subset of the characters

provided by the available input devices as the alphabet of the language, and it was some time before

the concept of a set of symbols became abstracted from the physical symbol set provided by the

hardware.

The case of Fortran illustrates the difficulties experienced in moving to a more abstract defini-

tion. In the original programmer’s manual, a “table of Fortran characters” was given [IBM, 1956,

p. 49], comprising the 48 characters available on the IBM 704together with the various ways they

were coded on different media. There were two distinct ‘�’ symbols: both could appear in data

presented to a program, but only one of them could be used in program code, while the other was

the only one to appear in program output. The ‘$’ symbol, meanwhile, could only be used in a

program within textual data that was to be output.

Sheridan later explicitly specified a Fortran “alphabet”: he excluded one of the ‘�’ signs and

the ‘$’ symbol, despite the fact that it could appear in the text of Fortran programs, but included

a symbol ‘a’ which was “not a character explicitly indicated in any FORTRAN statement, serving

solely as a statement endmark on the executive level” [Sheridan, 1959, p. 11], or in other words, not

a symbol of the Fortran language at all. Both these definitions, then, failed to define exactly the set

of characters that could appear in legal Fortran programs.
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The Algol 58 group recognized that these difficulties would only be exacerbated in the case of

a language intended to be used on many different machines:

There are certain differences between the language used in publications and a language
directly usable by a computer. Indeed, there are many differences between the sets of
characters usable by various computers. Therefore, it was decided to focus attention
on three different levels of language, namely aReference Language, andPublication
Language, and severalHardware Representations. [Perlis and Samelson, 1958, p. 9]

Of these, the reference language was the “defining language”. The publication language had

to ensure “univocal correspondence” with the reference language, but would allow for the use of,

for example, subscript and superscript notation, and different national conventions for represent-

ing such things as the decimal point. Each implementation ofAlgol 58 would require a differ-

ent hardware representation, depending on the capabilities of the target machine, but “[e]ach one

of these must be accompanied by a special set of rules for transliterating from Publication lan-

guage” [Perlis and Samelson, 1958, p. 10].

The basic symbols of the reference language comprised a rather heterogeneous set of individual

characters, such as letters and digits, some digraphs, suchas ‘:=’, a range of mathematical and

logical symbols, including a subscripted ‘10’, and a number of words and phrases, such as ‘begin’

or ‘go to’, all of which were considered to be indivisible, atomic symbols.

The picture that emerged from this account was rather a subtle one. By allowing different phys-

ical representations of the alphabet, the Algol 58 report made it apparent that, even in the reference

language, the choice of physical symbols used was arbitrary. The alphabet of the language was

therefore considered to be something more abstract than a set of characters. In 1959, commenting

on the Algol 58 report, members of the Applied Programming Systems group at IBM put the point

in the following way:

The preliminary report on ALGOL defines the basic symbols of the language. A subset
of these can be represented externally (now) only as words; e.g.,go to, do, if , etc. Nev-
ertheless, they stand for single characters which will havesome internal representation.
A good processor translates this external representation to internal. The dictionary used
in making this translation should be flexible enough to allowarbitrary changing of the
external representation of an internal symbol. We can therefore say that the processing
of internal symbols can be independent of the external language. [Green et al., 1959]

In this respect, Algol differed from traditional accounts of formal languages which treated the

expressions of a language as concrete sequences of characters [Tarski, 1933]. The variety of repre-
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sentations considered focused attention on the abstract structure of expressions rather than a partic-

ular representation, and this structure could be seen as defining the expression: “the syntax of the

language will have to be the same for all levels” [Puyen and Vauquois, 1960, p. 134, my translation].

Object and metalanguage

One of the best-known features of the Algol 60 report is its use of a formal notation, now commonly

known asBackus-Naur form(BNF), to specify the syntax of the language.

In a procedure reminiscent of Carnap’s “syntactical Gothicsymbols” [Carnap, 1937, p. 15],

the Algol 58 report defined letters to represent syntactic categories, and used a mixture of informal

definition and schematic templates to give syntactic definitions. For example, the set of digits is

defined by:

Figures� (arabic numerals 0, . . . , 9)

and the set of integers as follows:

Strings consisting of figures� only represent the (positive) integersG (including 0)
with the conventional meaning.

Based on this, numbers are defined as follows:

Form: N�G.G10�G where each G is an integer as defined above. [Perlis and Samelson, 1958,
p. 11]

Backus, however, was not satisfied with this semi-formal approach, and in 1959 argued that if

the language’s goal of supporting a variety of implementations on different machines was to be met,

There must exist a precise definition of those sequences of symbols which constitute
legal IAL [i.e. Algol 58] programs . . . For every legal program there must be a precise
definition of its ‘meaning’, the process or transformation which it describes, if any . . .
Heretofore there has existed no formal description of a machine-independent language
(other than that provided implicitly by a complete translating program). [Backus, 1959,
p. 129]

Backus provided a formal metalanguage sufficient to define the syntax of Algol 58. The syntac-

tic metalanguage was explained as follows:

To begin with, we shall needmetalinguistic formulae. Their interpretation is best ex-
plained by an example:
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Sequences of characters enclosed in “hi” represent metalinguistic variables whose val-
ues are strings of symbols. The marks “:�” and “or” are metalinguistic connectives.
Any mark in a formula, which is not a variable or a connective,denotes itself (or the
class of marks which are similar to it). Juxtaposition of marks and/or variables in a
formula signifies juxtaposition of the strings involved. Thus the formula above gives
a recursive rule for the formation of values of the variablehabi. It indicates thathabi
may have the value “(” or “[” or that given some legitimate value ofhabi, another may
be formed by following it with the character “(” or by following it with some value of
the variablehdi. [Backus, 1959, p. 129]

Backus’ notation was used by Peter Naur in the Algol 60 report[Naur et al., 1960]. By the

time the Algol 60 report was produced, this notation had beenadapted slightly with “::=” replacing

“:�” and “j” replacing “or”. In addition, it was made explicit that “the symbols used for distin-

guishing the metalinguistic variables (i.e. the sequencesof characters appearing within the bracketshi. . . ) have been chosen to be words describing approximately the nature of the corresponding vari-

able” [Naur et al., 1960, p. 301]; this was intended to provide an “immediate link between syntax

and semantics” [Naur, 1981]. In the final notation, the definition of the syntax of integer constants

appeared as follows:hdigiti ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9hunsigned integeri ::= hdigiti j hunsigned integerihdigitihintegeri ::= hunsigned integeri j +hunsigned integeri j �hunsigned integeri
The background to the invention of BNF is rather unclear. Backus later claimed that he had been

inspired by lectures given by Martin Davis on the work of EmilPost [Backus, 1980, Backus, 1981].

Davis, however, has stated that the only possible date for any such lectures was after the invention

of BNF, and so they cannot have been the immediate source of inspiration [Davis, 1988]. There was

some awareness within the computing community of Post’s work, however: Rosenbloom’s textbook

of 1950 [Rosenbloom, 1950] contained a chapter on “The General Syntax of Language” which was

largely an exposition of Post’s results, and this textbook was cited in some more theoretical com-

puting papers [Elgot, 1954, for example]. Other participants in the Algol development have sug-

gested, however, that awareness of techniques for formalizing syntax and their advantages was rather

widespread, at least among the European members of the committee [Bauer, 1981, Samelson, 1981].

Whatever the origins of the notation, however, the Algol 60 definition made explicit use of the

logical distinction between object and metalanguage, thusdrawing attention to the importance of

giving unambiguous syntactic definitions of programming languages. The specific formal notation
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introduced for syntactic specification was highly influential and widely emulated, even being applied

to existing languages such as Fortran [Rabinowitz, 1962].

Syntax

The syntax of Algol 60 was defined by means of a large number of BNF productions. In a few

cases, the productions gave an informal characterization of a syntactic class, for examplehstringi ::= hany sequence of basic symbols not containing ‘ or ’i
where the ‘metalinguistic variable’ on the right hand side is only a description of the intended set of

string and does not appear on the left-hand side of any production. To a much greater extent than

any previous language, however, the Algol report formally defined which texts were legal Algol

programs.

Various subformulas of the language were classified into three major categories, depending on

their semantic role.Expressionswere subformulas that denote values; like Fortran, Algol defined

algebraic formulas as expressions which denote numbers, but included in the same category boolean

expressions, denoting one of the valuestrueandfalse, and designational expressions, which denoted

program labels.Statementswere subformulas describing the basic operations performed by the

program, such as the assignment of a value to a variable, and also the structure of compound actions

involving for example iteration. Lastly,declarationswere subformulas which defined entities to be

used elsewhere in the program, such as variables and subprograms.

The definitions of the formulas of the language were mutuallyrecursive in various ways. For

example, ‘compound statements’ were defined which grouped asequence of statements within the

‘statement brackets’begin andend:hstatementi ::= hbasic statementi j hfor statementi j hcompound statementi j hblockihblocki ::= hblock headi ; hcompound tailihunlabelled compoundi ::= begin hcompound tailihcompound taili ::= hstatementi end j hstatementi ; hcompound tailihcompound statementi ::= hunlabelled compoundi j hlabeli : hcompound statementi
As the definition above shows, compound statements could include any other statements, includ-

ing further compound statements to any level of nesting. Furthermore, declarations could include

expressions, for example in defining the size of an array, andstatements could include both expres-

sions and declarations: for example, a ‘block head’ is a listof declarations that come into effect in

a particular compound statement.
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It was argued above that one innovation of Fortran, probablyinspired by logical examples,

was to give a recursive definition of the structure of arithmetical expressions. The Algol definition

extended this recursive approach to all the syntactic categories of the language. Thus an Algol pro-

gram could potentially have a complex, recursive structurequite different from the simple sequence

of instructions that characterized programs in Fortran andother autocodes.

The identification of programs

One seemingly trivial property of the formal languages usedin logic is that a ‘top-level’ category

of expressions is identified. These are the expressions which can be used to perform the speech

acts of interest: the predicate calculus, for example, is a language primarily designed to formalize

assertions, and the category of well-formed formulas is defined accordingly.

In programming languages, the members of the top-level syntactic category are not declarative

sentences but programs. A formally defined programming language, therefore, should therefore

define in purely structural terms what constitutes a program. This approach took a while to evolve,

however. The Algol 58 report gives the following explanation:

Sequences of statements and declarations, when appropriately combined, are called
programs. However, whereas complete and rigid rules for constructing translatable
statements are described in the following, no such rules canbe given in the case of
programs. Consequently, the notion of program must be considered to be informal
and intuitive, and the question whether a sequence of statements may be called a
program should be decided on the basis of the operational meaning of the sequence.
[Perlis and Samelson, 1958, p. 10]

In other words, the question of whether a given text was a program was considered to be a

semantic, not a syntactic, matter. However, no attempt was made to spell out a sufficient set of se-

mantic properties for qualification as a program, and by the time of the Algol 60 report the semantic

elements of this definition had been dropped. In Algol 60,

A program is a self-contained compound statement, i.e. a compound statement which
is not contained within another compound statement and which makes no use of other
compound statements not contained within it. [Naur et al., 1960, p. 300]

Semantics

When defining the syntax of Algol 58, Backus had written that “the formal treatment of the seman-

tics of legal programs will be included in a subsequent paper” [Backus, 1959, p. 129]. No such
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paper appeared, however, and in the Algol 60 report the semantics of the language were defined

informally.

The three syntactic categories, of expressions, statements and declarations were distinguished

by their differing semantic roles. An arithmetic expression was defined to be “a rule for computing

one real number by executing the indicated arithmetic operations on the actual numerical values

of the constituents of the expression” [Perlis and Samelson, 1958, p. 13]; presumably other types

of expressions, such as boolean expressions, were understood in the same way, though this was

not stated explicitly. Statements were defined to be “[c]losed and self-contained rules of opera-

tion” [Perlis and Samelson, 1958, p. 13], and declarations “state certain facts about entities referred

to within the program” [Perlis and Samelson, 1958, p. 17].

A very similar approach was adopted in the Algol 60 report, which stated that “[t]he purpose of

the algorithmic language is to describe computational processes” [Naur et al., 1960, p. 300]. Many

syntactic categories were accompanied by an description ofthe semantics of the formulas of that

category, suggesting the intention to produce a compositional semantic account of the language.

The description of the semantics were, however, informal and very similar in style to those given

for Algol 58.

Although the informal semantics were largely stated in terms of the effect that a given formula

would have on the execution of programs containing it, the precise nature of the virtual machine

on which Algol 60 programs could be considered to run was not initially made explicit. This was

probably a consequence both of the machine-independent aspirations of the language, and also its

complexity, particularly in the area of the recursive definition of compound statements. The details

of the ‘Algol machine’ were largely worked out in the course of writing compilers for the language,

and for a number of years the complexity of Algol compilers was often remarked upon, and in some

cases made the basis for criticism of the language.

5.7 The influence of logic on Algol

The previous section has described how Algol was presented as a formal language, using the meta-

linguistic framework developed for formal logic. Logic also appears to have influenced the design

of some of the features of Algol itself. For example, as well as arithmetic expressions, Algol defined

a category of boolean expressions similar to those of propositional logic. The two truth values were

defined, and a range of boolean operators defined. Algol therefore included an implementation of
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Boolean algebra which allowed conditions to be defined more succinctly than in previous languages.

Fortran, for example, originally only allowed conditions which compared the magnitude of a number

with zero.

The designers of Algol also appear to have been influenced by the notation and concepts of

the predicate calculus, and in particular by the ideas of substitution and of quantifiers as syntactic

devices which bind variables. This section describes how these features were treated as Algol

evolved.

‘Quantifiers’ in Algol 58

In Fortran, conditional execution of program statements was controlled by means of a conditional

jump statement which differed little from the kind of statement available in machine codes. In Algol

58, by contrast, any statement could be preceded by anif statement, which made the execution of

the statement depend on the truth-value of a given condition. For example, in

if (a> 0) ; c := a" 2 # � b " 2 #,
the assignment to c would only take place if the value of a was greater than zero. Theif statement,

and others such as thefor statement which had a similar syntactic role, were called ‘quantifiers’.

Presumably this terminology was chosen because, like the quantifiers of predicate logic, these state-

ments are prefixed to other statements and affect their interpretation in some way. However, there is

a significant syntactic difference between the two: whereasa quantified formula in logic is a single

formula formed by prefixing a quantifier to a subformula, the example above is not treated as a

single statement in Algol 58, but rather as two consecutive statements. This lead to a rather clumsy

definition of its semantics: “If the value of [the condition]is true, the statement following theif

statement will be executed. Otherwise, it will be bypassed and operation will be resumed with the

next statement following” [Perlis and Samelson, 1958, p. 14].

By contrast, because of the recursive definition of the syntax of statements in Algol 60, the

equivalent construct,

if a > 0 then  := a " 2� b " 2,

was a single statement whose effect when the condition is true is that of the substatement following

then, and the description of its meaning does not refer to the subsequent statement in the program.
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In Algol 60, however, the conditional part of the statement is no longer thought of as a prefix, and

the terminology of ‘quantifiers’ is no longer used.

Substitution

The substitution of an expression for a variable as a means ofgenerating new formulas from old

was widely used in logic and the�-calculus. Algol 58 defined a mechanism for substitution in the

do statement, which had the following form:do L1; L2 (S! ! I; : : : ; S! ! I):
HereL1 andL2 are labels identifying a sequence of statements, and the parentheses define a number

of substitutions whereby an identifierI would be replaced by an almost arbitrary string of symbolsS!. The effect was defined to be the same as that of executing the resulting code in place of the

do statement. In Algol 60, thedostatement was removed, but the notion of textual substitution was

preserved in the ‘call by name’ mechanism described below.

User-defined subroutines and parameter passing

Subroutines had been a prominent feature of machine code programing, and the methodological

advantages of splitting a large program into a number of independent and reusable components

were well understood. Integrating the subroutine concept with autocodes and formula translation

languages proved not to be straightforward, however. The original version of Fortran, for example,

allowed a predefined set of library routines to be called froma Fortran program, but there was no

way within the language to define a new subroutine [IBM, 1956].

In 1958, both Fortran II [IBM, 1958] and Algol 58 introduced the possibility of defining sub-

routines in the high-level language. In Fortran II, it was possible to compile subroutines separately

from a program, and combine the resulting machine-code filesto create a complete program; this

of course made it easy to reuse subroutines in more than one program. Algol 58, being an unim-

plemented language proposal, did not go into such detail, but it also included the ability to define

functions and procedures within the language.

One issue in the design of a subroutine facility in a languageis to decide how data is to be passed

from the main or calling program to the subroutine. Fortran II did not specify the mechanism for this

in detail, but assumed it was possible to pass both constant data and variables, including arrays, to
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subroutines, and that changes made by the subroutine to the data held in variables would be visible

to the main program on return from the subroutine.

By contrast, Algol 58 defined two mechanisms for passing datato subroutines. In one-line

function definitions, the formal parameters could only be identifiers, and the report implies that data

would be assigned to these variables before the function wascalled. This mechanism, later known

as ‘call by value’, fits the mathematical notion of a functionwhere parameters are treated as input

data which, from the point of view of the calling routine, cannot be changed by the function.

The second method of parameter passing used textual substitution, as defined independently by

thedostatement. The effect of calling a subroutine would be that of executing the statements making

up the subprogram, after textually substituting the actualparameters for the formal parameters. The

do statement was dropped in Algol 60, but substitution remained the default method for parameter

substitution in subprogram calls, the technique being known as ‘call by name’.

Thus Algol 60 defined two interpretation of the process of passing parameters to subroutines,

call by value and call by name. It is a striking coincidence that these correspond closely to the two

interpretations traditionally given to quantifiers in logic, with call by value resembling the tradi-

tional ‘objectual’ interpretation and call by name the ‘substitutional’ interpretation (re)introduced

to the logical literature by Ruth Barcan Marcus [Barcan Marcus, 1962], but there appears to be no

evidence that this work influenced the details of the parameter passing mechanisms of Algol.

Blocks and variable binding in Algol 60

A characteristic feature of quantifiers in logic is that theybind variables, in a sense making them

inaccessible from outside the quantified formula. An analogous property of subroutine definitions

was noted by Strachey and Wilkes, who in 1961 described the formal parameters of subroutines

as “bound variables” and other variables occurring in the body of a subroutine as “free variables”,

commenting further that “the formal parameters in a function definition are strictly bound variables

(that is, local to the definition)” [Strachey and Wilkes, 1961, p. 489]. The use of the term ‘local’

here makes a connection between variable binding and the Algol notion of ‘block’.

The definition of statements in Algol stated that a sequence of statements enclosed within the

special bracketsbegin andend was acompound statement. A block was a compound statement

which additionally contained some declarations. These appeared at the start of the block, before the

statements contained in the block. The Algol 60 report then stated:
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Any identifier occurring in a block may through a suitable definition be specified to
be local to the block in question. This means (a) that the entity represented by this
identifier inside the block has no existence outside it, and (b) that any entity repre-
sented by this identifier outside the block is completely inaccessible inside the block.
[Naur et al., 1960, p. 9]

The following artificial example shows one block nested inside another.

OUTER:begin integer i, j ;
j := 5 ;
INNER: begin integer j, k ;

j := 3 ;
k := 2� j ;
i := j ;

endblock INNER
endblock OUTER

Blocks implied a particular mechanism for the allocation ofstorage to variables. In the example

above, storage will first be allocated for the variables i andj in the outer block. On entering the

inner block, storage will be allocated for the variables j and k declared there. Crucially, the variable

j in the inner block will be allocated a different storage location from the variable j in the outer

block. At the end of each block, the storage allocated will beagain deallocated and any values in

the variables of that block will be lost.

The outer block has no access to the variables declared in theinner block, but the inner block

can access the variables of the outer block, as the assignment to i indicates. Further, variables in the

inner block are distinct from and ‘hide’ any variables with the same name in outer blocks: thus in

the example above k is assigned the value 6. On completion of the inner block, i and j in the outer

block have the values 3 and 5 respectively.

The local variables in a block, then, share some of the properties of bound variables in logic, in

that they are inaccessible outside the construct in which they are defined, and they can, for example,

be systematically renamed within such a construct without change of meaning, subject to the famil-

iar restrictions on avoiding name clashes. Procedure declarations also bound the variables appearing

as formal parameters, a process explained by invoking a “fictitious block” in which variables corre-

sponding to the parameters were defined [Naur et al., 1960, p.12]. As the quotation from Strachey

and Wilkes indicates, the interpretation of blocks as variable binding mechanisms was made soon

after the publication of the Algol report, and by 1980 it was apparently a commonplace, Mark Wells

writing that the concept of block structuring “appeared first in ALGOL 58–60, although it is related

of course to the idea of bound and free variables of logic” [Wells, 1980].
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5.8 Lisp and recursive function theory

The last two sections have argued that both the design of the Algol language and the way in which

it was presented were in many ways influenced by the existing example of logic, and that Algol was

conceived of as a formal language in the sense in which that term was understood in logic. This

was not the only direction in which programming notations developed, however. In the area of data

processing, for example, it was believed that the use of anything resembling even elementary math-

ematical notation would be unacceptable to users, and languages designed for use in this application

area such asFLOW-MATIC [Taylor, 1960] and its successor Cobol took their inspiration from natural

rather than formal languages.

Algol did not even represent the only way in which the resources of logic could be applied to

the task of designing programming languages. In 1960, shortly before the publication of the Algol

60 report, John McCarthy published the first description of the language Lisp [McCarthy, 1960]. As

this section explains, Lisp just as much as Algol could be described as being ‘based on logic’, but

with very different results.

Lisp was developed in response to the demands of programmingartificial intelligence applica-

tions. Experience had indicated that a particular requirement of programs in this area was to be able

to handle data structures which were of unpredictable size and which might vary in size throughout

the time a program was executing. In 1956, Newell and Simon developed the ‘Logic Theorist’, a

program intended to discovered proofs in propositional logic; they observed that “machine code,

although suitable for communicating with the computer, is not at all suitable for human thinking

or communication about complex systems” [Newell and Simon,1956, p. 62]. They therefore de-

veloped a pseudo-code designed specifically to support the operations required in this application.

Initially known as the “logic language” (and, incidentally, described as a “formal language”, though

without being defined in a particularly formal manner) this evolved into a family of notations known

collectively as ‘Information Processing Language’ (IPL) [Newell and Tonge, 1960].

The key data structures for this class of problem became known aslists: “IPL-V allows two

kinds of expressions:data list structures, which contain the information to be processed, androu-

tines, which define information processes” [Newell and Tonge, 1960, p. 205-6]. The system was

conceived of as a virtual computer, the “IPL Computer”, which included memory suitable for stor-

ing list structures and a set of primitive processes, analogous to the basic orders on a conventional

computer, defining basic operations on lists. Programs werethen written by combining these prim-
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itive processes in a similar manner to conventional interpreted pseudo-codes.

Lisp itself combined the data structures used in IPL with thealgebraic approach adopted by For-

tran and was characterized by McCarthy as an “algebraic list-processing language” [McCarthy, 1981,

p. 174]. Whereas IPL, like a machine code, only permitted sequences of the basic list operations

to be written, McCarthy’s approach would allowed complex expressions to be formed, analogous to

the conventional algebraic expressions supported by Fortran.

Although Lisp later became described as a programming language, it was originally referred to

as a “programming system . . . based on a scheme for representing the partial recursive functions of a

certain class of symbolic expressions” [McCarthy, 1960, p.184]. McCarthy’s initial presentation of

Lisp in many ways echoed the details of the logical work on computability carried out in the 1930s,

as the following summary indicates.

Firstly, McCarthy defined some mathematical notation for describing partial functions. As well

as the conventional means of forming new function from old byusing substitution and definition

by recursion, a new notation forconditional expressionwas introduced, allowing ‘definitions by

cases’ to be given by means of a single, formal expression. Church’s �-notation was used to

represent functions, and a new construct ‘label’ was introduced to bind names in function defi-

nitions [McCarthy, 1960, p. 186].

McCarthy then defined the data objects that were intended to be the objects of computation,

namely the class ofsymbolic expressions, or S-expressions. S-expressions were based on a set of

atoms, represented by strings of upper-case letters, and were defined by the following two rules:

1. Atoms are S-expressions.

2. If e1 ande2 are S-expressions, so is (e1 � e2).
Some notational abbreviations were then introduced so thata more convenient list notation could

be used. In particular, the list (a1, a2, . . .an) was defined to be the S-expression (a1 � (a2 � ( . . . (an� NIL) . . . ))), where NIL is a distinguished atom representingthe empty list.

Having defined S-expressions and lists, the next step was to define some specific functions to

manipulate them. McCarthy defined five elementary functions, namelyatom, eq, car, cdr andcons

which tested whether an S-expression was an atom and whethertwo atoms were equal, and allowed

non-atomic S-expressions to be constructed and their two components retrieved. All other functions

over S-expressions were defined from these basic functions using the methods specified earlier for

the construction of recursive functions.
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A class of meta-expressions, or M-expressions, was defined to represent functions over S-

expressions. These were distinguished from S-expressionsby using lower-case letters and different

forms of punctuation. For example, the function ‘ff’ returning the first atomic symbol in an S-

expressions could be defined by the following M-expression:

ff[x] = [atom[x] ! x; T ! ff[car[x]]]

By this point McCarthy had defined a class of data, the S-expressions, and a class of func-

tions over these data elements, or S-functions, represented by M-expressions. These two notations

were distinct: individual S-expressions could be represented by meta-notation in M-expressions.

However, McCarthy’s next step was to describe a method for representing M-expressions by S-

expressions, “in order to be able to use S-functions for making certain computations with S-functions

and for answering certain questions about S-functions” [McCarthy, 1960, p. 189].

Although McCarthy did not make this explicit, this was a formof Gödelization. Gödel had

showed how expressions denoting functions over natural numbers could be encoded as natural num-

bers, and in exactly the same way, McCarthy encoded M-expressions, which represented functions

over S-expressions, as S-expressions.

The purpose of this representation was to enable the definition of “a universal S-functionapply

which plays the theoretical role of a universal Turing machine and the practical role of an inter-

preter” [McCarthy, 1960, p. 184].apply is universal in the following sense: “if f is an S-expression

for an S-function f0 . . . then apply[f; args] and f0[arg1; . . . ; argn] are defined for the same values of

arg1, . . . , argn, and are equal when defined” [McCarthy, 1960,p. 189].apply, therefore, is capable

of ‘simulating’ every other S-function, given an encoding of it as an S-expression, in the same way

that the universal Turing machine can simulate the behaviour of any other machine, given a suitable

encoding of its machine table.

The Lisp programming system itself was based on a program APPLY which implemented the

universal functionapply. ‘Lisp programs’ are S-expressions representing the functions to be com-

puted, and these S-expressions are then evaluated by APPLY.Lisp can therefore fairly be described

as a programming language which to a large extent is based on prior work in formal logic. Unlike

Algol, however, Lisp is not presented as a formal language.

As noted above, Lisp is described by McCarthy as a programming ‘system’, not a language.

The purpose of the system is to compute functions of S-expressions; these functions are denoted by

M-expressions, but these must be translated into S-expressions before they can be submitted to the
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machine. In the context of the description given, it is impossible, and probably inappropriate, to

single out either of these notations as ‘the Lisp programming language’. Furthermore, the technical

apparatus associated with the definition of a formal language is missing from McCarthy’s paper.

Despite their name, M-expressions are not a metalanguage inthe sense of Tarski and Carnap, and

only an informal presentation of the legal forms of M-expression is given.

This is not to say, of course, that a description of Lisp as a formal language could not easily

be given, nor that McCarthy was unaware of the importance of formal languages; the discussion

of alternative formalisms, such as “linear Lisp”, at the endof the paper is evidence to the contrary.

Rather, Algol and Lisp should be viewed as embodying two verydifferent visions of how program-

ming language development could be rooted in logic. Rather than seeing existing programming

notations as examples of a new type of logical formalism, McCarthy emphasized the continuities

with existing notations, showing how expressions directlyrepresenting recursive functions over a

given class of data items could be executed by a machine.

5.9 Conclusion

This chapter has traced one path through the development of programming languages in the 1950s,

and argued that the desire to automate parts of the programming, or coding, process led, through

the development of systems for formula translation, to an understanding of programming notations

themselves as being formal languages, a view made most explicit in the Algol 60 proposal. Sec-

tion 5.6 argued that Algol was explicitly defined as a formal language, in the same way as logical

notations, and Section 5.7 described the way in which specific features of Algol were influenced by

logic.

This was not the only approach that was taken, however. Some languages, particularly those

intend for data processing applications, such as FLOW-MATIC and Cobol, emphasized instead the

extent to which programming notations could be made to resemble natural language, as a means

of generating naturalness of expression and readability. Athird approach, originating in the needs

of artificial intelligence, used the resources of mathematical logic, but in a very different way from

Algol.

However, it was the Algol proposals that caught people’s attention, and largely inspired the

developments in programming languages in the following decade. These developments are the

subject of the following chapters.



Chapter 6

The Algol research programme

Compared to some other early programming languages, Algol 60 was not particularly successful in

practical terms. Fortran and Cobol were very widely used in their respective application areas and

many systems using these languages are still in operation, as the efforts made to update software

before the year 2000 revealed. Lisp has also had a long history as a major implementation language

in the field of artificial intelligence. By contrast, the take-up of Algol 60 was widely regarded as

disappointing, even by advocates of the language.

At the same time, however, Algol 60 is widely considered to have been of great importance in

the development of programming languages. In the preamble to the published proceedings of the

1978 ACM conference on the history of programming languages, for example, it was described as

“an obvious landmark” and it was stated that “[m]ost theoretical, and much practical, language and

compiler work since 1960 has been based on ALGOL 60” [Wexelblat, 1981, p. xviii].

The conjunction of these two facts presents something of a puzzle: how did a language which

was a relative failure in practical terms later come to be regularly described as the most influential

of early programming languages? This question is made explicit, but not answered, in a detailed

history of the development of Algol 60 published by Bemer in 1969; in the introduction Bemer

quoted a comment made by Ershov, that “the reading of this history . . . does not enable the beginner

to understand why ALGOL, with a history that would seem more disappointing than triumphant,

changed the face of current programming” [Bemer, 1969, p. 151].

This chapter suggests an answer to this question. What changed the face of programming, it

will be argued, was not Algol 60 itself, but rather a coherentand comprehensive research pro-

gramme within which the Algol 60 report had the status of a paradigmatic achievement, in Kuhn’s

149
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terminology. This research programme led to significant developments in the design and theoretical

understanding of programming languages, and also to proposals concerning the process of software

development, the subject of the next chapter.

6.1 Algol 60 as a concrete paradigm

The creation, publication and subsequent development of Algol involved a large number of people

in both Europe and the USA, and the language has a rich and well-documented “politico-social

history” [Bemer, 1969]. The language acted as a catalyst forthe formation of many new groups

and initiatives, some of which are described in this section. There were earlier examples of so-

cial groups forming around particular computing technologies, notably the SHARE group formed

by users of the IBM 704 computer as a vehicle to enable the sharing of code examples and work-

ing practices [Akera, 2001]. Algol in 1960 was not a fully developed technology, however, but a

partially implemented language proposal, and the groups that formed round it had rather different

purposes and trajectories.

Following the publication of the Algol 58 report, a number ofcomputing centres in Europe be-

gan projects to create implementations of the language. In early 1959, representatives from these

centres met in Copenhagen and agreed to start a newsletter, the “ALGOL-Bulletin”, to enable contin-

ued collaboration and communication; the first bulletin wascirculated in March 1959 [Naur, 1959].

As well as information about the development of “generatorsfor translating ALGOL into machine

language”, the subject matter of the bulletins was expectedto include discussion on aspects of the

language that were found to be unclear in the published report, with a view to informing the subse-

quent description of the language.

The publication of the Algol 60 report was followed by a flurryof journal articles [Bemer, 1969,

p. 219–234]. Three topics were particularly prominent in this literature. First was the issue of im-

plementation: unlike Fortran, which had been made public inthe form of a working system, the

definition of Algol preceded any implementations, and it turned out that many new techniques were

required in order to create Algol translators. A second topic was discussion of the language it-

self: there were many proposals for changes to the language,and the question of how such changes

should be approved while maintaining the hoped-for universality of the language proved to be dif-

ficult to settle. Finally, the form of the language description, and in particular the use of a formal

metalanguage to describe the syntax, gave rise to a lot of discussion [Floyd, 1964].
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Algol turned out to be rather controversial, and never succeeded in gaining universal support,

particularly in the United States where as early as 1961 there was a perception that the language had

failed. SHARE withdrew support for the language, and work onan IBM translator stalled. Support

was much stronger in Europe, where the first translator had been completed in 1960.

Despite these practical problems, the first institutional support for work on programming lan-

guages emerged at this time, supported by the InternationalFederation for Information Processing

(IFIP). In 1962 IFIP formed a technical committee on programming languages (TC-2), with the

responsibility to look both at “general questions on formallanguages, such as concepts, description

and classification” and also the “study of specific programming languages” [Bemer, 1969, p. 197].

At the same time, a sub-committee, known as “Working group 2.1 (WG2.1)”, was established to “as-

sume responsibility for the development, specification andrefinement of ALGOL” [Bemer, 1969, p.

198]. This strongly suggests that Algol had played a significant part in focusing interest on a more

systematic approach to the study of programming languages.

At the same time, computing conferences and symposia began to take a greater interest in

issues related to programming languages. In 1962, for example, the general conference orga-

nized by IFIP was described as being “[i]n virtually all respects . . . a programming-oriented confer-

ence” [Bemer, 1969, p. 202]. More specialized events soon followed: a symposium on “Symbolic

Languages in Data Processing” was organized in 1962 by the International Computation Centre

in Rome [International Computation Center, 1962], and in 1964 TC-2 organized a working confer-

ence on “Formal Language Description Languages” [Steel, 1966]. As the name of this later event

suggests, attention was focused not only on programming languages themselves, but also on the

metalinguistic techniques used to describe them. The catalytic role of Algol in this explosion of in-

terest in programming languages was commented on by, among others, Edsgar Dijkstra, who wrote

that “through its defects [Algol 60] has induced a great number of people to think about the aims of

a ‘Programming Language’” [Dijkstra, 1962b, p. 537].

By the middle of the 1960s, then, the study of programming languages, and in particular an

approach treating programming notations as formal languages, was sufficiently well established

to have attracted considerable institutional support and recognition. The Algol 60 report played

a crucial role in this development as a “concrete paradigm”,in Kuhn’s sense of an exemplary

achievement which is “sufficiently unprecedented to attract an enduring group of adherents” and

“sufficiently open-ended to leave all sorts of problems for the redefined group of practitioners to re-
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solve” [Kuhn, 1962]. In recognition of its importance, the phrase ‘the Algol paradigm’ or ‘research

programme’ will henceforth be used to refer to the traditionof work on programming languages

inspired by the Algol 60 report.

6.2 Normal science in the Algol paradigm

In Kuhn’s account, acquisition of a paradigm marks the maturing of a scientific field, and enables

a transition to ‘normal science’ in which effort is focused on the solution of well-defined problems

using standard techniques. A comprehensive and highly influential description of the problems and

methods of normal science in the Algol research programme was given by John McCarthy, who in

the early 1960s outlined a programme for the development of amathematical theory, or science, of

computation, stressing the relationship between this proposed theory and mathematical logic: “[i]t

is reasonable to hope that the relationship between computation and mathematical logic will be as

fruitful in the next century as that between analysis and physics in the last” [McCarthy, 1963a, p.

69].

For McCarthy, the central problem that a theory of computation had to solve was a practical one:

“we would like to be able to prove that given procedures solvegiven problems” [McCarthy, 1962,

p. 21]. The ability to do this would radically change the nature of programming: “It should be

possible almost to eliminate debugging . . . Instead of debugging a program, one should prove that

it meets its specification” [McCarthy, 1962, p. 21]. This goal was restated in 1965: “The prize to

be won if we can develop a reasonable mathematical theory of computation is the elimination of

debugging” [McCarthy, 1965, p. 219].

However, the existing theories of computability and finite automata were oriented towards the

proof of general theoretical results, such as unsolvability theorems, and were unsuitable for applica-

tion to more concrete and practical problems. McCarthy therefore listed some of the specific results

and techniques that would be required, such as the ability totransform “an algorithm from a form

in which it is easily seen to give the right answers to an equivalent form guaranteed to give the same

answers, but which has other advantages such as speed” [McCarthy, 1961, p. 225].

A prerequisite for the development of a theory of the desiredtype was the existence of con-

venient notation for describing the “entities with which computer science deals”, namely “prob-

lems, procedures, data spaces, programs representing procedures in particular programming lan-

guages, and computers” [McCarthy, 1962, p. 22]. For McCarthy, this notation should take the
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form of a universal programming language, thus ruling out theoretical notations on the one hand

and machine-specific languages on the other; Algol was described as “being on the right track but

mainly lack[ing] the ability to describe different kinds ofdata”[p. 225] [McCarthy, 1961]. As a

preliminary, McCarthy described in detail a formalism similar to Lisp, based on the�-calculus,

which included ways of recursively defining functions computable on the basis of a given set of

primitive functions, and methods for defining new data spaces in terms of old ones. This notation

was not presented as a candidate for the universal language,but McCarthy believed that the design

of programming languages could be systematized and improved by applying the results of a theory

of computation to the task.

This chapter and the next consider in detail these two central aspects of McCarthy’s programme.

This chapter examines how the problems of describing programming languages and defining new

ones were approached in the Algol research programme, and inthe following chapter the project of

replacing debugging with proof is examined.

6.3 The description of programming languages

As described in Chapter 1, a distinction between syntax and semantics had been described for logic

by Tarski and Carnap in the 1930s. This distinction was drawnupon by Backus in his treatment

of Algol 58 [Backus, 1958], and this approach was followed bythe Algol 60 report. Syntax was

explicitly distinguished from semantics, and a formalizedmetalanguage was used to specify the

syntax, while the semantics were described in stilted English. The success of this approach pro-

vided a powerful motivation for exploring further the application of these metalogical notions to

programming languages.

The link to the earlier work on the formal language of logic was made explicit by a number of

people, such as Saul Gorn who, as part of an extended researchproject into the “theory of mechan-

ical languages” [Gorn, 1962], produced a glossary of fundamental terms in the area [Gorn, 1961].

Gorn applied Morris’s threefold division between pragmatics, semantics and syntax to the study of

mechanical languages, but gave slightly revised definitions which reflected the fact that program-

ming languages were intended to be processed by machine. Thus while Morris had characterized

pragmatics as being concerned with “the relation of signs tointerpreters” [Morris, 1938, p. 6], Gorn

glossed this as follows: “We will ‘interpret’ the wordsuserand interpreter to have a mechanical

sense, i.e. to mean ‘processor”’ [Gorn, 1961, p. 337].
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The application of Morris’s scheme to programming languages provides a clear example of

‘bridging’, in the terminology of Pickering’s scheme for conceptual innovation discussed earlier.

However, the differences between programming languages and logic meant that the subsequent

phase of ‘transcription’, the application of moves in the old domain to the new, was not as straight-

forward as might have been hoped. This section examines someof the issues that arose in this

process.

The role of syntax

According to the traditional view, the role of syntax was to define the set of sentences comprising a

language by means of purely formal or ‘structural’ rules; the semantics would then assign a meaning

to each of the sentences defined by the syntax, which could therefore be understood as specifying

a class of ‘meaningful’ sentences. The role of syntax and thenature of the relationship between

syntax and semantics came under some discussion at the Rome symposium in 1962, however, and

there were signs that this distinction could not be applied to programming languages without some

refinement.

In the semantic account given by Tarski for first-order logic, it was impossible to have a syntacti-

cally correct sentence to which the semantics do not assign ameaning. It was assumed, for example

by Gorn, that this property would hold also for programming languages. Christopher Strachey be-

lieved that this was the ideal situation, arguing that what he called the “integration” of syntax and

semantics would make it “impossible to make a statement which is syntactically correct but seman-

tically meaningless” [Strachey, 1962, p. 102]. However, hefelt that this ideal could not be achieved

for programming languages: “For nonsense program I mean onethat makes the machine work indef-

initely for example . . . if you want a language powerful enough to . . . specify all the programs that

you want to run, then we must allow the possibility of a language being misused” [Strachey, 1962,

p. 103]. Strachey here describes a situation where the syntax of a programming language permits

‘nonsense’, or non-terminating, programs to be written, but any attempt to modify the syntax to

outlaw the offending programs would leave a language in which many desirable and meaningful

programs could no longer be expressed. Although the extent to which this is seen as a problem

depends on the contestable semantic judgement that non-terminating programs are to be treated as

meaningless, it does at least point to a significant difference between the formal languages used in

programming and logic, and suggests that the work of transcription might not be straightforward.
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A more radical assault on the conventional metalinguistic scheme was made by van Wijngaarden

and Dijkstra, who introduced a notion of “syntax-free languages”, or more precisely, languages for

which syntactical rules did not have their conventional function: “The main idea in constructing a

general language, I think, is that the language should not beburdened by syntactical rules which

define meaningful texts” [van Wijngaarden, 1962, p. 409].

Dijkstra later gave an account of the philosophy underlyingthis view, in which meaning is inex-

tricable from the act of communication: “the reaction of my listener determines what my utterances

mean” [Dijkstra, 1963, p. 33]. It follows, according to Dijkstra, that to know the meaning of an ut-

terance is to be able to predict the reaction of a listener. This cannot be done precisely if the listener

is a human being, and Dijkstra describes conversations between humans as devices which provide

feedback enabling one to improve one’s predictive ability.If the listener is a machine, however, as

in the case of programming languages, its responses can be precisely predicted. The semantics of a

programming language can then be specified by “the description of a machine that has as reaction to

an arbitrary process description in this language the actual execution of the process” [Dijkstra, 1963,

p. 34], the point being that in the case of programming languages we can tell from the text alone

what process will be executed.

Given such a description, “syntax does not have a defining function” [Dijkstra, 1963, p. 34].

The semantic description will tell us what the machine will do in response to any program text

presented to it, so syntactical rules are no longer needed todefine a set of meaningful expressions.

It may still be found useful to formulate such rules, but theywill have only a practical value, to

illustrate structural relationships that exist between program texts and the machine’s responses, or

to make it easier to formulate texts that elicit a particularresponse from the machine.

The meaning of programs

As with syntax, the differences between programming languages and conventional logic meant that

there was considerable debate about how the meaning of a program could be characterized, and

what form a semantic definition of a programming language could take.

An early idea was to extend Backus’s notation to deal with more than just the syntax of a lan-

guage. Edgar Irons described a technique for “syntax directed compilation” of an object language

such as Algol into a target language, typically machine code, and pointed out that a compiler “also

serves todefinethe object language in terms of the target language” [Irons,1961, p. 51]. The
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technique adopted was to extend the syntactic production rules with clauses which described the

meaning of the expressions defined by a rule by specifying thetarget language expressions they

would be translated into. In general this would be expressedas a function of the meanings of the

subexpressions of an expression. Later work based on this approach made the link with semantics

quite explicit. Feldman, for example, described the targetlanguage in this scheme as a “seman-

tic meta-language” and described his overall system as giving a “formal semantics” of the object

language [Feldman, 1966, p. 3].

This work forms a distinctive approach to the problem of specifying programming language se-

mantics, rooted in the practical problem of writing compilers for the large number of new high-level

languages that were being developed. The hope was that a single ‘compiler-compiler’ could be

written which would automatically generate a compiler for anew language from its formal specifi-

cation. Two characteristic features of the approach derivefrom this orientation. Firstly, the meaning

of a program was taken to be its translation into some other language, often an idealized machine

code. A semantic definition of a language was therefore an explanation of how to carry out this

translation in the general case. Secondly, the method drew on the existing work in syntax, struc-

turing the semantic definition according the formal rules defining the syntax of a language. This

strategy therefore guaranteed a compositional semantics like that developed for mathematical logic

and also preserved the traditional role of syntax as definingthe set of meaningful expressions.

As discussed above, however, the appropriateness of this account of syntax in the case of pro-

gramming languages was questioned, and the view that semantics consisted primarily in transla-

tion also came under direct attack: at an ACM workshop on mechanical languages in 1963, Mc-

Carthy stated that “to describe semantics by means of a translation rule is an incorrect thing to

do” [McCarthy, 1963b, p. 134], and similar views were expressed by Ken Iverson and Maurice

Wilkes.

An alternative approach was related to the existing practice, described in the previous chapter,

of specifying the meaning of machine codes and pseudo-codesby describing the real or virtual

machine which interpreted the code. This technique was applied to the new programming lan-

guages of the 1960s, but with a new emphasis on giving a formaldefinition of the interpreting

machine. McCarthy hinted at this approach, stating that oneof the goals of a mathematical theory

of computation was “[t]o represent computers as well as computations in a formalism that per-

mits a treatment of the relationship between a computation and the computer that carries out the
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computation” [McCarthy, 1961, p. 225], and both van Wijngaarden and Dijkstra described abstract

machines which were, according to Dijkstra, “suitable means for the formulization of the semantic

definition of an algebraic language” [Dijkstra, 1962a, van Wijngaarden, 1962]. McCarthy had him-

self explained the meaning of Lisp programs by giving the definition of the ‘apply’ function which

evaluated them [McCarthy, 1960]. Although ‘apply’ was defined in the same formalism used for

the Lisp language, it was the description of a mechanical process for evaluating Lisp expressions, a

‘Lisp machine’ in effect.

The machine-based approach to semantics was further developed during the 1960s. In 1963,

Gilmore described a “Lisp-like” language, stating that “[i]t is our belief that important purposes

can be served by defining the semantics of a programming language by defining an abstract com-

puter for which the programming language is the machine language” [Gilmore, 1963, p. 73], and

a year later Elgot and Robinson described a class of “random-access stored-program machines”,

emphasizing that thereby “a basis is provided for endowing programming languages with seman-

tics” [Elgot and Robinson, 1964, p. 365]. This general approach was adopted in a project to define

the semantics of the programming language PL/I, about whichit was stated “[t]he method used

for the definition of a programming language is based on the definition of an abstract machine de-

scribed by the set of its states and its state transition function” [Lucas and Walk, 1969, p. 105]. By

the end of the decade, this general strategy was being referred to as theoperationalapproach to

programming language semantics [Lucas, 1972, Wegner, 1972].

However, in 1962 McCarthy had proposed a more abstract approach in which the details of the

computation performed dropped out of the semantic account,leaving just the relationship between

the initial data presented to the program and the results in produced. In general terms, he wrote,

“[t]he meaning of a program is defined by its effect on the state vector . . . In the case of ALGOL we

should have a function�0 = algol(�; �) which gives the value�0 of the state vector after the ALGOL

program� has stopped” [McCarthy, 1962, p. 27]. This approach was exemplified in a later paper

for a small subset of Algol, where it was explained that the state vector included “the value currently

assigned to each variable and also the statement number about to be executed” [McCarthy, 1964, p.

3]. In this paper McCarthy also asserted that his approach tosemantics “corresponds to the notions

of Tarski,et al., that are current in mathematical logic” [McCarthy, 1964, p. 6].

It is interesting to note how this account of semantics dealtwith the non-terminating programs

that Strachey wanted to describe as being meaningless. In the case of non-termination there is
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no final state, so the semantic function is undefined for such programs. For some, this was an

objection to McCarthy’s semantic account: because it omitted any account of the actions performed

by programs, it could not distinguish between, for example,two non-terminating programs which

were nevertheless performing very different computations[McCarthy, 1964, p. 10].

In giving this account, McCarthy appears to have been tryingto align programming languages

with established recursive function theory, much as he had done in the definition of Lisp. The syn-

tactic form and machine-based interpretation of programs in languages like Fortran and Algol made

them appear quite different from traditional notations such as the�-calculus, but at the semantic

level McCarthy suggested they were in fact similar, being just new ways of defining recursive func-

tions of their input data. McCarthy also suggested a strategy for dealing with Algol-like languages,

whereby a program would be translated into a single expression defining the function computed by

the program [McCarthy, 1964].

This strategy was developed in greater detail by Peter Landin, who described a form of “Ap-

plicative Expression” (AE) based on the�-calculus, together with an abstract machine which would

evaluate AEs [Landin, 1964]. This was soon followed by an explicit proposal for a program-

ming language based on AEs [Landin, 1966]. The semantics of this language were given an op-

erational definition by describing a machine which would execute AEs. For Algol 60, however,

Landin adopted McCarthy’s proposal, arguing that Algol programs could be translated into se-

mantically equivalent AEs; in fact, in order to deal with imperative features of Algol, such as

assignment, an extended form of ‘Imperative AEs’ were used,with a suitably extended abstract

machine [Landin, 1965a, Landin, 1965b].

Landin’s work therefore combined two approaches to semantics: the meaning of an Algol pro-

gram was to be given by translating it into the language of AEs, but the resulting AE program was to

be understood in the traditional way by describing a machineto interpret AEs. Christopher Strachey

proposed to go one step further, doing away with the need for an abstract machine in explaining the

semantics of a language and describing “even the imperativeparts of a programming language in

terms of applicative expressions” [Strachey, 1964, p. 201]. This required some deviation from the

techniques used in conventional logic, however. For example, the meaning of an expression in the

predicate calculus is built up in a strictly bottom-up way from the meanings of its subexpressions.

In an assignment statement, however, variables are interpreted differently depending on whether

they are on the ‘left’, in which case they denote assignable locations in the store, or the ‘right’, in
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which case they denote storable values. This distinction had been made explicit in connection with

the programming language CPL [Barron et al., 1963], and in order to get a compositional seman-

tics for programming languages, Strachey found it necessary to make use of this idea, describing

how a subexpression could have an “L-value” or an “R-value” depending on its context in a larger

expression.

Strachey developed his ideas further in the following yearsinto a comprehensive programme

that became known asdenotationalsemantics [Tennent, 1976]. Although it had its roots in the idea

of translating Algol programs into AEs, Strachey developeda distinctive view of the role of syntax

which helped differentiate denotational semantics from earlier accounts of semantics as transla-

tion. Strachey felt that an emphasis on the syntactic definitions of existing programming languages

obscured important, and as yet ill-understood, semantic ideas, and rather than describing a fixed

language he preferred to discuss “basic” or “fundamental” concepts [Strachey, 1967]. Following

McCarthy, he viewed details of syntax as essentially irrelevant, and worked instead with ‘abstract

syntax’, chosen to articulate clearly what he considered tobe the important semantic concepts. This

concern that the syntactic structure of a programming language clearly reflect its semantics was

shared by others in the field of programming language design,as the following sections describe.

To summarize, then, the application of the metalogical distinction between syntax and semantics

to programming languages resulted in the early 1960s in the development of at least three distinct

approaches to the problem of giving the semantics of programming languages. The translation-

based account was from the beginning associated with the practical task of writing compilers, but

despite occasional proposals “to define languages by their compilers” [Garwick, 1964], became less

frequently referred to as an approach to semantics, compared with the operational and denotational

techniques, in part because of the “inscrutable” nature of the semantic description that a compiler

embodied [Rochester and Goldfinger, 1964].

Pragmatics

Compared with syntax and semantics, the semiotic notion of pragmatics was rather underdevel-

oped in mathematical logic, and did not establish a very clear identity in the field of programming

languages. One contributory factor in this may have been uncertainty as to whether it concerned

the relationship between programming languages and human users, as implied by Morris’s original

definition, or mechanical processors, as in Gorn’s reformulation. This ambiguity is reflected in the
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papers presented at an ACM conference in 1965 on “Programming Languages and Pragmatics”:

some sessions were devoted to topics in the machine processing of languages, such as ‘translation’

and ‘interpretive assembly’, while others considered the requirements for programming languages

that were to be used in specific application areas, such as real-time applications and information

retrieval [ACM, 1966]. In an overview paper, Heinz Zemanek listed four specific areas as being

relevant to the pragmatics of programming languages—compilers, hardware and operating systems,

intended application areas and human users—but commented that “we are very far from any formal

treatment” [Zemanek, 1966].

One widely discussed aspect of pragmatics concerned the question of whether different pro-

gramming languages were required for different application areas. Distinctions were commonly

drawn, for example between so-called ‘scientific’ languages such as Fortran and Algol, and lan-

guages such as Cobol which provided facilities for data description that were felt to be necessary

for commercial applications. The perception of such differences had implications for the design of

new programming languages, as the next section discusses.

6.4 Different philosophies of programming language design

Investigation into new programming language concepts, andthe development of new languages,

continued throughout the 1960s. Conflicts between the basicassumptions made by different groups

led to a more general debate on the principles that should guide language design.

One approach is illustrated by the ‘New Programming Language’ (NPL), later to be known as

PL/I, whose development was started by IBM in 1963. The aims of the language emphasized conve-

nience and usability: it was intended to be used by programmers in a very wide range of application

areas, to be usable by both novice and expert programmers, and “to take a simple approach which

would permit a natural description of programs so that few errors would be introduced during the

transcription from the program formulation into NPL” [Radin and Rogoway, 1965, p. 9].

NPL was intended to be a language that would be easy to programin. It should not be necessary

to know every detail of the language before making productive use of it, and the language specifica-

tion should not place obstacles in the way of programmers. Two specific design criteria suggested

a route to this goal. First, “Anything goes. If a particular combination of symbols has a reasonably

sensible meaning, that meaning will be made official” [Radinand Rogoway, 1965, p. 9]. Secondly,

‘modularity’ would allow programmers to remain in ignorance of aspects of the language which
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were not appropriate for their current task or level of expertise: “one cannot get a compile error by

leaving something out” [Radin and Rogoway, 1965, p. 10]. Theoverall impression gained is that

NPL was intended in many respects to emulate natural, not formal, languages: the programmer,

or ‘speaker’, was allowed a great range and flexibility of expression, and it was assumed that the

interpreter had a considerable degree of sophistication enabling it to make out the intended meaning.

The desire to produce a language usable in different application areas and the concern showed

for the experience of programmers working with the languagesuggest that the NPL project was

primarily influenced by pragmatic concerns, as defined above. In contrast, in accordance with

McCarthy’s overall goal of eliminating debugging, the Algol research programme placed more em-

phasis on the avoidance of errors in programming, and evolved an approach to language design that

was more rooted in semantic issues.

In 1965 Dijkstra wrote a paper which considered how a “lone programmer” could have con-

fidence that the results of a program were in fact those intended [Dijkstra, 1965]. In some cases,

the results of a program can be directly checked, but in othercases this is not feasible. Dijkstra

considered the example of a program which tests the primality of large integers. If such a program

generates purported factors for a large integer, this result can be checked by direct calculation. If on

the other hand the program reports that there are no factors,the programmer has to decide how much

credence to put in this report. In its general form, this is anepistemological question. Very many

programs function as potential sources of knowledge, whether concerning the primality of integers

or the size of a gas bill, and Dijkstra asked in what circumstances we can place confidence in the

knowledge generated by such programs, and what we can do to increase this degree of confidence.

Dijkstra proposed an answer to this question which was basedon an analogy between mathe-

matical proofs and computer programs. He considered mathematical proof to be the best available

model of how to gain confidence in the correctness of assertions, and planned to apply the lessons

learnt from proof to the task of programming:

In spite of all its deficiencies, mathematical reasoning presents an outstanding model
of how to grasp extremely complicated structures with a brain of limited capacity. And
it seems worthwhile to investigate to what extent these proven methods can be trans-
planted to the art of computer usage. [Dijkstra, 1965, p. 5]

This analogy was to be exploited by adopting what a strategy of ‘divide and rule’, whereby a com-

plex artefact is treated as an assemblage of simpler ones.
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The analogy between proof construction and program construction is, again, striking.
In both cases the available starting points are given (axioms and existing theory versus
primitives and available library programs); in both cases the goal is given (the theorem
to be proved versus the desired performance); in both cases the complexity is tackled
by division into parts (lemmas versus subprograms and procedures). [Dijkstra, 1965, p.
5]

It seems clear from this that Dijkstra thought of the activity of programming as largely text-

based: a programmer should examine the source code of a program, and arrive at a conviction of

what the program is doing in much the same way as a mathematician reads a proof and comes to

accept the truth of the result that is proved. The application of these ideas to program development

are considered in the next chapter, but this approach also had a consequence for programming

language design: designers should identify the characteristics of programming languages that help

or hinder the efficacy of programs as documents which engender conviction, and design languages

which gave programmers the best chance of writing correct programs.

This issue came to prominence in the debate within WG2.1 about a successor language to Al-

gol 60. The dominant tendency within the group was towards a form of generalization known as

‘orthogonality’, where “all possible combinations of two or more independent concepts were al-

lowed” [van der Poel, 1986]. Given even a small number of basic concepts, this approach would

quickly lead to a large and complex language; the alternative was “only to insert those possibilities

in the language as were seen fit for some purpose” [van der Poel, 1986]. The orthogonal approach

formed the basis for the language Algol 68, while an alternative view was put forward in a paper

by Hoare and Wirth, who described the characteristics of a language that would be suitable for

Dijkstra’s purposes:

The perspicuity of programs is believed to be a property of equal benefit to their read-
ers and ultimately to their writers . . . [A language’s] powerand flexibility should derive
from unifying simplicity, rather than from proliferation of poorly integrated features
and facilities. As a consequence, for each purpose there will be exactly one obvi-
ously appropriate facility, so that there is minimal scope for erroneous choice and mis-
application of facilities, whether due to misunderstanding, inadvertence or inexperi-
ence. [Wirth and Hoare, 1966, p. 414]

The next two sections describe how this principle was applied in practice in the two areas of

control and data structures. This work formed a basis for a general approach to programming known

asstructured programming, which had a great influence on programming and program language

design, as discussed in the following chapter.
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6.5 Logic and the design of control structures

The debate over program language design became particularly heated over the design of control

structures, and in particular a controversy about the role of the jumps in programming. It had been

always been recognized that the conditional execution of code and the repeated execution of a block

of code were essential coding patterns, but in machine code these were implemented using jump

instructions to navigate around a program. In Fortran and later languages, unconditional jumps

were provided by means of a special statement, the so-called‘goto’ statement.

In addition to a primitive jump statement, programming languages gradually introduced spe-

cialized statements, or control structures, which encapsulated these common patterns of control.

For example, Fortran’sDO statement provided a basic iteration facility [IBM, 1956] and the con-

ditional expressions of Lisp made the conditional execution of code explicit [McCarthy, 1960]. Al-

gol 60 included both afor statement for writing loops, and anif statement for conditional execu-

tion [Naur et al., 1960].

The supposed benefits of specialized notation for describing the flow of control had been com-

mented on by a number of people. For example, Hamblin had written that “‘Control transfer’

instructions represent the biggest problem in this kind of notation . . . there are some hopes that

control transfer may be unnecessary in other cases if a sufficiently flexible system of conditional

instructions can be found” [Hamblin, 1957, p. 138-9], and McCarthy wrote of traditional notations

for recursive functions that “controlling the flow in this way is less natural than using conditional

expressions which control the flow directly” [McCarthy, 1961, p. 237]. It was Dijkstra, however,

who brought the issue to prominence and linked it with the more general issue of the readability of

programs:

I have done various programming experiments and compared the ALGOL text with
the text I got in modified versions of ALGOL 60 in which the gotostatement was
abolished and the for statement . . . was replaced by a primitive repetition clause. The
latter versions were more difficult to make: we are so familiar with the jump order that
it requires some effort to forget it! In all cases tried, however, the program without the
goto statements turned out to be shorter and more lucid. [Dijkstra, 1965]

The explanation that Dijkstra gives for the increase in clarity has specifically to do with the

termination properties of programs. Failure to terminate is usually caused by faulty iterations: if

iteration is consistently expressed throughout a program by a single control structure, rather than by

a number of unstructured jumps, it is plausible that it will be easier to tell from an examination of
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the program text whether or not it terminates.

Dijkstra’s comments about the benefits of programming without jumps raised the question of

whether it was in fact always possible to eliminate goto statements. In 1966 Böhm and Jacopini

published a technical result on normal forms in an artificialflowchart language which was widely

interpreted as showing that it is possible to write a programfor any algorithm using only condi-

tional and iterative control structures, and hence as showing the dispensability of the goto state-

ment [Böhm and Jacopini, 1966].

The theoretical possibility of doing without goto statements did not directly address Dijkstra’s

requirement for lucidity, however. As he later pointed out,there is no a priori reason to suppose

that a goto-less program produced by means of Böhm and Jacopini’s method will be any more

comprehensible or convincing than one using goto statements. Dijkstra expanded on his argument

in a famous letter to the editor of the Communications of the ACM, which appeared under the

strap-line “Go To Statement Considered Harmful”:

More recently I discovered why the use of thego to statement has such disastrous
effects, and I became convinced that thego to statement should be abolished from all
“higher level” programming languages (i.e. everything except, perhaps, plain machine
code). [Dijkstra, 1968b]

Dijkstra gave two distinct arguments for this recommendation. The first was related to a com-

ment made by Wirth and Hoare claiming that “[t]he notationalstructure of programs expressed in

the language should correspond closely with the dynamic structure of the processes they describe”

[Wirth and Hoare, 1966]. Dijkstra made the same point as follows: “we should do . . . our utmost

to shorten the conceptual gap between the static program andthe dynamic process, to make the

correspondence between the program (spread out in text space) and the process (spread out in time)

as trivial as possible” [Dijkstra, 1968b, p. 147].

This argument is related to the requirement that a compositional style of semantic explanation

should be given for programming languages, with the corollary that languages should not contain

statements which do not permit of such an explanation. Consider, for example, a control structure

that defines an iteration. The meaning of this statement, in the sense of the computational processes

it gives rise to when a program is running, is determined by the syntax of that single statement: in

order to understand what controls the number of times the iteration will take place, for example,

it is not necessary to look at any statements before or after the for statement itself. This can be

contrasted with a goto statement, which specifies a label which may be anywhere in the program:
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without knowing the location of the labelled statement, it is impossible to give the operational

meaning of the goto statement. The use of goto statements, therefore, suggests that the meaning of

a program can only be given globally.

Dijkstra’s second argument for the abolition of jumps was related to interest in the relation-

ship between programs and proof that was generated by, for example, papers by Floyd and Hoare

[Floyd, 1967, Hoare, 1968]. This work is considered in detail in the following chapter; in 1968

Dijkstra made relatively informal use of it, arguing that tounderstand a program, we must be able

to interpret the values of the variables in it. However, “we can interpret the value of a variable only

with respect to the progress of the program” [Dijkstra, 1968b, p. 147]. In order to do this, Dijkstra

claimed that it was necessary to be able to specify “textual indices to the dynamic process”, or in

other words properties of the program text which will enableus to characterize the point that the

dynamic process has reached when the program is running.

For example, in a program without jumps, the statements could be numbered, and the state

of the dynamic program could be given by simply stating the number of the currently executing

statement. The numbering scheme needs to be made more complex to cope with iteration constructs

and subroutine calls, and Dijkstra demonstrated how this could be achieved. If a program includes

goto statements, however, the graph of potential paths through the program becomes arbitrarily

complex, and there is no possibility of identifying the state of an executing program by any number

of textual indices. This argument was later summarized as follows:

Investigating how assertions about the possible computations (evolving in time) can be
made on account of the static program text, I have concluded that adherence to rigid
structuring disciplines is essential . . . sequencing should be controlled by alternative,
conditional and repetitive clauses and procedure calls, rather than by statements trans-
ferring control to labelled points. [Dijkstra, 1969b, p. 85–86]

Eliminating the goto statement did not, however, settle thequestion of what control structures

should be provided by a language. On the basis of practical experience and on Böhm and Jacopini’s

theoretical result, it was accepted that programmers needed the means to express the sequencing of

statements, and conditional and repeated execution of statements, but there were many ways to do

this, with a wide variety of control statements being definedin contemporary languages.

Initially, rather informal arguments were given for and against various constructs. For ex-

ample, Dijkstra referred to thefor statement in Algol 60 as being “pompous and over-elaborate”

[Dijkstra, 1965], and Wirth and Hoare wrote that:
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The purpose of iterative statements is to enable the programmer to specify iterations in
a simple and perspicuous manner, and to protect himself fromthe unexpected effects
of some subtle or careless error. . . . It is notorious that theALGOL 60 for statement
fails to satisfy any of these requirements, and therefore a drastic simplification has been
made. [Wirth and Hoare, 1966, p. 415]

For Dijkstra, a more principled way to evaluate different control structures was to consider

their proof-related properties. The choice of control structures should be subordinated to the need

to produce convincing arguments for the correctness of programs containing them, and not made

by appealing to their ‘power’ or the ‘usefulness’ they had for programmers. In 1969, Dijkstra

made this point by stating that he had “focused [his] attention . . . on the questions ‘for what pro-

gram structures can we give correctness proofs without undue labour, even if the programs get

large?’” [Dijkstra, 1969b, p. 85]. The same point is made more explicit in his monograph on struc-

tured programming, published in 1972 but widely circulatedbefore that: “Why do I propose to

adhere to this sequencing discipline? . . . For all three types of decomposition—and this seems to

me a great help—we know the appropriate pattern of reasoning” [Dijkstra, 1972, p. 20]. Hoare

made a similar point: “there is a theory that a high-level language feature should also simplify the

task of proving the correctness of programs expressed in thelanguage” [Hoare, 1972a, p. 336].

In order to reason about conditional statements, Dijkstra appealed to what he called “enumera-

tive reasoning”. In order to prove a given property, it mightbe necessary to consider a number of

different cases which together exhaust all the possibilities. If the desired result follows from each

case individually, then it is proved by appeal to a theorem ofthe form(b � p ^ :b � p) � p. For

example, suppose it is desired to show that execution of the following statements will preserve the

truth of the relation0 � r < dd [Dijkstra, 1972, p. 7]:

dd := dd / 2 ;
if dd� r do r := r – dd

There are two possible cases, depending on whether or not therelation dd � r holds after

execution of the first statement, and Dijkstra showed that ineach case execution of theif statement

will leave the desired relationship true.

In order to reason about iterations, Dijkstra made use of mathematical induction in conjunction

with a very simple form of statement, thewhile statement, which repeats a statement so long as a

specified condition remains true. Suppose that a program must examine a sequence of valuesdi,
whered1 = D anddi = f(di�1), and locate the first valuedk which satisfies a given propertyprop.
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By a proof based on induction over the number of times the statementd := f(d) has been executed,

Dijkstra showed that the following statements will achievethe required effect [Dijkstra, 1972, p. 8]:

d := D ;
while non prop(d) do d := f(d)

Dijkstra also provided a proof that the loop terminates after thekth iteration.

Dijkstra also gave an example of how enumerative and inductive reasoning can be used to prove

the correctness of a small program [Dijkstra, 1972, pp. 12–14]. The proof was presented in a style

typical of informal mathematical reasoning, consisting ofexplanatory text in English interspersed

with formally expressed propositions and pieces of programtext, but nevertheless Dijkstra pro-

fessed himself “infuriated” by the length and complexity ofthe proofs obtained in demonstrating

the correctness of even extremely small program fragments,and recognized the impracticality of

such proofs being carried out as a normal part of software development.

The solution proposed to this problem was the idea that certain program structures should ac-

quire the status of theorems. For example, Dijkstra suggested that the conclusion proved about the

loop above could be considered as the “Linear Search Theorem”, and claimed that

when a programmer considers a construction like [the loop above] as obviously cor-
rect, he can do so because he is familiar with the construction. I prefer to regard his
behaviour as an unconscious appeal to a theorem heknows, although perhaps he has
never bothered to formulate it; and once in his life he has convinced himself of its truth,
although he has probably forgotten which way he did it [Dijkstra, 1972, p. 10].

In summary, then, this section has shown how specific proposals for the design of control struc-

tures in programming languages were strongly influenced by the logical orientation of the Algol

research programme. A general desire to align the syntacticand semantic structure of program texts

prompted a move away from goto statements to more specialized control structures, the specific

form of which was motivated by a desire to make the correctness programs accessible to logical

reasoning, even if programmers made only informal and second-hand use of the logical results.

6.6 Logic and data structures

As well as the flow of control, the manner in which programminglanguages enabled the description

and manipulation of data was extensively investigated in the 1960s. To a greater extent than with



CHAPTER 6. THE ALGOL RESEARCH PROGRAMME 168

control structures, it was believed that the requirements for data representation differed in different

application areas. In the period around 1960, at least threedistinct approaches can be identified.

Firstly, the so-called scientific languages such as Fortranand Algol 60 were acknowledged to

be rather weak in their support for different kinds of data. With their emphasis on numerical cal-

culation, scientific languages distinguished between integer and floating-point numbers, but textual

data was poorly supported. The only widely available data structure was the array, which could

store a fixed-size collection of numbers: arrays enabled mathematical structures such as vectors and

matrices to be modelled.

However, the development of non-numerical programs in the field of artificial intelligence had

revealed a class of applications which manipulated symbolic rather than numerical data, and in

which the amount of data that a program would need to handle, and the structure of that data, could

not be predicted in advance. Languages were therefore developed which enabled programmers

to define data structures of arbitrary size and complexity: the best known were the list structures

present in languages such as IPL [Newell and Tonge, 1960] andLisp [McCarthy, 1960].

Finally, commercial data processing applications were accustomed to handling files of data,

consisting of a set of records, each of which was in turn made up of a number of fields or data

items which could be in a variety of textual or numeric formats. Languages designed for these

applications, such as Cobol, provided the means to give a detailed description of the structure of the

files that would be manipulated by a program.

Attempts were made, both in practice and in theory, to unify these different approaches. Prac-

tical proposals included a number of ad hoc suggestions to incorporate the features from one

area into a language of a different type; for example, proposals were made to add support for

strings and lists to Algol 60 [Green et al., 1959], and some proposals for new languages, such as

NPL [Radin and Rogoway, 1965], attempted to include features from all areas.

The general problem was summarized by Douglas Ross in the context of a computer-aided

design system which needed to be able to model the propertiesof a wide range of objects: “be-

fore anything else we must provide for a completely general method of storing and manipulating

arbitrarily complex information from any source, and a powerful language facility for describing

data forms and the desired manipulations of data” [Ross and Rodriguez, 1963, p. 306]. Ross’s

solution envisaged “problems as being composed of interconnectedn-component elements of a

general type” [Ross, 1961, p. 147]. Ann-component element provided a way of grouping together
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an arbitrary number of symbolic and numeric data items to provide “a single unit of information

about a problem, which specifies in each of its components oneattribute or property of the ele-

ment” [Ross and Rodriguez, 1963, p. 306]. Elements were allowed to refer to each other, and the

resulting network of linked elements was described by Ross as aplex. Ross viewed plexes as sim-

pler in general than list structures, in which each element could hold only two data elements, and as

providing a way of uniting the manipulation of both symbolicand numerical data.

The integration of these ideas into Algol-like languages was considered by Wirth and Hoare.

Their proposal for a successor to Algol 60 introduced the concept of arecord, which could be used

to “represent inside the computer some discrete physical orconceptual object to be examined or

manipulated by the program” [Wirth and Hoare, 1966, p. 416]:this was essentially the same as

Ross’sn-component element, but the change of name made an explicit link to the terminology

employed in the field of data processing. With each record wasdefined an associated value known

as areferencewhich uniquely identified that record: by including in one record references to others,

complex data structures equivalent to Ross’s plexes could be constructed.

Unlike arrays, records could be created as required when a program was running, thus providing

programmers with the ability to create data structures whose size could vary dynamically according

to the requirements of a program. Thus this single mechanismprovided a way of unifying the three

distinct approaches to data structuring found in programming languages.

Records with a common structure intended to capture “the natural classification of objects under

some generic term, for example:person, town or quadrilateral” [Wirth and Hoare, 1966, p. 417]

were considered to be grouped into equivalence classes, known asrecord classes. By defining the

class of each record explicitly in a program, in the same way as numeric variables were declared to

hold integers or floating-point numbers, it was proposed that the compiler could detect programming

errors that might be caused by mistaking the structure of a record indicated by a particular reference.

These proposals about records and record classes were incorporated into the Pascal language

[Wirth, 1971b]. Pascal defined a number ofscalar types, representing atomic data values such as

numbers, characters, user-defined symbols and references (called ‘pointers’ in Pascal), and a number

of structured typesby means of which data values could be combined to create morecomplex,

structured data values. Structured types were defined bytype expressions, and the form of these

type expressions, and by extension the data structures defined by them, were strongly influenced by

theoretical work on data structures that had been carried out in parallel with the practical language
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developments.

An early theoretical proposal was made by McCarthy. As we have seen, McCarthy viewed

computation as the definition of computable functions over given classes of data, but he pointed

out that the theory of data was not as well developed as that ofcomputable functions: “Procedures

operate on members of certain data spaces and produce members of other data spaces . . . A num-

ber of operations are known for constructing new data spacesfrom simpler ones, but there is as

yet no general theory of representable data spaces comparable to the theory of computable func-

tions” [McCarthy, 1962, p. 21]. McCarthy sketched the beginnings of such a theory by identifying

data spaces with sets, arguing that data spaces could be defined by recursive equations which used

the primitive operations of Cartesian product, direct union and the formation of the power set. For

example, the equationS = A� S � S could be interpreted as defining “the set of S-expressions on

the alphabet A” [McCarthy, 1961, p. 231-2].

This approach was further developed by Hoare, who developeda theory proposing that types in

programming languages could be understood as denoting setsof data values. Given a number of

basic types, defined by enumeration, further types could be defined by means of a range of opera-

tors, in the manner proposed by McCarthy. The link with set theory was made explicit: “The types

in which we are interested are those already familiar to mathematicians: namely, Cartesian Prod-

ucts, Discriminated Unions, Sets, Functions, Sequences and Recursive Structures” [Hoare, 1972b,

p. 93]. Some of these operations corresponded to existing data structures: records, for example,

were understood to be elements of the Cartesian product of the types of their components. Others,

such as the set of subsets of a given set, corresponded to purely mathematical operators which had

not been implemented in practical languages.

Pascal drew upon this theoretical work by defining a number ofstructured types many of which

were based upon the set theoretical operators described by McCarthy and Hoare [Wirth, 1971b, p.

37]. For example, record types could be defined which corresponded to the Cartesian product of

the types of the record components, and a “powerset structure” defined a type whose elements were

sets of elements of a given type.

It proved impossible, or impractical, for Pascal to implement fully Hoare’s theoretical account.

For example, the powerset structure was limited so that onlypowersets of certain small scalar types

could be formed. Also, Pascal did not provide a data structure corresponding directly to the dis-

criminated union operation of set theory. Instead, record types could include a number ofvariants



CHAPTER 6. THE ALGOL RESEARCH PROGRAMME 171

identified by tags; by this means, a record type could represent either a Cartesian product or a

discriminated union.

Another area of difficulty was presented by the pointers, or references, used to construct linked

networks of records. In Pascal, pointers were themselves data values, represented as values of

pointer types. A pointer could be stored in a record, say, allowing structures analogous to Ross’s

plexes to be constructed. However, there is no obvious set-theoretic analogue to pointers: in set

theory, there is no intrinsic connection between one data value and another, and no obvious way of

interpreting the computer-based notion of one data value ‘pointing to’ another. Instead, McCarthy

and Hoare had defined plex-like structures by means of recursive type definitions.

A recursive type definition would model a relationship between data valuesa andb by including

a copy ofb in a. By contrast, a Pascal representation would include a pointer tob in a. However,

the semantics of these two representations are different, as can be seen by considering the situation

where the value ofb is updated. With pointers, this update is immediately visible toa, as it contains

only a pointer to the now updated value ofb. With a recursive type, however,a now contains an out

of date copy ofb, and clearly it may take significant programming effort to make sure that this copy

is kept consistent with the changing value ofb.
Despite these shortcomings and inconsistencies, however,Pascal’s type system was a product

of a collaboration between theory and practice similar to the case of control structures. In both

cases, the design of certain central aspects of programminglanguages was profoundly influenced

by theoretical considerations drawn from logic and set theory.

6.7 Modelling data for information retrieval

At the beginning of the 1960s, the development of the two areas of scientific and data processing

programming systems were carried out largely independently. Nevertheless, logic and set theory

played a significant role in the development of information retrieval systems as well as in program-

ming languages oriented towards scientific applications.

The assumption underlying the design of the so-called scientific languages was that programs

were written to perform particular computations, to generate a set of results from a given set of input

data. This assumption lay behind McCarthy’s proposal, described above, to model the semantics of

programs by their input-output functions. Data structuressuch as variables and arrays were defined

as required in the program itself, in the blocks containing the code that manipulated that data, and
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it was assumed that it would be a relatively straight-forward task for a program to read in the data

that it required for a particular run.

A different model was assumed in the field of data processing applications: “an information

retrieval system consists of a file structure to index and hold information . . . [and] a body of pro-

grams for performing the various processing tasks” [Colilla and Sams, 1962, p. 11]. Thus many

programs might be written to process the same set of data, which therefore had to be understood to

exist independently of any particular program. This differing philosophy of data had implications

for programming language design: in Cobol, for example, thedescription of the structure of the

external files and other data used by a program was placed in a ‘data division’ which was separate

from the ‘procedure division’ containing executable statements [Sammet, 1962].

Cobol encapsulated a model where data was thought of as beinggrouped into a number offiles,

each consisting of a set ofrecords. Elementary itemsin records were ‘atomic’ pieces of data, and

records could be given a hierarchical structure in which subrecords at various levels could be defined

to enable a number of elementary items to be handled as a single unit. However, from the beginning

of the 1960s proposals were also made to treat data in a more abstract way. For example, Lionello

Lombardi objected to the separation of “descriptive” and “executable” statements, and proposed a

“boolean algebra of files” which would enable these two aspects of information retrieval systems to

be better integrated [Lombardi, 1960].

A more comprehensive attempt along the same lines was the proposal for an “information alge-

bra”, published in 1962 by the Language Structure Group of the CODASYL Development Commit-

tee [Bosak et al., 1962]. This group had been established in 1959 to study and make recommenda-

tions on the languages to be used for data processing applications. The information algebra aspired

to provide a theoretical foundation for information systems, based on “the concepts of Modern

Algebra and Point Set Theory”, which would guide the development of future programming lan-

guages. The report enumerated various shortcomings in existing languages, and hoped to address

them largely by defining a declarative rather than a procedural framework.

The report gave the following general definition of how an information system should deal with

those aspects of the world relevant to a given application:

An information system deals with objects and events in the real world that are of in-
terest. These real objects and events, called “entities”, are represented in the system
by data. The data processing system contains information from which the desired out-
puts can be extracted through processing. Information about a particular entity is in
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the form of “values” which describe quantitatively or qualitatively a set of attributes or
“properties” that have significance in the system. [Bosak etal., 1962, p. 190]

The designer of an information system for a particular application should begin by defining all

the relevant properties of the entities involved in the application. With each property was associated

avalue set. For example, the value set associated with a property representing the salary of employ-

ees in a company might be the set of natural numbers. Theproperty spaceof the application was

defined to be the Cartesian product of the value sets defined for the various properties.

Entities were represented by points in this property space,or in other words by a ordered set

(or tuple) of values. This implies that each entity was associated with exactly one value from the

value set for each property. Special null values were definedto deal with properties that might be

irrelevant for given entities.

The information algebra itself provided a way of defining groups of data points and operations

on these groups. This was intended to provide a means to definethe data processing functions

required by a typical application.

It is interesting to compare the approach taken by the information algebra to that of researchers

interested in the application of mathematics and logic in programming. The same areas of math-

ematics were used to model data in both areas, namely set theory and abstract algebra, but in one

respect the approach taken by researchers in the Algol research programme differed from a purely

algebraic approach.

In the formal presentation of the information algebra, it was stated that “[t]he Algebra is built

on three undefined concepts: entity, property and value” [Bosak et al., 1962, p, 191]. However, the

concept of an entity played little part in the subsequent formal definition of the algebra, referring

instead to the external objects being modelled. A methodological principle in constructing a prop-

erty space for a given application was that each entity should be represented by a unique point in

property space.

A model constructed using the information algebra, therefore, contained no direct representation

of the entities being modelled. An entity was represented solely as the collection of the values of its

properties at a given time. A consequence of this type of representation is that, over time, a given

entity would be represented by many different points in property space, as the values associated with

its various properties changed. The model itself provided no representation of the fact that these are

properties of thesameentity at different times.
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This approach requires that care be taken in the selection ofthe set of properties to be used

in a given information system to avoid the situation where more than one entity is represented by

the same point in property space. For example, a payroll system that used only the properties of

‘employee name’ and ‘salary’ would be unable to handle the situation where two employees had

the same name and salary. An information system designer must ensure that different entities will

always have different values for some subset of the properties in use. This was usually achieved by

defining properties such as ‘employee payroll number’ whichby would be guaranteed to be distinct

for each entity modelled by the system.

As discussed in the previous section, Ross had proposed a general technique for modelling data

about an arbitrary collection of entities using “plexes” of“n-component elements”. Rather than

being based on an abstract data space, however, Ross’s proposal was based on an abstract view

of a computer’s memory, in which data about distinct entities which happened to share the same

properties could easily coexist at different locations in the store. They would be distinguishable by

the fact that the values referring, or pointing, to them would be distinct. Thus, in contrast with the

information algebra, Ross’s proposal made use of data, in the form of references, that was not part

of the application being modelled.

The distinction between these two approaches was maintained later in the 1960s as more con-

crete proposals for database systems emerged. It was increasingly felt that even a file-based model

like Cobol’s did not recognize the centrality of data in manyapplication areas. Particularly in large

commercial organizations, the data that was held could be a significant economic asset and have a

lifetime much longer than that of the programs which manipulate it. The same data set might need

to be processed by many different programs, for different purposes. An alternative perspective was

required, one which made data independent of programs, allowing it to take on a life of its own.

As Charles Bachman, a database researcher, put it in 1973, the move from files to database could

be viewed as a kind of Copernican revolution, challenging the perceived centrality of programs and

proposing a new model of computation in which programs were viewed as satellites of a central

data repository [Bachman, 1973].

A number of different database models were put forward, but they shared a number of character-

istics. Firstly, like the information algebra and Cobol, databases were based on a model consisting

of files and records, with each record consisting of a number of primitive data items. However,

unlike the Information Algebra, which defined a single undifferentiated property space to cover all
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the data in an application, and Cobol, which assumed a collection of independently defined files, a

database is conceived of as a structured collection of heterogeneous files whose interrelationships

are specified by means of a single overarching databaseschema.

Secondly, as databases are assumed to be independent of particular programs, programs using

databases cannot in general access data items based on theirlocation in computer memory. Entities

can only be identified in a database by looking at the actual data values stored for each. For this to be

possible, records must have some unique attribute distinguishing them from all other records in the

file. Entities often do not have this property: for example, we cannot assume that the individuals in

a group of people will be uniquely identified by their names. To get round this problem, the records

in a database typically include an attribute or attributes,known as akey, whose value is guaranteed

to be unique within the file.

Finally, a database schema will normally record information about significant relationships be-

tween the entities. This is done by associating in some way the key values for related entities. The

key for one entity might occur in the record for another, or a particular record might store only the

key values of related entities. For example, one field in a record for an employee may be the key

attribute for a file of departments within a company. The value of this field in an employee record

would enable a particular department record to be located, thus modelling the fact that the employee

works in a particular department.

A prominent proposal for database design at the end of the 1960s was for ‘network’ databases,

based on earlier work by Charles Bachman and formalized by the CODASYL committee which

also maintained the definition of the Cobol languages [CODASYL Data Base Task Group, 1969].

Network databases are based on two primitive concepts, the file and the ‘set’. Sets are the vehicles

for representing relationships within a network database:all the records which are related in a

particular way to a given record, such as the set of employeesthat work in a particular department,

constitute a set of records, explicitly linked together by pointers into a chain of records.

Bachman described the way a programmer worked with network databases as “navigation”

[Bachman, 1973]; a similar metaphor was used by others, suchas Jay Earley who referred to “access

paths” through data structures [Earley, 1971]. Programs accessing the data have various notions of

a ‘current location’, and by means of commands embedded in a programming languages such as

Cobol can update the current location and thereby move from data item to data item within the

database. For example, suppose a program has to process all the employees working in a particular



CHAPTER 6. THE ALGOL RESEARCH PROGRAMME 176

department. The relevant records are physically linked in the database as part of a set; the program

will record the current position within this set, and a programming operation is provided to move to

the next item in the set. This can be repeated until every record in the set has been processed. Thus

programs access such databases ‘from the inside’, as it were, a record at a time.

An alternative model, the ‘relational’ model was introduced by Ted Codd in a paper published

in 1970 [Codd, 1970]. There were two main differences between the relational and network model.

Firstly, the relational data model was based on a single structuring concept, the relation. This is

basically the set-theoretical concept of a relation, or Cartesian product of sets, used here as a formal

model of records. No special data structure, such as CODASYLsets, was used to model rela-

tionships between entities. Rather, relationships were modelled by pairing up the key fields of the

related entities, and storing these pairs in a further relation. So whereas network databases had two

primitive concepts, files and sets, corresponding to the informal notions of entity and relationship,

relation databases have one primitive concept, the relation, which models both. One advantage

claimed for this was that it kept the logical structure of thedata was independent of its physical

representation, thus making updates and modifications to the storage strategy easier, because they

would not necessarily imply changes to the application programs using the database.

Secondly, data manipulation in the relational model does not proceed by means of record-at-

a-time navigation through the database. Rather, a number ofhigh-level operations on relations are

provided, the most significant of which is perhaps the ‘join’, an operation whereby two relations

can be combined into one. These operations are defined to workon whole relations, rather than on

individual records, and return new relations as their results. These resulting relations are logical,

rather than being physically stored in the database, but as data structures they are identical to the

relations defined in the database schema. This means that they can be used as the input to further

operations, thus enabling data manipulation to be defined bymeans of the repeated application of a

small set of powerful operations.

6.8 Conclusions

This chapter has discussed the use of logic and algebra in computer science in the 1960s in the areas

of programming language design and the development of theoretical models for databases. It was

argued that the publication of the Algol 60 report catalysedthe formation of a coherent research

programme aimed at using logic as a foundation for understanding and developing programming
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languages. This proposes an answer to Ershov’s implicit demand, quoted at the beginning of the

chapter, for an explanation of the influence of Algol 60 givenits relative lack of practical success.

Even in the context of this research programme, however, theuse of logic was not simply a

case of applying theoretical results and drawing straightforward consequences for programming

languages. Even fundamental concepts, such as the roles of syntax and semantics, could be con-

tested and significant amounts of work were required to establish how logic could be applied to

programming languages. Nevertheless, significant resultswere obtained: in particular, an influen-

tial tradition of program language design was formulated, based on the idea that the syntax of a

language should as far as possible reflect its semantics in a clear and unambiguous way.

Logic and algebra were also used to investigate the properties of data structures, both in the so-

called scientific languages and the field of data processing applications. In this area, the concepts

of syntax, semantics and proof turned out to be less useful than the tools of set theory and abstract

algebra, but nevertheless there are structural similarities between the issues raised in both areas.

Perhaps the most striking of these can be described as a move away from a step-by-step approach

to computation to one which made greater use of high-level operators described in terms of their

overall effect. In the area of control structures, this can be seen in the introduction of control

structures, embodying frequently occurring patterns of computation, in place of the goto statement.

In the database world, the relational model with its set of general algebraic operations would in the

coming years supersede the network model with its reliance on navigation from record to record in

the database, a procedure in itself reminiscent of a jump operation.

However, this transition was incompletely carried out in programming languages themselves.

For example, Pascal incorporated a ‘network’ model of data in the form of records and pointers, and

despite Hoare’s attempt to provide a theoretical model for this in the form of recursive definition

of data types, later programming languages have preserved aform of programming which relies

on ‘navigation’ between data items. These developments will be considered in Chapter 8; the next

chapter considers a different aspect of the Algol research programme, namely the introduction of

logical ideas into the process of program development.



Chapter 7

The logic of correctness in software

engineering

This chapter describes the impact of the Algol research programme on the practice of software

development. The aim was to improve the quality of software development and to ensure that

systems that met their users’ expectations and were completed economically and on schedule.

This concern came to prominence in the mid-1960s in responseto a perceived ‘software crisis’

widely discussed at a NATO conference which brought the term‘software engineering’ to promi-

nence [Naur and Randell, 1969].

The approach of the Algol paradigm to these concerns was twofold. Firstly, a particular notion

of “correctness” was defined for software, namely the existence of a particular type of consistency

between a program and its specification. This was claimed to be the most important property of

a software system, and was characterized in such a way as to make plausible the possibility of

applying a type of proof to software development.

Secondly, practical programming techniques were proposedwhich would increase the likeli-

hood of correct programs being developed. Some of these techniques drew upon the work on desir-

able properties of programming languages that was described in the previous chapter, but from the

beginning of the 1970s this work was increasingly presentedin a way that made it accessible to the

software industry and not solely to researchers.

178
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7.1 Checking computations

The use of large-scale automatic computers raised the question of how the correctness of the results

produced could be guaranteed. The meaning of ‘correctness’in this context changed as computing

and programming technology evolved and brought different issues to prominence. With the earliest

machines, whose reliable functioning could not be taken forgranted, the problem was taken to be

that of checking the computation performed by the machine, to see if a correct answer had been

produced. So, for example, Aiken and Hopper wrote of Mark I that “of paramount importance in

the design of a sequence control tape, are the checks on the computation” [Aiken and Hopper, 1946,

p. 525].

Aiken and Hopper identified three distinct sources of error.Firstly, errors could be made in the

mathematical formulation of the problem being solved. These errors did not differ in principle from

those that had been made in the context of manual computation, however, and familiar mathemati-

cal checks could be applied to detect them. Secondly, errorscould be introduced by malfunctioning

hardware. These raised issues of reliability, but were relatively easily dealt with by electrical engi-

neering methods for ensuring the reliability of circuits.

A third and novel source of error was introduced by the processes involved in transferring the

mathematical solution of a problem onto the computer. Aikenand Hopper classified these as hu-

man error: “two major sources of human error, incorrect switch settings and incorrect plugging, are

perhaps the most serious of all” [Aiken and Hopper, 1946, p. 525], as in the absence of a feasible

mathematical check on the final results of a computation these errors could easily go undetected.

The precautions required to avoid such errors were described as “meticulous precision of the oper-

ator’s part and careful checking of all manual operations” [Aiken and Hopper, 1946, p. 525].

With the advent of stored-program machines, the manual operations involved in setting up the

machine to perform a particular calculation were no longer required, and the importance of the

design of the sequence of operations to be carried out was made explicit. At the conference held in

Cambridge in 1949, J. C. P. Miller discussed the errors arising from “[p]rogramming and coding the

[mathematical] solution for the machine” [Miller, 1949].

‘Programming’ here refers to the design of a suitable algorithm to perform a calculation, and

programming errors correspond to the mathematical errors identified by Aiken and Hopper; it is

noteworthy that they did not identify the coding process, whereby the algorithm was translated

into machine code instructions, as a separate source of errors. Errors in coding were only grad-
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ually recognized to be a significant problem: a typical earlycomment was that of Miller, who

wrote that such errors, along with hardware faults, could be“expected, in time, to become infre-

quent” [Miller, 1949]. Two years later, however, Maurice Wilkes and his colleagues reported that

“such mistakes are much more difficult to avoid than might be expected” [Wilkes et al., 1951, p.

38], and similar comments were made by others [Brooker et al., 1952, for example].

Programming and coding errors are design errors: unlike hardware errors, they are not caused

by mechanical or electronic failure, and so cannot be removed by increasing the reliability of any

device. A variety of techniques for preventing such errors were considered, including the inspection

of programs to reveal common mistakes, the inclusion of additional code to check the results being

obtained, and the automation of the programming process itself. The use of library subroutines was

also found to reduce errors: as these contain reusable code performing various common tasks, they

were used frequently and were found more likely to be free from errors than new code.

During this early period much emphasis was placed on the avoidance of error by uncovering

mistakes before a program was executed, and there is little mention of testing, understood as the re-

peated execution of a program with particular data values for which the expected results are known,

as a technique for identifying errors. The scarcity and expense of machine time appears to have ruled

out such an approach: Aiken is reported as having had “very little patience for an error-infested trial

session” [Bloch, 1999, p. 97], and Wilkes refers to the amount of machine time that could be lost

running erroneous programs.

Initially, then, the notion of correctness was applied generally to the computations carried out

by an automatic computer. Correct computations were taken to be those which produced correct

results, although it was not always easy to tell which these were: “It cannot therefore be assumed

that if a program apparently operates correctly it is givingcorrect results, and careful numerical

checks must always be applied” [Wilkes et al., 1951, p. 41]. The coding process gradually emerged

as a significant source of errors, and the desirability of reducing the number of coding errors was

recognized. Correctness was understood to be a product of many factors, however, including the

algorithm used, the coding of it for a particular machine, any library routines utilized, and the

physical machine itself: as Miller put it, “[a]ll stages must be fully checked if a satisfactory solution

is to be obtained” [Miller, 1949].
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7.2 Debugging and testing

In the 1950s, increased experience of programming, and in particular of the problems of developing

larger software systems, led to the development of new techniques and approaches to the problem of

program correctness. Increasing machine reliability led to more emphasis being placed on mistakes

“arising because the orders or data presented to the machineare not those required to obtain the

results sought” [Gill, 1951]. Initial optimism had given way to a belief that such errors were not

“a temporary evil, due to lack of experience”, and “some attention has, therefore, been given to the

problem of dealing with mistakes after the programme has be tried and found to fail” [Gill, 1951].

Gill did not feel that detecting that an error had occurred was the significant issue: at least

for programs performing computations, “[i]f its presence is not immediately apparent, it will be

detected by the arithmetical checks which must be incorporated in every calculation” [Gill, 1951].

Rather, the immediate issue was to locate and correct the error, a process that came to be known

as debugging. Standard test tapes were used to diagnose faults in the operation of the machine

itself, and a variety of techniques for diagnosing program errors were introduced, such as push-

button operation in which the program was run manually, one instruction at a time. Many of these

techniques had severe disadvantages: push-button operation, for example, was exceedingly slow

and expensive, and prevented a machine from being used for other work.

A promising direction of research was to investigate approaches which used the machine itself to

assist in debugging. As with automatic coding, programmerswere quick to realize that the repetitive

aspects of their work could be carried out by machine. Gill described different “checking routines”

in use on the EDSAC, the most useful of which interpreted a program line by line and printed out

the function letters of the orders being executed, thus allowing the programmer to trace the history

of the program execution. Similar approaches were adopted at other computer installations. For

example, Ira Diehm described how the SEAC computer of the National Bureau of Standards in the

USA was used to analyze coding errors by means of techniques such as the use of “breakpoints”

at which program execution could be interrupted, and an “automonitor” checking routine, among

others [Diehm, 1952].

The development of large systems raised further unanticipated problems, and in 1956 Her-

bert Benington described the lessons drawn from experiencegained on the SAGE air defence sys-

tem [Benington, 1956]. Benington described a process for the “production of a large-program sys-

tem” which surrounded the coding activity with a preliminary stage of preparing specifications, and
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a subsequent stage of testing the program produced against its specifications. The detection of er-

rors was no longer felt to be the unproblematic activity portrayed by Gill: the tests to be carried out

were themselves planned and specified, and a clear distinction was drawn between the detection of

errors in a testing activity, and their location and correction in debugging. Debugging itself was, as

on other systems, partially automated by means of a system program known as the “checker”.

At the same time, Benington felt that there were limitationsin the use of testing as a method of

ensuring correctness. It was, he wrote, “debatable whethera program . . . can ever be thoroughly

tested—that is, whether [it] can be shown to satisfy its specifications under all operating conditions

. . . one must accept the fact that testing will be sampling only . . . many sad experiences have shown

that the program-testing effort is seldom adequate” [Benington, 1956]. Like debugging, the testing

process could be automated by programs which performed “test instrumentation” using simulated

live inputs.

It was widely expected that the development of automatic programming and the use of pseu-

docodes would reduce the frequency of programming errors. Diehm believed that “[t]he trend

toward automatic performance of the clerical parts of the coding process should reduce the num-

ber of coding errors” [Diehm, 1952, p. 19] and Gill wrote that“[i]t is to be hoped . . . that many

of the tiresome blunders that occur in present-day programmes will be avoided when programmes

can be written in a language in which the programmer feels more at home” [Gill, 1953, p. 291].

This expectation was soon found to be ill-founded, however:one early programmer recalled that

“[t]he only place where we made a mistake . . . was believing that when FORTRAN came along we

wouldn’t make any mistakes in coding”, and cited a survey which indicated that Fortran programs

typically had to be compiled up to 50 times before they were correct [Bemer, 1984].

The increasing use of pseudocodes raised the question of howbest to carry out debugging: ini-

tially, debugging efforts were directed towards the machine code generated from the pseudocode, but

it was recognized that it would be more convenient if a program written in a symbolic pseudocode

could be debugged by examining that code rather than the machine code. Katz discussed the issues

raised by debugging programs written in pseudocode; after discussing various tools for perform-

ing “symbolic debugging” of pseudocode programs, however,he restated the belief that a much

lower frequency of programming errors would obtain when “compiling techniques are sufficiently

improved and our pseudo-codes are completely natural and simple to use” [Katz, 1957, p. 21]. By

the end of the decade, Gill was suggesting a two-level approach to the debugging problem, where
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“experts” would want to debug machine code and “novices” would require debugging information

presented in terms of the “hypothetical machine which is visualized by the user” [Gill, 1959].

With increasing reliability of hardware, then, the coding,or programming, activity became

widely recognized to be the most significant source of errorsin computer programs, despite repeated

expressions of optimism that improvements in the design of codes would remove this problem. Cor-

rectness became understood more as a property of the programthan of the overall computation, and

testing and debugging were identified as the key techniques for identifying and locating errors in

programs.

7.3 Proof and program development

One of the goals of the Algol research programme was to utilize the resources of logic to increase

the confidence that it was possible to have in the correctnessof a program. As McCarthy put it,

“[i]nstead of debugging a program, one should prove that it meets its specifications, and this proof

should be checked by a computer program” [McCarthy, 1962, p.22]. McCarthy thus envisaged

using the computer to automate the routine or mechanical parts of the proof-checking process, as

was already being done in the areas of testing and debugging.

The limitations of testing that had been pointed out by Benington were further articulated, by

Dijkstra in particular, and developed into a more general argument for the necessity of stronger tech-

niques to demonstrate the correctness of programs. The factthat a computer passes an acceptance

test, according to Dijkstra “only says that in these specifictest programs the machine has worked

correctly” [Dijkstra, 1962b, p. 537], and does not permit usto conclude that the machine will work

correctly when presented with other programs. In its structure, this is similar to an argument against

induction, the point being that from a finite set of observations nothing can be inferred about future

or unobserved events. Similarly, when a program fails a test, this can be taken as evidence of an

error in the program, but passing a test only demonstrates its correctness in one particular case. As

Dijkstra later put it epigrammatically, “Program testing can be used to show the presence of bugs,

but never to show their absence!” [Dijkstra, 1969b, p. 85].

In 1966, Peter Naur described it as “deplorable . . . that the regular use of proof procedures . . . is

unknown to the large majority of programmers” [Naur, 1966, p. 310]. In Naur’s view, an algorithm

performed a transformation on some data, and the role of a proof was “to relate the transformation

defined by an algorithm to a description in some other terms, usually a description of the static
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properties of the result of the transformation” [Naur, 1966, p. 311]. To incorporate proof into

the program development process, Naur proposed a methodology which would start with a static

description of the properties of the algorithm, then “construct an algorithm . . . using examples and

intuition to guide us” [Naur, 1966, p. 311], and finally provethat the algorithm had the required

properties.

One difficulty in the way of constructing proofs of programs arises from the semantic differ-

ence between the assertions that describe the transformation carried out by an algorithm and the

imperative program code that describes how the algorithm will perform the transformation. Naur

described this as the problem “of relating a static description of a result to a dynamic description of

a way to obtain the result” [Naur, 1966, p. 312]. Observing that one way to follow the execution of

an algorithm was to look at “snapshots” describing the data held in the variables at different times,

he proposed a technique of “General Snapshots” which would not describe individual data values,

but rather define predicates which the program data should always satisfy at specific points in the

execution of the program. By appealing to properties of the program code, it could be established

that the general snapshots would always be true when a running program reached them. The snap-

shots would therefore give a static description, in propositional form, of the transformation carried

out by the program. This could then be related to the specification to demonstrate the correctness of

the program.

A similar approach was proposed by Robert Floyd, who put forward “the notion of an inter-

pretation of a program: that is, an association of a proposition with each connection in the flow of

control through a program, where the proposition is asserted to hold whenever that connection is

taken” [Floyd, 1967, p. 19]. The correctness of a program could then be obtained “by an induction

on the number of commands executed” [Floyd, 1967, p. 19], enabling proofs of propositions of

the form “[i]f the initial values of the program variables satisfy the relationR1, the final values on

completion will satisfy the relationR2” [Floyd, 1967, p. 19]. Floyd made the issue of semantics

explicit, referring to his technique as a way of “assigning meanings to programs”.

The technique of using propositions to make assertions about properties of program executions

had, by 1966, quite a long history. For example, Richard Bloch described his practice in program-

ming Mark I in 1944 as follows: “I carefully annotated the code using mathematical symbolism

pertinent to the problem being solved. I marked the quantities being transferred as well as the loca-

tion of partial results in order to assist in tracing the flow of the program, and I maintained a dynamic
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series of ‘snapshots’ of the storage register contents as the program progressed” [Bloch, 1999, p.

94].

Similarly, von Neumann and Goldstine, as part of their technique of flow diagrams for pro-

gram development, had observed that “[i]t may be true, that whenever [control] actually reaches

a certain point in the flow diagram, one or more bound variables will necessarily possess cer-

tain specified values, or possess certain properties, or satisfy certain relations with each other”

[Goldstine and von Neumann, 1947, p. 92]. Such properties were recorded in specialassertion

boxesat various points in a flow diagram and used to argue for the correctness of the algorithm

depicted. In a paper delivered in 1949, Turing adopted von Neumann’s notation and made the

connection with program correctness explicit, writing “[h]ow can one check a routine in the sense

of making sure that it is right? . . . the programmer should make a number of definite assertions

which can be checked individually, and from which the correctness of the whole programme easily

follows” [Turing, 1949]. However, despite these suggestions, it was only in the context provided

by the Algol research programme in the mid-1960s that the useof assertions was systematically

researched and serious attempts made to apply it to programming practice.

The use of general snapshots, or assertions, to prove the correctness of programs required that

arguments could be made about the effect of individual statements on program data. Naur made such

arguments informally: “suppose thatA[i℄ > A[r℄ is true. Then clearlyA[i℄ is the greatest among

the elements up toA[i℄. Changingr to i as is done in the assignment then makes it again true to say

thatA[r℄ is the greatest” [Naur, 1966, p. 324]. To formalize such arguments required a definition of

program statements in terms of their effect on the assertions preceding and following them. Such

definitions could act as axioms and rules of inference in constructing proofs of programs.

A first attempt to give such rules was made by Floyd, who definedfor each type of statement a

condition “guarantee[ing] that whenever a command is reached by way of a connection whose as-

sociated proposition is true, it will left (if at all) by a connection whose associated proposition will

be true at that time” [Floyd, 1967, p. 19]. Floyd only appliedthe technique to a flowchart repre-

sentation of programs, however, but his ideas were soon applied by Hoare to a textual programming

language.

Hoare made a strong and explicit connection between programming and logic, stating that “all

the properties of a program . . . can, in principle, be found out from the text of the program itself by

means of deductive reasoning”, and his paper aimed to “elucidate the axioms and rules of inference
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which underlie our reasoning about computer programs” [Hoare, 1969, p, 576].

Hoare’s logic was based on statements of the formPfQgR, which were to be interpreted as

meaning “[i]f the assertionP is true before initiation of a programQ, then the assertionR will

be true on its completion” [Hoare, 1969, p. 577]. Axioms in the system defined the properties of

individual statements, and inference rules defined the properties of control structures. The axiom

for the assignment statement was given as` P0fx := fgP
where “P0 is obtained fromP by substitutingf for all occurrences ofx” [Hoare, 1969, p. 577].

Hoare took as the control statements in his example languagethose previously identified by Dijkstra

as giving rise to particularly simple patterns of proof. Thus for iteration, he gave the following

inference rule:

If ` P ^BfSgP then` Pfwhile B do Sg:B ^ P
This rule shows what can be asserted of an iteration controlled by a while statement, given a previous

demonstration of a certain property of the statement, or program fragment,S that is being iterated.

Hoare’s proposal, then, completed the project of showing how at least some program language

constructs could be embedded in the familiar logic of propositions, thus enabling proofs about

algorithms and programs to be carried out using the existingmachinery of formal logic.

7.4 Constructive methods

The existence of a candidate proof theory for programs did not settle the question of how proofs

of programs could be applied in practice, however. The methodology proposed by Naur, whereby

a program created using “examples and intuition” was subsequently proved to be correct, had the

disadvantage that the insights provided by the proof theorywere not used in program development,

and it was found in practice that it was rather difficult to argue mathematically about existing pro-

grams: the arguments needed to prove the correctness even ofvery trivial programs turned out to be

rather long and tedious.

An alternative approach would be to employ a development process which would guarantee that

the resulting programs were correct. Such a process had beenoutlined by McCarthy, who assumed
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as a prerequisite a theory stating when two programs or program fragments were equivalent. Given

such a theory, transformations that preserved equivalencecould be defined and “used to take an

algorithm from a form in which it is easily seen to give the right answers to an equivalent form

guaranteed to give the same answers but which has other advantages such as speed [or] economy of

storage” [McCarthy, 1961, p. 225].

This idea was taken up by Dijkstra, who in 1968 published a paper outlining what he called

“a constructive approach to the problem of program correctness” [Dijkstra, 1968a]. Rather than

proving the correctness of an existing program, Dijkstra wanted to tackle the problem of deriving a

correct program from “the specifications of the desired dynamic behaviour”. Taking as his example

a simplified version of a multiprogramming problem, Dijkstra gave as the starting point of the

derivation a simple and high-level version of the required program, without making clear whether

this was intended to be a specification of the required program, or a form of it which could easily

be seen to be correct.

Steps in the derivation process involved the introduction of variables enabling the required be-

haviour to be more precisely specified, the definition of assertions involving these variables, and the

further articulation or refinement of the program to ensure that the assertions are satisfied at the ap-

propriate times. The style of argumentation used was reminiscent of informal mathematics: Dijkstra

stressed that he was not attempting to derive a program within a formal system, and that significant

“mathematical invention” was required in the refinement process. Nevertheless, the emphasis was

firmly placed on guaranteeing program correctness, and logic was used to justify individual steps in

the argument.

Naur then proposed an approach which would combine the earlier work on assertions and cor-

rectness with the constructive approach suggested by Dijkstra [Naur, 1969]. Naur proposed iden-

tifying variables in terms of which the program requirements could be more precisely stated, by

using assertions, or general snapshots. “Action clusters”were then defined to carry out the required

operations on these variables; an action cluster was a sequence of program statements which would

always be performed as a whole and whose effect could be characterized in terms of assertions. The

correctness of the final program could then be assured by examining the relationship between the

assertions defining the action clusters.

Hoare subsequently combined the ideas of constructive development with the formal logic of

programs, giving a formal account of the development of an algorithm to perform certain manip-
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ulations on an array of data [Hoare, 1971]. He began by givingan informal explanation of the

algorithm, but the development of a corresponding program was carried out completely formally.

Hoare started by giving a “rigorous formulation of what is tobe accomplished”, in the form of

predicates defining the assumptions made at the beginning ofthe program and the required final state

of the data being manipulated. As with Dijkstra and Naur, thegeneral method for refinement that

Hoare proposed started by introducing new variables required by the program, and defining their

properties. Statements could then be written to solve the overall problem using the new variables,

and these statements could be proved correct using the rulesof the program logic. So after the initial

introduction of two variables, Hoare could write: “At this point, the general structure of the program

is as follows:

m := 1; n := N;
while m< n do “reduce middle part”

Furthermore, this code has been proved to be correct, provided that the body of the contained iter-

ation is correct” [Hoare, 1971, p. 41]. Iteration of this procedure allowed Hoare to demonstrate a

complete program together with the annotations required todemonstrate the correctness of the code

using the rules of program logic.

However, Hoare was careful to point out that the procedure did not, in fact, prove that the final

program was absolutely correct. Firstly, a separate proof was required to show that the program

would terminate. Secondly, there were aspects of the program which were not covered by the initial

formal requirements: for example, the algorithm was meant to rearrange the data in a given array, but

the initial requirements used in the derivation of the program did not state that the array contained

the same data at the end as at the beginning. He commented thatit was difficult to formulate

this requirement perspicuously, and that its inclusion would significantly increase the length and

complexity of the proof.

Hoare described the method as “top-down . . . split the process into a number of stages, each

stage embodying more detail that the previous one” [Hoare, 1971, p. 45]; a similar approach was

adopted, though in a less formal manner, by Niklaus Wirth [Wirth, 1971a]. For Wirth, “[i]n each

step, one or several instructions of the given program are decomposed into more detailed instruc-

tions”, the process terminating when a complete executableprogram in the desired language is

obtained. Individual steps, known asrefinement stepsimplied that some design decisions had been

taken, often involving the introduction of new variables. Wirth’s starting point resembled that of
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Dijkstra rather than Hoare: he did not attempt to give a formal characterization of the problem to

be solved, but instead presented a rather high-level program which was supposed to be an accurate

rendition of the algorithm proposed for the solution of the problem.

By the early 1970s, then, McCarthy’s programmatic suggestions about program transformation

and proving the correctness of programs had been given concrete form for imperative languages as

a methodology for program development, namely stepwise refinement, and a supporting logic by

means of which such a development could be shown to deliver provably correct programs.

This raised the possibility, in principle at least, of treating programming as a purely formal ac-

tivity, in which refinement steps corresponded to the application of inference rules in the appropriate

calculus. A number of heuristics were proposed to assist in this process, notably the introduction of

auxiliary data required in the program, together with the code fragments necessary to work with the

new data.

This in turn raised the possibility of the extent to which theprogramming process could be

automated. As Floyd saw it, there was an inescapable role forhuman creativity, because of the very

large number of programs that might satisfy given input and output specifications. He imagined

an interactive process of design, in which the checking of individual refinement steps and similar

mechanical aspects would be handled by a computer, with the more creative design decisions being

generated by the human programmer [Floyd, 1971].

7.5 Specifications and correctness

With the development of constructive methods, correctnesswas generalized from a simple property

of programs to an equivalence relation between different programs which could be proved to have

the same effect, or to implement the same specification. Program specifications, however, were nor-

mally only stated informally, and the technique of stepwiserefinement recommended starting with

a simple program whose correctness was self-evident and didnot need to be formally established.

In his attempt to produce a completely formalized program derivation, however, Hoare had also

stated the requirements for the example program formally, giving the assumptions made about the

data at the start of the process and the required properties that it should have at the end. This

more formal notion of program specification quickly became widespread. For example, Manna

and Waldinger proposed automating the process of program development, using automatic theorem

provers. They formalized the “specifications for the program to be written” as pairs of predicates,



CHAPTER 7. THE LOGIC OF CORRECTNESS IN SOFTWARE ENGINEERING 190

an “input predicate�(x) and anoutput predicate (x; z)” and claimed that “[i]n order to construct

such a program, we prove the theorem(8x)[�(x) � (9z) (x; z)℄” [Manna and Waldinger, 1971, p.

152].

With this increased explicitness and formalization of the notion of a specification came an asso-

ciated change in what was meant by the correctness of a program. Previously correctness had been

thought of primarily as a property of programs, but now it became understood as a relation between

a program and its specification, thus making explicit something that had hitherto been assumed im-

plicitly. For example, Liskov and Zilles believed that in general “[w]hat we are looking for is a

process which establishes that a program correctly implements aconceptwhich exists in someone’s

mind” [Liskov and Zilles, 1975, p. 7]. The effect of increased formality, however, was that “aspec-

ification is interposed between the concept and the programs . . . and the correctness of a program

is established by proving that it is equivalent to the specification” [Liskov and Zilles, 1975, p. 8].

While recognizing that the equivalence between concept andspecification could not be formally es-

tablished, Liskov and Zilles argued that, at least for programs which were primarily intended to be

used by other programs, the “hierarchical nature of the proof process” meant that “the concept which

[a program] was intended to implement can safely be ignored”[Liskov and Zilles, 1975, p. 8]. The

notion of correctness as a relationship between a program and a preferably formal specification was

widely adopted:

To determine whether a program is correct, we must have some way of specifying what
it is intended to do; we cannot speak of the correctness of a program in isolation, but
only of its correctness with respect to some specifications.After all, even an incorrect
program performssomecomputation correctly, but not the same computation that the
programmer had in mind. [Manna and Waldinger, 1978, p. 201]

This change had the effect of increasing the importance of specifications: if correctness amounted

to correctness with respect to a specification, a program could only be said to be correct to the ex-

tent that its specification was clearly stated and understood. Furthermore, if that correctness was to

be provable, the specification had to be written in a form accessible to existing proof methods, for

example as a pair of input and output predicates as suggestedby Manna and Waldinger.

A second consequence was that the analogy between software development and logical deduc-

tion was enriched. A formalized specification can be understood as defining a set of ‘axioms’;

from the specification other expressions are ‘deduced’, by correctness preserving refinement steps,

culminating in the production of ‘conclusions’ in the form of executable programs in the target pro-
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gramming language. Hoare’s axioms did not quite function asinference rules, but they did enable

the correctness of individual refinement steps to be checked, and heuristically suggested the form

that such steps might take. The formal structure of softwaredevelopment is therefore seen as being

identical to a logical theory: this tendency can be expressed by saying that software development

was coming to be understood as aquasi-deductiveactivity.

The fact that specifications are viewed as axioms does not imply that they are immune from

revision, of course. A program can be correct with respect toa specification that is completely

inadequate from the users’ point of view. The activity of specification revision, however, plays no

role in quasi-deductive models: the overall development process is split between an initial phase in

which a specification is fixed, and a subsequent phase of refinement and implementation based on

the assumption that an adequate specification exists.

This understanding of the process of software development was widely adopted, even when de-

velopment was not being carried out in a formal manner. A large number of ‘methodologies’ for

software engineering were developed which explained how todevelop software satisfying a speci-

fication by going through a number of steps which, even if expressed in a mixture of informal text

and graphical notations, preserved the essence of the quasi-deductive approach, namely a process

of refinement leading from a specification to a conforming implementation.

7.6 Structured programming

In the early 1970s, many of the concerns of the Algol researchprogramme moved from the research

community into the mainstream of commercial and industrialprogramming. They were widely

thought to represent a new approach to the problems of programming, an approach that became

identified by the term ‘structured programming’. This section examines a number of different ways

in which this term was understood.

The term ‘structured programming’ appears to have been coined by Dijkstra, who wrote some

widely circulated ‘Notes on structured programming’ in August, 1969 [Dijkstra, 1969a] and pre-

sented a working paper titled simply ‘Structured programming’ at the NATO conference on soft-

ware engineering techniques in that year [Dijkstra, 1969b]. For Dijkstra, the central issue was how

to be assured of the correctness of “intrinsically large programs” [Dijkstra, 1969b, p. 222], where to

get any reasonable assurance of a program’s correctness it was necessary to have a very high degree

of confidence in the correctness of the modules making up the program. The constructive approach
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to program development was outlined, with an argument for the use of specific control structures

rather than jumps. Dijkstra also emphasized the use of abstract data structures in the program de-

velopment process, along with a metaphorical description of a program as “an ordered set of pearls,

a ‘necklace”’ [Dijkstra, 1969b, p. 225], each pearl representing a program module written in terms

of the facilities provided by the module below it in the string.

The notion of ‘pearls’ derived, like the idea of constructive programming, from Dijkstra’s ex-

perience in designing and writing a multiprogramming system [Dijkstra, 1968c]. This system had

been designed as a hierarchy of levels with the characteristic that each level in the hierarchy was

written strictly in terms of the level immediately below it.In explaining this idea, Dijkstra drew

upon the old idea of program semantics being given in terms ofa virtual machine: “Between two

successive pearls we can make a ‘cut’, which is a manual for a machine provided by the part of the

necklace below the cut and used by the program represented bythe part of the necklace above the

cut” [Dijkstra, 1969b, p. 255].

The ‘Notes on structured programming’ presented a more leisurely explanation of these ideas,

together with complete examples of constructive program development. Some flowchart illustra-

tions of the recommended control structures were given, andDijkstra pointed out that “[t]hese

flowcharts share the property that they have a single entry atthe top and a single exit at the bot-

tom” [Dijkstra, 1972, p. 19]: as a result, they could be treated as a single indivisible action in

a sequential program. This was important in constructive programming, as it meant that a single

high-level action could be refined by introducing a control structure whose properties could then be

argued about independently of the rest of the program.

Dijkstra’s notes were published in 1972 in a book entitledStructured Programmingwhich con-

tained in addition contributions from Hoare and Dahl. Hoarecontributed an essay on data struc-

turing, in which he argued that set theory could be used to define a range of data structures, and

an essay on ‘hierarchical program structures’ by Hoare and Dahl described how programs were

structured in the Simula 67 programming language. Simula 67is considered in more detail in the

following chapter; in the context of structured programming it was argued that it contained features

which allowed the hierarchical structuring of programs, asrecommended by Dijkstra.

As presented in these texts, then, structured programming encompassed not only a recom-

mended set of control and data structures, but also a concernwith the idea of the provable cor-

rectness of programs, the constructive method by which suchprograms could be produced, and
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a general scheme for program modules. This rich collection of ideas provided scope for selec-

tion and interpretation. For example, Henderson and Snowdon described an “experiment in struc-

tured programming” which adopted a “‘top-down’ structuralapproach with the hope that the pro-

gram can be seen to be correct by its very structure” [Henderson and Snowdon, 1972, p. 38].

They discovered that the application of this technique did not prevent the occurrence of errors

in the finished program, and concluded that “in such a technique we must apply formal meth-

ods” [Henderson and Snowdon, 1972, p. 51]. However, a response to this paper by Henry Ledgard

concluded that “[t]he method used . . . is strictly speaking not really ‘structured programming’, at

least as conceived by Dijkstra”, precisely because the authors had not “formalizedand debugged

each of the levels” [Ledgard, 1974, p. 49]. To add to the confusion, Ledgard, despite claiming to

make a case for structured programming, defined a programming methodology of his own which

not only combined the ideas of structured and top-down programming and stepwise refinement, but

also adopted a programming style using the goto statement.

In 1973 Barbara Liskov offered a definition which extended Dijkstra’s simple emphasis on cor-

rectness: “Structured programming is a programming discipline intended to support the production

of correct, understandable programs which are easy to modify and maintain” [Liskov, 1973, p. 5].

An example of top-down decomposition of a program into modules was presented, using “the three

sequential control structures proposed for structured programming”; these were justified not by an

appeal to proof, however, but because they had a “1-in, 1-out” property which made the flow of

control through a program easy to visualize. Indeed, “[t]here are many control structures other than

[these three] which preserve the 1-in, 1-out property, and all of these are permissible in structured

programming” [Liskov, 1973, p. 6]. Liskov, however, downplayed the significance of proof on the

grounds of uncertainty about the form that aspecificationlanguage would have to take in order to

serve as a foundation for proofs of the correctness of programs.

Within the wider software industry, interest in the ideas ofstructured programming was stim-

ulated by reports of their successful application on a project carried out by IBM for the New York

Times [Baker, 1972a, Baker, 1972b]. This project was used asa vehicle to test a new approach to

the management of software projects, the use of ‘chief programming teams’, which were intended to

move projects away from a situation where each programmer had complete responsibility for every-

thing to do with a particular part of the program to one where particular functional responsibilities

were assigned to individuals. Like a surgical team, the project would be lead by an experienced de-
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signer, the “chief programmer”, who would be assisted by “back-up programmers”, “programming

librarians” and other team members.

In addition to this novel form of organization, the project used a top-down approach to program

design and implementation and employed structured programming, understood as “a set of rules

that enhance a program’s readability and maintainability .. . the rules state that any proper program

— a program with one entry and one exit – can be written using only the following programming

progressions” [Baker, 1972a], namely sequence, if-then-else statements and do-while loops. The

project was described as being highly successful, and it wasstated that “[s]tructured programming,

and the organization and tools used to achieve it, were key factors in developing this kind of sys-

tem” [Baker, 1972b]. Even though it was admitted that the useof chief programmer teams was

not essential to employing structured programming, widespread interest in this project meant that

‘structured programming’ became understood as a general approach to software projects and not

simply a technical approach to the organization of programs.

In 1973 interest was further encouraged whenDatamation, a magazine that was widely read

throughout the computing industry, published a special issue on structured programming. An intro-

ductory article was titled ‘Revolution in Programming’ andasserted that “[s]tructured programming

is a major intellectual invention, one that will come to be ranked with the subroutine concept or even

the stored program concept” [McCracken, 1973]. The articles in this issue ofDatamation, however,

characterized structured programming in terms derived more from Baker’s description of IBM’s

experience on the New York Times project than from Dijkstra’s theoretical writings.

In theoretical writings on structured programming, the issue of program correctness was of

great importance; for example, Wirth wrote, echoing Dijkstra, that “[i]n order to achieve intel-

lectual manageability, the elementary composition schemes must be simple. . . . The simplicity

consists in the ease with which we can infer properties aboutthe [composition scheme] from known

properties of the constituent statement” [Wirth, 1974, p. 252]. This point was echoed in theData-

mationarticles, but with a slightly different emphasis and wider applicability: “since flow of con-

trol is simpler in a structured program, the development andexecution of test cases to adequately

debug the program is simpler . . . structured programs are very easy to read and verify for cor-

rectness” [Donaldson, 1973]. Verification was here being taken in an informal sense, however, and

Donaldson went on to state that “study of program proof-of-correctness . . . has not yet produced

any practical results” [Donaldson, 1973].
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In particular, for a more practical audience, the key point about the adoption of a particular set

of control structures was described in terms of increasing the readability of programs; for example,

McCracken stated that “[u]sing only these constructions . .. it is possible to write programs that

can be read from top to bottom without ever branching back to something earlier . . . Programs

are accordinglymucheasier to read and understand” [McCracken, 1973]. The benefits of making

programs clear and comprehensible extended not just to the writing of correct programs, but more

widely across the whole software lifecycle. Thus it was heldto be easier to test structured programs,

and that ease of understanding made it simpler to correct errors in programs or to modify programs

to provide new or enhanced functionality. The conferences on software engineering in the late

1960s and subsequent work had drawn attention to the costs ofsoftware development across the

whole lifecycle, and suggestions of how to reduce these costs were highly attractive to industry.

There can be no doubt that structured programming made a significant and lasting contribu-

tion to programming language design and programming practice. Older languages, such as Fortran,

which did not include the required control structures, weresoon revised to include them, and they

have been a constant part of all languages developed since. The controversy over the goto statement

has died away, and in some modern languages it is not even available. Ideas of ‘structure’ were

soon more widely applied: for example, the term ‘structureddesign’ was soon coined to describe

an approach that emphasized a modular structure of programsconsistent with structured program-

ming [Stevens et al., 1974].

Structured programming emerged from work carried out in thelogic research programme, and

in particular from its concern with proving the correctnessof programs. As it became known and

applied in industry, however, the ways in which it was characterized changed. Management issues

were emphasized, and the key point about the suitability of control certain structures was rephrased

in the form of recommendations that would be immediately applicable by programmers, such as

rules about the indentation of code [McCracken, 1973].

In particular, it is noticeable that any formal relationship between structured programming and

program correctness was played down in favour of a more diffuse connection. As McCracken put

it, “[p]rogram proving isn’t yet a practical matter for programs of realistic size, but the theory influ-

ences the daily practice of programming anyway” [McCracken, 1973]. By using control structures

which had been designed with a view to making proof easier, itwas believed that programmers

would obtain the benefits of programs that were easier to write correctly, to understand and to mod-
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ify even without involving the construction of formal proofs.

7.7 Proof and testing

As noted above, one of the central goals of the research programme articulated by McCarthy in

1962 was that of replacing testing and debugging by proof, and this chapter has described the evo-

lution of some of the techniques necessary to make the construction of program proofs feasible.

At the end of the 1960s, researchers were optimistic about the possibilities for proof: Hoare em-

phasized the expense of testing and expressed the belief that “the practical advantages of program

proving will eventually outweigh the difficulties, in view of the increasing costs of programming

error” [Hoare, 1969, p. 579]. Despite expressing reservations about the power of the proof tech-

niques then known, he was soon suggesting that “if a proof is constructed as part of the coding

process for an algorithm, it is hardly more laborious than the traditional practice of program test-

ing” [Hoare, 1971, p. 39], as well as offering a much strongerguarantee of reliability.

However, despite the success of structured programming, proof never became widely used in

the software development industry, and testing never lost its role as the principal method for gaining

assurance about the correctness of programs. Despite this,great progress was made in ensuring

the reliability of software. Twenty years later, Hoare himself revisited the topic in a paper titled

“How did software get so reliable without proof?”. He commented that “the problem of program

correctness has turned out to be far less serious than predicted” and suggested that the systematic

application of traditional engineering techniques to software development was largely responsible

for the observed increase in software reliability [Hoare, 1996].

This situation raises the question of to what extent the Algol research programme can be cred-

ited with improvements in programming practice if a centralpart of its programme, namely proof,

was not at all widely employed? One possible answer to this question might be based on the obser-

vation that, as described earlier in this chapter, the Algolresearch programme introduced a general

model of program development where programs were systematically derived from specifications by

a process ofrefinement. This process could be carried out formally, but more often it was not; how-

ever, even informal versions of the process, which includedtesting, were found useful and widely

adopted by industry. Rather than being completely opposed techniques with nothing in common,

as McCarthy and Dijkstra suggested, proof and testing came to be viewed as complementary tech-

niques for ensuring the correctness of software within the context of refinement-based methods.
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The remainder of this chapter will give a more detailed analysis of this situation by drawing on

accounts of scientific methodology developed in the philosophy of science which relate the notions

of theory and experiment. A useful categorization of the possible positions was provided by Imre

Lakatos [Lakatos, 1967], who modelled scientific and mathematical theories as deductive systems

which relate axioms to ‘basic statements’, the ‘final conclusions’ drawn by the theory. In scientific

theories the basic statements are said to be those which makesome testable, empirical assertion.

These ideas can be applied to the software development process proposed by the Algol research

programme by identifying the specification of a software system with the axioms of a deductive

theory. In a top-down process, a high-level program is then written and its correctness argued

for; by a series of refinement steps a low-level, executable program is then derived. Refinement

steps are akin to inferences within the system, and the final program, fully expressed in the target

programming language, is the equivalent of a basic statement, the point at which derivation stops.

As in a scientific theory, where the basic statements make testable assertions, programs are run and

tested, and accepted or rejected on the results of these tests.

Lakatos identified two basic types of theory, which he termed“Euclidean” and “quasi-empirical”.

These were distinguished by the place where truth values are“injected” into the system. Euclidean

theories inject truth at the top, by assuming the truth of thechosen axioms and by truth-preserving

inference steps deducing valid conclusions from them. Quasi-empirical theories inject falsity at the

bottom, by testing the basic statements; a failed test indicates the falsity of a basic statement, which

in turn, forces some modifications at higher points in the theory if consistency is to be maintained.

Software engineering as a Euclidean theory

It is evident from what has been said in previous sections that the overall view of software engi-

neering evolved by the Algol research programme was that it was Euclidean, in Lakatos’ sense.

Correctness is injected at the top of the system, in the form of a fixed specification of what the

system is to do. The task of software development was understood to be that of systematically de-

veloping from the specification a program which implementedthe specified functionality, by means

of a number of development steps which preserved correctness. Once techniques had been devel-

oped to carry out such derivations effectively, it was expected that alternative approaches such as

testing and debugging would become obsolete:

I should like to point out that the constructive approach to program correctness sheds
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some new light on the debugging problem. Personally I cannotrefrain from feeling
that many debugging aids that are en vogue now are invented asa compensation for
the shortcomings of a programming technique that will be denounced as obsolete in the
near future. [Dijkstra, 1968a, p. 185]

Support for this position was largely rooted in the belief that testing on its own could not guar-

antee the correctness of software:

Since it is well known that no foolproof methods exist of knowing that the last error
in a program has been found, there is much practical confidence to be gained in never
finding the first error in a program, even in debugging. [Mills, 1976, p. 269]

The role of testing within Euclidean methods

However, even though a broadly Euclidean approach to software development was widely adopted,

formal proof was not, and testing retained a central role in assuring the correctness of software. A

number of views have been put forward to justify or explain the coexistence of the two approaches

in software engineering.

Shapiro [Shapiro, 1997] described the use of quasi-deductive methods and testing on the same

project as a pragmatic approach employing two independent verification techniques to maximize

the chances of producing a correct system. One motivation for such an approach might be an

acknowledgment of the possibility of errors even in a proof of a program. In 1976, Gerhart and

Yelowitz listed a number of errors detected in publicationsillustrating the formal derivation of

programs. While broadly sympathetic to mathematical approaches to program development, they

cited evidence in support of the fallibility of mathematical proof. While accepting that program

verification had a role to play in ensuring that a program was “substantially correct”, they concluded

that “we must simply learn to live with fallibility” [Gerhart and Yelowitz, 1976, p. 206].

This implies a mixed Euclidean and quasi-empirical approach to software engineering, in which

the typical response to an error detected in testing would beto correct the faulty code. Proponents

of the Euclidean approach, however, have subsequently articulated a distinctive view of the role of

testing: its purpose is not to assess directly the correctness of the software, but rather, by checking

consistency between the specification and the program, to assess whether the development process

has been correctly carried out. The recommended response toa failed test on this approach is not

to correct the final artefact, but rather to modify and make less fallible the process that led to it, and

then recapitulate the development: “The real value of testsis not that they detect bugs in the code,
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but that they detect inadequacy in the methods, concentration and skills of those who design and

produce the code” [Hoare, 1996].

A third justification for including testing in a Euclidean model arises from the distinction be-

tween a program text and the executing program that is derived from it. As Fetzer pointed out

[Fetzer, 1988], this is a contingent relationship: the factthat a given program behaves in a certain

way when executed can only be established empirically, not by an examination of the program text,

and so testing is necessary to verify the run-time properties of a program, even when the program

itself is assumed to be correct as a result of a formal derivation.

Despite the use of the quasi-empirical technique of testing, however, these positions remain

largely Euclidean in that they retain a belief in the feasibility of the goal of developing correct soft-

ware. This assumption is not shared by more thorough-going quasi-empirical approaches, discussed

below.

An inductive view of testing

The traditional view of testing was that programmers shouldkeep running, testing and modifying a

program until it passes all its tests. A passed test represents an injection ofcorrectnessat the bottom

of the system, a confirmation that the program was behaving asrequired. As Lakatos points out,

the belief that correctness can be injected at the bottom of adeductive system is tantamount to a

belief in inductive methods, and the comparison between induction and the traditional account of

testing has been made in the software engineering literature. The thought is that successful tests are

singular statements of a program’s correctness; from a set of such statements, we want to be able to

infer that the program as a whole will give correct results atall times in the future.

Although this belief underlies much informal, small-scaleprogramming practice, positive state-

ments of an inductive principle are rare in the software engineering literature, no doubt because

of the prominence of Dijkstra’s early attack on the position. Ironically, however, a mixed position

which included elements of an inductive approach was employed by Dijkstra in the development

of the THE multiprogramming system. He describes how the system was designed in such a way

that it could be formally proved that “the number of relevanttest cases will be so small that [the

designer] can try them all” [Dijkstra, 1968c, p. 344].

A later attempt was made by Goodenough and Gerhart to characterize the “logic of testing”;

they proved a “fundamental theorem of testing” which “states that in some cases, a testis a proof
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of correctness” [Goodenough and Gerhart, 1975, p. 157]. Theidea underlying this theorem was

to partition the input space of a program in such a way that thesuccessful completion of one test

would imply that the program would function correctly for all other inputs from a given partition.

This attempt foundered, however, on the difficulty in practice of finding a partition of the testing

space with the required formal properties.

Quasi-empirical software development

Quasi-empirical views of software engineering would be those which characterize failed tests as

injections of incorrectnessat the bottom of the quasi-deductive system. This has suggested to a

number of commentators an analogy between the testing of programs and the refutation of sci-

entific theories: for example, Fetzer wrote that “it might besaid that programs are conjectures,

while executions are attempted—and all too frequently successful—refutations (in the spirit of Pop-

per)” [Fetzer, 1988, p. 1062], and Dasgupta articulated thethesis that problem solving in design,

including the design of programs, “is a special instance of (and is indistinguishable from) the pro-

cess of scientific discovery” [Dasgupta, 1991, p. 353].

There was a significant tradition in software engineering which adopted a broadly quasi-empirical

approach. In a rather Popperian spirit, this tradition did not take as its primary aim the development

software that was absolutely correct, but instead acceptedthe inherent fallibility of software. In

1971, Bauer wrote in an overview of the then young field of software engineering that the aim of

the discipline was “to obtain economically software that isreliable and works efficiently on real

machines” [Bauer and Wössner, 1972]. It is noteworthy thatBauer refers not to the correctness of

the software, but rather its reliability; unlike correctness, reliability is not understood in engineer-

ing as an all-or-nothing goal, but rather a property which systems can possess to different extents,

depending on contextual and economic factors. A later papersurveying approaches to the study of

reliability in software made this point explicitly: “Our position is that it is neither necessary nor

economically feasible to get 100 per cent reliable (totallyerror-free) software in large, complex

systems” [Schick and Wolverton, 1978, p. 105]. Rather than trying to ensure the absolute correct-

ness of software, software engineers who accept the inevitability of errors have been concerned with

techniques for developing fault-tolerant systems and for statistical characterizations of the reliability

of software [Randell, 2000].

A further characteristic that we might expect to find in quasi-empirical software engineering is
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‘bold hypotheses, followed by dramatic refutations’, as described in Popperian rhetoric about sci-

ence. Much current practice can in fact be interpreted in this way. For example, it is a commonplace

that commercial software products are full of errors, and frequently revised with patches or inter-

mediate releases which correct faults. Traditional software engineering views this as a problem,

feeling that a mature engineering profession ought to be able to do better. It is precisely what would

be expected, however, if software engineering was in fact a quasi-empirical discipline1.

Correctness and the user

In empirical science, quasi-empirical approaches can leadto the rejection of the axioms assumed to

be the foundations of a theory. If the analogy is fully applicable, we should expect to find approaches

to software engineering that allow for the revisability of the specification in the light of errors and

problems discovered in the process of software development. An early statement of this position

was made by Douglas Ross:

The most deadly thing in software is the concept, which almost universally seems to be
followed, that you are going to specify what you are going to do, and then do it. And
that is where most of our troubles come from. The projects that are called successful,
have met their specifications. But those specifications werebased upon the designers’
ignorance before they started the job. [Ross, 1968]

Similar views were later expressed by McCracken and Jackson, who commented that “systems

requirements cannot ever be stated fully in advance, not even in principle, because the users doesn’t

knowthem in advance” [McCracken and Jackson, 1982, p. 31], an argument based on the observa-

tion that the development process itself frequently changed, among other things, users’ perceptions

of requirements.

This implies a view of program correctness which is based on something other than the rela-

tionship between a program and a specification. If specifications are revisable as users’ insight in

the system requirements grows, correctness should insteadbe understood as a relationship between

a program and its users. As this distinction became appreciated, the process of checking that a

program meets its specification became known asverification, whereas the process of checking that
1In the 1990s, a particular approach to software engineeringcharacterized itself as ‘empirical’, based on the belief

that “the most important thing to understand is the relationship between various process characteristics and product
characteristics” [Basili, 1996]. In the Lakatosian framework, this approach would seem to fall squarely in the Euclidean
tradition, but emphasizing the external, managerial aspects of the development process rather than the internal properties
of software-related artefacts. What is being proposed appears to be an empirical study of a Euclidean process, not an
empirical approach to development itself.
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a software engineering artefact—either specification or program—meets the actual requirements of

its users became known asvalidation [Boehm, 1984].

Responses to this situation took the form of proposals for software development methods that

would involve the user extensively throughout. Originallyknown by terms such as ‘prototyp-

ing’ or ‘evolutionary development’, a similar approach is still extant, now often referred to as

‘agile’ or ‘iterative and incremental’ development. A partly anecdotal history of this approach

that traces its roots back to the late 1950s has been compiledby Craig Larman and Victor Basili

[Larman and Basili, 2003].

Such approaches do not view the software development process as quasi-deductive; instead, de-

velopment is viewed as a continuing dialogue between user and developer. Aspects of contemporary

package software also appear to fit this model, with the functionality of a program evolving over a

series of releases in response to direct or indirect demandsfrom users. Recent work in the philos-

ophy of science has described models in which candidate scientific knowledge is not articulated as

part of a deductive structure, but rather emerges in the course of an unpredictable process in which

scientists explore the ‘resistances’ provided by a varietyof human and non-human actors. An early

example of this approach was the actor-network [Callon, 1987], and it has been taken up and refined

in Pickering’s notion of the ‘mangle’ [Pickering, 1995]. However, it is beyond the scope of this the-

sis to explore further the connections between this work andevolutionary approaches to software

development, though some attempts to link software development with the ideas of post-modernism

have been made [Robinson et al., 1998, for example].

7.8 Conclusions

This chapter has considered the influence that the Algol research programme had on the practice of

software development. The ideas that became popularized under the label of ‘structured program-

ming’ were widely influential in the computing industry, andwidely perceived to have introduced a

more formal approach:

Before this decade of intense focus, programming was regarded as a private puzzle-
solving activity of writing computer instructions to work as a program. After this
decade, programming could be regarded as a public, mathematics-based activity of
restructuring specifications into programs. [Mills, 1986]
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The emphasis on specifications was key to the new programmingtechniques, and also became

a cornerstone of software engineering practice more generally, introducing the idea of Euclidean

models of the software lifecycle which covered not only programming but also other activities such

as design, testing and maintenance. In this context, Boehm stressed the “extreme importance” of

“a complete, consistent, unambiguous specification”, in the absence of which problems could be

anticipated in many other stages of development [Boehm, 1976].

Structured programming was frequently [McCracken, 1973, Knuth, 1974] described as a ‘revo-

lution’ in programming, and it is interesting to consider how well this usage corresponds to Kuhn’s

sense of the term. There was certainly a sense of crisis associated with software development in

the late 1960s and early 1970s, as evidenced by the NATO conferences on software engineering,

and many people greeted the ideas of structured programmingas a novel technique which would

address these practical problems and make software development a more straightforward and pre-

dictable process. However, for Kuhn revolution is associated with the adoption of a new paradigm,

and as the last two chapters have argued, structured programming can be viewed as the outcome of

a logic-inspired paradigm whose revolutionary moment camewith the publication of the Algol 60

report. So the application of Kuhn’s historiographical schema in this case seems not to be straight-

forward, with the perception of crisis and the adoption of a new paradigm occurring at different

times in the research and industrial communities.

An alternative model for the adoption of structured programming can be found in the traditional

model of new ideas being developed in a research environmentand then, when mature, transferred

for application in an industrial setting. However, it is apparent that the ideas themselves may be

significantly altered in such a transfer. Structured programming as conceived of by industry high-

lighted certain aspects of the academic work while ignoringor downplaying others. In particular,

program proof and the elimination of testing and debugging was a central goal of researchers in

the Algol paradigm, but presentations aimed at industry downplayed these aspects, emphasizing

instead issues to do with the management of software projects, even though these formed no part of

the theoretical notion of structured programming.



Chapter 8

The unification of data and algorithms

In the early 1970s, programs were frequently characterizedas having two main aspects, namely

the data structures that the program required and the algorithms used to manipulate the data. Pro-

gramming languages were described along similar axes: a typical example is Pascal which defined

control and data structures largely independently [Wirth,1971b].

Work on data types, however, had made a strong case for considering these two aspects together,

and this led to research into a new form of abstraction which would define a particular data structure

together with the algorithms needed to make use of it, and present it to programmers as a single

entity. As described in Chapter 6, this work was pursued as part of the Algol research programme,

and in the early 1970s a number of languages were proposed which supported the idea of data

abstraction in various ways.

This chapter examines in more detail the development of programming language support for

data abstraction, and argues that a stable configuration of ideas, one that has profoundly influenced

the design of programming languages up to the present day, was achieved by the Smalltalk language.

Although drawing on work in the Algol research programme, the designers of Smalltalk were also

strongly influenced by ideas from completely different areas, and the chapter concludes by arguing

that Smalltalk marks a limit to the influence of logic on programming language design.

8.1 Simulation languages

A number of important ideas about the unification of data and algorithms emerged from attempts

to write programs to perform simulations. Simulation had always been an important application

of digital computers, and in the early 1960s a number of general-purpose simulation languages

204
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were developed to make it easier to write programs to simulate particular systems; these languages

included SIMSCRIPT [Markowitz et al., 1963] and GPSS [Gordon, 1961] and two slightly later

languages, Simula [Dahl and Nygaard, 1965] and SOL [Knuth and McNeley, 1964].

Of these, Simula turned out to be particularly influential onlater work on the design of general-

purpose programming languages. It was developed at the Norwegian Computing Centre by Kristen

Nygaard and Ole-Johan Dahl, and had its roots in work in operational research carried out by Ny-

gaard, specifically in “the necessity of using simulation, the need of concepts and a languages for

system description, lack of tools for generating simulation programs” [Nygaard and Dahl, 1981,

p. 440]. In particular, Dahl and Nygaard noted that for various technical reasons “simulation

programs are comparatively difficult to write in machine language or in ALGOL or FORTRAN”

[Dahl and Nygaard, 1966, p. 671] and that for this reason alone it would be convenient to develop

specialized simulation languages.

Simula and SOL were both influenced by, and in some ways modelled on, existing high-level

languages and in particular Algol 60; indeed, Simula was designed to contain Algol as a subset.

Nevertheless, the demands of the specialized problem domain of simulation meant that there were

also significant differences. For example, Simula was intended to be not only a programming lan-

guage, but more generally “a language for a precise and standardized description of a wide class of

phenomena, belonging to what we might call ‘discrete event systems’” [Dahl and Nygaard, 1965,

p. 1]. (An echo of Algol 60, which had been initially characterized as a language “to describe

computational processes” [Naur et al., 1960, p. 300] ratherthan simply a programming language,

can be heard here.) The systems of interest were initially characterized as consisting of a number of

active components, or ‘stations’, which processed data held in passive components, or ‘customers’.

Inspired by examples such as an office with a number of clerks dealing with customers or a pro-

duction line in a factory, each station maintained a queue ofcustomers, and once a customer had

been dealt with it could be passed on to join the queue at another station, thus modelling its progress

through the system.

By the time the language was implemented in 1964, the two concepts of ‘station’ and ‘customer’

had been merged into a more general notion of ‘process’ whichcombined both the data associated

with the passive customers and the operations carried out bythe active stations. This generalization,

which was very similar to the approach adopted by SOL, was theresult of experience gained in

modelling a greater range of systems and also in implementing simulations based on the resulting
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models [Nygaard and Dahl, 1981].

Simula made use of and extended the Algol concept of a block: “An ALGOL program (block)

specifies a sequence of operations on data local to the program, as well as the structure of the data

themselves. SIMULA extends ALGOL to include the notion of a collection of such programs, called

‘processes,’ conceptually operating in parallel” [Dahl and Nygaard, 1966, p. 671]. Technically, this

extension had to do with the lifetimes of blocks: in Algol, one block could be defined inside another,

with the consequence that any data defined in the inner block could only be maintained so long as

the outer block was still in existence. For simulation programs, however, the lifetime of data in the

program was unpredictable and depended on the events being simulated, so the Algol discipline was

too restrictive. Simula therefore generalized the notion of a block so that “a process may remain and

operate after [the block in which it was created] is out of thesystem, i.e. the life spans of different

processes may overlap each other in any way” [Dahl and Nygaard, 1965, p. 14].

Individual processes in Simula therefore shared many of theproperties of blocks in Algol: they

contained both data, defined in local variables, and statements defining how that data was to be pro-

cessed; these statements could belong to the block body or becontained in procedures and functions

local to the block. A class of processes with the same structure was defined by an ‘activity’, which

was essentially the same as an Algol procedure declaration.However, whereas in Algol a program

was defined by a single, top-level block, in simulation languages the emphasis was placed rather

on the system constituted by a number of processes, or blocks, executing simultaneously: in SOL,

for example,“[a] complex system can be represented as a number of individual processes, each of

which follows aprogramvery much like a computer program” [Knuth and McNeley, 1964,p. 401].

The ‘master program’ did not encode an algorithm, as in Algol, but instead defined the processes

that would exist initially and the data items that they used to communicated with each other.

8.2 Modelling with records

Because of the nature of simulation systems, languages likeSimula were naturally described as

providing facilities tomodelcertain aspects of the real world. This modelling capability became

understood as providing programmers with the ability to work with structured data, where an in-

dividual object could be characterized within a program by acollection of data items of varying

types, with the number and type of the data items required varying from object to object. Apart

from simulation languages, the ability to work with structured data was available in certain other ar-
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eas, notably business data processing where Cobol, for example, provided the ability to exhaustively

describe the structure of data stored in files.

Scientific languages such as Fortran and Algol did not provide such capabilities, however, and

as discussed in Section 6.6 in the mid-1960s proposals were put forward, most notably by Wirth and

Hoare, for adding a general record handling capability to such languages. These proposals made

the connection with modelling clear: for example, Hoare wrote that “we often need to construct

within the computer amodelof that aspect of the real or conceptual world . . . In such a model each

object of interest must be represented by some computer quantity . . . Such a quantity is known as a

record” [Hoare, 1968, p. 294].

In their most developed form, proposals for record handlingdefined the relationship between the

real world and the computer model in terms of four properties[Hoare, 1968]. Firstly, objects were

considered to possess a number ofattributes, each of which was modelled by a data item stored in

a field of the record. Secondly, similar objects would naturally have the same kinds of attributes,

though perhaps with different values. Objects could therefore be grouped into classes, and arecord

classin a program would define the attributes belonging to a particular class of objects. Next, it was

also considered important to model relationships between objects: in the simple case of functional

relationships, this was done by defining a new kind of data value which defined areferenceto a

record, and allowing records to hold references to other records to which they were related. Finally,

it was recognized that many classes consisted of disjoint subclasses of objects, in the way that the

class of vertebrates consists of the subclasses of mammals,birds and so on. The proposals allowed

record classes to contain subclasses, with ‘private’ fieldsthat defined attributes that applied only to

objects belonging to certain subclasses.

Hoare and Wirth’s record handling proposals on the one hand and Simula on the other there-

fore represented two alternative proposals for extending Algol 60 to permit the manipulation of

structured data which modelled real-world entities. Simula achieved this by generalizing the Algol

notion of a block; however, Hoare pointed out that this integrated the record concept with that of

the process, defined by “a rule of behaviour as specified by procedural statements” [Hoare, 1968, p.

330], and brought with it the complexities of parallel processing. Records, by contrast, provided a

new language feature which isolated the central problem of handling structured data, thus reinforc-

ing such characteristic themes of the Algol research programme as clarity and the need to be able to

understand and control the behaviour of programs.
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8.3 Simula 67

Simula 67 was a revised version of the Simula produced as a result of experience gained with Simula

and also in response to proposals made for using records to handle structured data.

Unlike Simula, Simula 67 was intended as a general purpose programming language. It was

assumed that high-level languages like Algol had succeededin the goals of enabling “precise formal

description of computing processes” [Dahl et al., 1968] andmaking it easier for non-specialists to

write programs. Simula 67 was intended more generally to help “those who are confronted with the

task of organizing and implementing very complex, highly interactive programs” [Dahl et al., 1968,

p. 1]; simulation programs were considered to fall into thiscategory, but were no longer the sole

focus of interest.

In its basic structures, however, Simula 67 was very reminiscent of the original Simula. It was

recommended that the components that problems were dividedinto should each be describable as

individual programs, implemented as before by an extended version of the blocks of Algol 60.

Through a terminological change influenced by Hoare’s work on record classes, the ‘activities’ and

‘processes’ of Simula were renamed asclasses, andobjects. Objects, like the processes of Simula,

consisted of “an aggregated data structure and associated algorithms and actions” [Dahl et al., 1968,

p. 5]. The latter consisted of local procedures which could act on the data stored in an object, and

a block body which could be executed in a quasi-parallel fashion along with the bodies of other

objects.

A significant innovation in Simula 67 was the introduction ofprefix classes, intended as an

alternative to the record subclasses that Hoare had described [Dahl and Nygaard, 1968]. The idea

was that the definition of a new class could specify a single prefix class: the attributes of the prefix

class would become attributes of the new class, and further attributes could be added to specialize

the concept being modelled by the class. Class prefixing could be carried out repeatedly as often as

required, allowing a hierarchy of classes to be defined.

Two significant aspects distinguished Simula 67’s prefix classes from the record subclass pro-

posed by Hoare. Firstly, prefix classes are more flexible thanrecord subclasses. Hoare’s proposal

required all the subclasses of a given record class to be specified at the point of definition of the

class. In Simula, on the other hand, any class can be used as prefix in any other class definition,

giving an ability to reuse code that went beyond that offeredby record subclasses. Consider, for

example, the idea of a linked list, a dynamic data structure of records or objects linked by embedded
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references. Linked lists of many types are required in programming, and it would be nice to find a

way of defining the concept of a linked list once and for all, rather than having to repeat the relevant

definitions whenever a new type of list is required. In Simula67 this can be done by defining the

basic linked list functionality in a class which is then usedas a prefix class to make linked lists

of a particular sort of data: the required data fields are simply added when defining the new class.

By contrast, when using records the definitions for the linked list would have to be repeated in the

record class definition for every type of data that was to be stored in a list.

A second point of difference was the notion ofvirtual quantities. Using this mechanism, a prefix

class could declare a field, say, which it does not itself define, but which it is planned will be defined

in subclasses. For example, a vehicle class might define a field called ‘capacity’, even though that

field was only defined in the subclasses of vehicle. The importance of this notion lies in the ability

to define the capacity field differently in different subclasses of vehicle. A programmer might then

refer to the capacity of a vehicle without knowing in detail what sort of vehicle is being referred to at

run-time. Record handling proposals contained no similar capability: the emphasis on the concept

of typing in the Algol research programme made it highly desirable that the every field in a record

was fully defined when a program was compiled.

8.4 Data abstraction

In Section 7.6 it was argued that structured programming became principally identified with two

of the ideas presented by Dijkstra, namely the use of a restricted repertoire of control structures

and the employment of a top-down approach to program development. A third idea, that programs

could be structured as a layered hierarchy of machines, was rather overlooked and became confused

with the view that program structure was a hierarchical decomposition of functions, themselves

identified as part of the top-down method. For example, Wirthdescribed the method by stating that

“[i]n each step a given task is broken down into a number of subtasks” [Wirth, 1971a, p. 226] and

later that “an abstract program emerges, performing specific operations on abstract data . . . The

operations are then considered as the constituents of the program which are further subjected to

decomposition” [Wirth, 1974, p. 249].

As discussed above, Simula and Simula 67 incorporated an extension of Algol’s blocks which

provided a way of unifying data and operations. However, forreasons that will be considered

in more detail below, the details of Simula’s classes were not widely adopted in other languages,
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despite the inclusion of an extended discussion in the widely read ‘Structured Programming’ book

published in 1972 [Dahl et al., 1972]. Instead, the early 1970s saw extensive discussion of and

experimental proposals for new language mechanisms intended to provide support for more data-

oriented program modules.

Writers on structured programming did of course recognize that control structures and data

needed to be considered together: “[a]s tasks are refined, sothe data may have to be refined,

decomposed or structured, and it is natural to refine programand data specifications in paral-

lel” [Wirth, 1971a, p. 221]. However, the commonest form of program module remained an Algol-

like block, thought of primarily as defining a single operation. Blocks could contain local data

or make reference to data defined in outer blocks, but they didnot provide an adequate means of

dealing with data generally.

One important theme in generating more complex proposals was the idea of isolating data and

only allowing direct access to it to limited parts of a program. Various advantages were thought

to follow from this. For example, the designers of theBLISS language identified as a significant

problem the fact that, in the domain of systems programming,data structures frequently needed

to be changed. It was important, therefore that “the structure definition and the algorithms which

operate on the elements of a structure must be separated in such a way that either can be modified

without affecting the other” [Wulf et al., 1971, p. 787]. This was achieved by enabling access to the

elements of a data structure through a function-like interface, and defining the data structure along

with an algorithm for accessing the elements of the structure. If the data structure was changed, the

algorithm for accessing its components would also need to bechanged, but code which made use

of the functional interface would be unaffected. It was hoped that this would increase the ease with

which programs could be modified and reused.

This line of thought was taken further by James Morris under the general heading of ‘protec-

tion’ [Morris Jr., 1973]. As well as describing programminglanguage mechanisms which would

enable a data structure and a set of procedures to be closely associated, Morris described methods

for preventing other parts of the program from accessing thedata structure directly. A related ap-

proach was described by Stephen Zilles as “procedural abstraction . . . the technique of representing

system components in terms of one or more procedures such that interactions among components

are limited to procedure calls” [Zilles, 1973]. As this description suggests, it was widely assumed

that the procedure, or block, was the fundamental type of program module, and proposals typically
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tried to show how procedures could be used or adapted to provide a structure that was more focused

on data.

The question of whether program modules were in fact best understood as simple functions

was explicitly addressed by David Parnas, who concluded on the contrary that “it is almost always

incorrect to begin the decomposition of a system into modules on the basis of a flowchart”. Instead,

Parnas appealed to a principle of ‘information hiding’, andrecommended that “one begins with a

list of difficult design decisions which are likely to change. Each module is then designed to hide

such a decision from the others” [Parnas, 1972, p. 1058]. This idea is clearly related to that of

Dijkstra, who described program modules as “pearls”, each embodying “a specific design decision

(or, as the case may be, a specific aspect of the original problem statement)” [Dijkstra, 1969b, p.

87].

One specific type of design decision that could be hidden in a program module was the choice of

representation for a particular data structure. As Parnas,like the designers ofBLISS, pointed out, if

knowledge of a particular data representation is shared between many modules, as typically happens

when modules represent tasks, a change in that data representation will require associated changes

to many program modules. An alternative approach is to conceal the choice of data representation

in a single module, which will then make available to other modules a more abstract representation

of the data, together with the ability to manipulate it. Dijkstra had recommended that “[s]uch a joint

refinement of data structure and associated statements should be an isolated unit of the program

text: it embodies the immediate consequences of an (independent) design decision and is as such

the natural unit of interchange for program modification” [Dijkstra, 1969b, p. 87]. Parnas gave a

slightly expanded version of this idea, recommending that “[a] data structure, its internal linkings,

accessing procedures and modifying proceduresare part of a single module” and “not shared by

many modules as is conventionally done” [Parnas, 1972, p. 1056].

The connection between these ideas was made explicit in session on structured programming

at an ACM meeting in 1973, where Barbara Liskov explained that “a hypothetical structured pro-

gramming language could provide levels of abstraction as follows. We assume that an abstraction is

presented to the user as an abstract data type together with the operations available on that type . . .

the entity ‘level of abstraction’ must be a syntactic unit ofthe language” [Liskov, 1973, pp. 6–

7]. It was noted that the class concept of the Simula 67 programming language provided a similar

feature, but because it made the data representation accessible to other modules, it did not fully
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support the desired notion of abstraction. A new language meeting these requirements was more

fully described in the following year by Liskov and Zilles. They again emphasized the connec-

tion with structured programming, here understood as “a process of successive decomposition. The

first step is to write a program which solves the problem but which runs on an abstract machine,

one which provides just those data objects and operations which are ideally suited to solving the

problem” [Liskov and Zilles, 1974, p. 50].

The language proposed by Liskov and Zilles, later namedCLU, defined a new program structure,

the cluster, intended to provide a way of implementing an abstract data type, understood as “a

class of abstract objects which is completely characterized by the operations available on those

objects” [Liskov and Zilles, 1974, p. 51]. A cluster defined aset of data objects which, from the

point of view of a program using them, were completely abstract and could only be manipulated

by using the operations defined in the cluster. The cluster itself defined a suitable representation

for the abstract objects, in terms of other, lower-level clusters or the basic types provided by the

language, and implemented the operations in terms of this representation. A cluster, therefore, was

a concrete proposal for a program module corresponding to Dijkstra’s ‘pearls’, and provided a kind

of abstraction closely related to the notion of a ‘cut’ in thenecklace of pearls that Dijkstra had

described.

Liskov and Zilles also saw a strong connection between the use of abstract data types and issues

to do with proving the correctness of programs. The use of abstraction enabled the task of proving

the correctness of a program to be split into two parts: proving the correctness of the abstract

program that used the data abstraction, and proving the correctness of the implementation of the

data abstraction itself. In order to carry out such proofs formally, however, it was necessary to have

some way of writing formal specifications of abstract data types. Liskov and Zilles argued that

an “input-output specification, which describes the mapping of the set of input values into the set

of output values” [Liskov and Zilles, 1975, p 10] was suitable for defining procedural abstractions,

but not for data abstractions, and considered various ways in which formal specifications of data

abstractions could be given.

From the mid-1970s on, the notions of data abstraction and the formal specification of abstract

data types became very significant areas of research and practical work, and many programming

languages were developed in which these ideas were applied.This section has demonstrated the

close relationship between the origins of this work and issues raised in the development and ap-
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plication of some of the ideas of structured programming, particularly those relating to program

decomposition and proof. This suggests that this traditionof work should be seen as an integral part

of the Algol research programme.

The key innovation in this work was the construction of a definitive notion of abstract data

type. This raises the question of why a new concept was felt tobe necessary, or rather why existing

mechanisms, such as the classes of Simula 67, were not felt tobe adequate. In the first place, classes

were not types. Types were widely thought of as sets of data values with associated operations. This

was consistent with the way in which basic types in programming languages were defined, and also

provided a natural way in which the properties of the type could be formalized. Classes, on the

other hand, were thought of as mechanisms for the productionof objects, each of which contained

data and operations; objects were therefore significantly different from data values. Furthermore,

a different model of processing is involved: when an operation is invoked on an object, the object

updates itselfin situ; with an abstract data type, by contrast, a data value is passed as an argument

to a function and an updated value returned.

Another important difference was the issue ofprotection: abstract data types were intended to

provide a barrier which allowed programmers to manipulate data only by means of the provided

operations. Simula 67, by contrast, allowed programs unrestricted access to the attributes of objects

and therefore did not support a crucial part of the notion of abstraction. Finally, although Simula

67’s classes did provide a unification of data and algorithms, they did a lot else besides. In particular,

they provided support for a coroutine mechanism which allowed objects to exist in a quasi-parallel

fashion. Although useful for applications such as simulation, this provided a complication that

obscured what was felt to be the important new concept of an abstract data type.

8.5 Smalltalk

By the mid-1970s, then, the Algol research programme had developed a solution to the question

of how to unify algorithms and data in programming languages, in the form of a fully articulated

notion of abstract data type. A number of significant languages were based on the idea, pioneered

by CLU, of a program module which defined and encapsulated an abstract data type. Perhaps the

most notable of these languages was Ada, developed in the late 1970s and early 1980s by the US

Department of Defense [Department of Defense, 1983].

However, later languages such as C++ and Java did not follow this style, adopting instead a form
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of program module derived from the Simula notion of a class. Languages adopting this style be-

came known asobject-orientedlanguages: this approach to programming language design became

prominent in the early 1980s and has remained dominant untilthe present time. As with structured

programming, earlier languages have been extended with object-oriented features: this occurred,

for example, in the 1995 revision of Ada. An important influence in the development and adoption

of object-oriented ideas was the Smalltalk language, developed at the Xerox Palo Alto Research

Centre (PARC) from the early 1970s onward.

Smalltalk was designed as the programming language to be used on a new hardware device,

described by Alan Kay and Adele Goldberg as “a personal dynamic medium the size of a notebook

(the Dynabook) which could be owned by everyone and could have the power to handle virtually

all of its owner’s information-related needs” [Kay and Goldberg, 1977, p. 31]. The Dynabook

was to possess a high-quality graphical display that would be able to present information in a way

not inferior to the printed page, the capability for high-fidelity sound reproduction, and a variety

of input devices that would enable users to perform a multitude of tasks, including editing text,

drawing images, and composing music. It was thought of as a “metamedium, whose content would

be a wide range of already-existing and not-yet-invented media” [Kay and Goldberg, 1977, p. 40].

The Algol research programme had originated in the tradition of scientific programming carried

out in the 1950s. A typical problem in this tradition was to devise algorithms for solving particular

computational problems, and Algol was conceived of originally as a language for the expression

and communication of algorithms. The background for Smalltalk, on the other hand, was the devel-

opment of a highly interactive device which was intended to be usable by a wide range of people,

including young children. Smalltalk was intended to be not only the language in which the system

was coded, but also a medium through which users would work with the system. Programming was

conceived not as the production of code by following an engineering-like process, but as an ongoing

interaction with a complex and reactive system, an outlook which profoundly shaped the design of

Smalltalk: Kay and Goldberg referred to Smalltalk as a “communications system . . . implemented

on small computers” [Kay and Goldberg, 1977, p. 31] rather than simply as a ‘language’.

The first stable version of the language, known as Smalltalk-72, was designed in 1972 and in use

at PARC from 1973 on the “Interim Dynabook”, a small computersystem being used to research as-

pects of the Dynabook idea. The instruction manual for Smalltalk-72 was written with an audience

of high-school students in mind, and in style and content is strikingly different from the manuals
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written for languages in the Algol tradition [Goldberg and Kay, 1976]. As a communications sys-

tem for the Dynabook, Smalltalk was intended to be used interactively, and use of the language is

introduced under the heading “talking to Smalltalk”. Programming took place in a “Smalltalk dia-

log window”: the user could enter arithmetic expressions for immediate evaluation, or draw simple

pictures by issuing commands to control a ‘turtle’ capable of drawing lines on the screen.

As well simple commands, conditional statements and iterations could be specified. An in-

troductory example showed how to create an infinite loop which enabled the mouse cursor to be

used as a simple drawing device. This provides a striking example of the effect that a different

set of priorities could have on programming style: in scientific programming, an infinite loop was

generally taken to be a severe error in a program and methods for proving that a program termi-

nated when expected were intensively investigated. In Smalltalk, however, the advice given was

simply “[t]o escape from the loop and get Smalltalk to listento you again, press the key marked

‘ESC’” [Goldberg and Kay, 1976, p. 5].

Smalltalk was often described as a system which carried out simulation, and Simula was a sig-

nificant influence on the development of Smalltalk. However,what was influential was the model of

computation that was implied by Simula’s notion of simulation, which was taken up and generalized

by Smalltalk. Syntactically, Smalltalk did not resemble Simula, or indeed any other language. For

example, Smalltalk-72 included a number of hieroglyph-like characters, including a pointing hand,

an eye and a smiley face, on the grounds that these had been found to convey the meaning of certain

operations to children better than a set of reserved words. Furthermore, because the language was to

be used interactively, there was no concept or textual representation of a complete program. Instead,

users could add definitions to the system, and then use them interactively as required.

Kay had been directly inspired by Simula’s notion of an object, and in particular the integra-

tion of data and procedures into a single structure. He laterwrote, “[f]or the first time I thought

of the whole as the entire computer and wondered why anyone would want to divide it up into

weaker things called data structures and procedures. Why not divide it up into little computers: : :?” [Kay, 1996, p. 516]. However, rather than directly developing ideas of simulation or abstract

data types, for Kay “[i]t was the promise of an entirely new way to structure computations that took

my fancy” [Kay, 1996, p. 517]. At about the same time as he cameacross Simula, Kay also studied

Lisp in detail and became fascinated by the idea of building an entire programming language on one

single abstraction, in the way that lambda abstraction had been fundamental to the design of Lisp.
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The original design of Smalltalk was written as a conscious attempt to emulate the McCarthy’s orig-

inal definition of Lisp [McCarthy, 1960], but based on a different primitive notion, namely the idea

of message passing between objects [Kay, 1996, p. 531].

The Smalltalk-72 manual put it as follows: “Every entity in Smalltalk’s world is called an ob-

ject. Objects can remember things and communicate with eachother by sending and receiving

messages” [Goldberg and Kay, 1976, p. 6]. Despite the Simula-like terminology, however, it was

recognized that there were important differences [Shoch, 1979]. Firstly, Simula’s classes and ob-

jects were provided as an extension to Algol 60, leading to inconsistency in the way that different

data items had to be treated; Simula 67, for example, had two assignment operations depending

on whether the assignment involved an object or an Algol dataitem. Secondly, objects commu-

nicated in Simula by means of a “fairly typical procedure invocation” [Shoch, 1979, p. 72]. By

contrast, the object receiving a message in Smalltalk couldexamine or manipulate the message, in

effect deciding on its interpretation. To an extent this capability had been included in Simula 67,

thanks to the notion of virtual quantities, but the motivation for including these had more to do with

accessing attributes of objects than dynamically interpreting messages [Dahl et al., 1968, p. 24].

By contrast, Smalltalk made it a fundamental feature of the language, applying to all inter-object

communication.

As in Simula, every Smalltalk object belonged to, or was an ‘instance of’, a class which defined

the way in which its instances would respond to messages. Users of Smalltalk could extend the sys-

tem by defining new classes, by providing suitably formattedtext. Unlike Simula, however, classes

were not thought of primarily as pieces of program text. Rather, in accordance with Smalltalk’s

overall philosophy of treating everything as an object, classes themselves were objects within the

running Smalltalk system. Defining a class was thought of notso much as writing a program text as

formatting a particular type of message which would tell theSmalltalk system to create a new class.

As objects, classes could be sent messages, for example a message to create a new instance of the

class.

The Smalltalk designers were aware of the potential for confusion in this approach. If all objects

are instances of classes, then classes, being themselves objects, had to be instance of a class, the

‘Class class’. The Class class would define the behaviour of classes, such as their ability to respond

to messages asking for the creation of new objects. The Classclass, however, had in turn to be

thought of as an instance of itself, a form of self-inclusionthat might be thought of as paradoxical
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in philosophy or set theory. In attempts to clarify what was going on here, explicit reference was

sometimes made to Plato’s theory of forms, the Class class being identified with the Form of the

Good [Shoch, 1979].

Subsequent versions of Smalltalk introduced additional language features, notably subclassing,

the Smalltalk analogue of Simula 67’s prefix classes, in Smalltalk-76 [Ingalls, 1978] . A class could

be defined as a subclass of another class, its ‘superclass’, from which it would ‘inherit’ behaviour.

Behaviour that was shared by a number of class could therefore by this method be written in one

superclass and inherited and reused in as many subclasses asnecessary.

In a description of Smalltalk-76, Ingalls distinguished Smalltalk’s “object oriented” approach

from a traditional “function oriented” approach: in a function oriented language, the expression

‘3 + 4’ would be interpreted as passing the arguments 3 and 4 to the operation ‘+’; in Smalltalk,

on the other hand, it was interpreted as sending the message ‘+4’ to the object representing the

number 3. Whereas function oriented languages would provide a library of useful functions for

programmers to use, Smalltalk provided “a set of well developed superclasses from which most of

the system classes are derived” [Ingalls, 1978, p. 9]. User-defined classes could equally well be

derived from any available superclass.

Smalltalk reached a definitive form in the 1980 and experienced a considerable growth of in-

fluence and use during the 1980s; in the 1990s it was for a whilequite widely used industrially,

particularly in the finance sector. The details of this laterhistory are outside the scope of this thesis,

however, and the relationship between Smalltalk and the Algol research programme will now be

considered.

8.6 The relationship between Smalltalk and logic

The previous section has described the key features of Smalltalk, and suggested that its origins

and the motivations of its designers were very different from those of the designers of Algol 60.

Although the influence of Simula was acknowledged, the development of Smalltalk seems to have

owed little else to the Algol research programme. This section supports this claim by describing

ways in which the Smalltalk language itself differs from thenotion of programming language, based

on Carnap’s notion of a formal language, found in the Algol research programme.
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Smalltalk and the concept of a formal language

In one sense, every programming notation or language can be thought of as a formal language:

without the existence of decidable syntactic rules it wouldnot be possible for the notation to be

processed by machine. However, a stronger claim was made in Chapter 5, namely that the Algol 60

report led to programming languages being considered to be formal languages in the sense of that

notion articulated by Carnap and Tarski in the 1930s, and programs as terms in such a language.

Smalltalk deviated in many ways from this notion, not least in its use of text to represent programs.

Certain aspects of the Smalltalk system made use of machine-readable text. One way in which

the user could interact with the system was by typing text into a dialogue window; such text was

interpreted by the system as a request to send a certain message to a specified object. However, other,

non-textual, forms of interaction were also available, using additional interaction devices such as a

mouse. In terms of their effect on the system, however, textual and non-textual interactions were

semantically equivalent, both specifying that a message besent to an object.

Text was also used for the definition of new classes, which were typed by the user into an

editing window. However, whereas in more conventional languages the programming language text

was taken as definitional of the program being written, in Smalltalk more emphasis was placed on

the existence of the class within the complete Smalltalk system. For example, when a class text is

brought up for editing, Ingalls describes the situation by saying that “[t]he class has thus provided a

simulation of itself as structured text” [Ingalls, 1978, p.10]. In the context of the Smalltalk system,

the text entered by the user was not the definition of the class, but rather amessageto the object

in the system responsible for creating new classes. Other messages, perhaps utilizing different and

even non-textual representations of the required behaviour, could equally well have been used.

Because Smalltalk was thought of not just as a programming language but more generally as

a programming system, there was no clear notion of what a Smalltalk program might consist of.

As opposed to the traditional model, where program texts were submitted to a computer system

that would execute them, the Smalltalk system was the executive computer system and the user

programmed by communicating with the system in various ways. A Smalltalk program could not

therefore be isolated from its environment and dealt with inpurely linguistic terms. Programming

was not thought of as the task of constructing a linguistic entity, but rather as a process of working

interactively with the semantic representation of the program, using text simply as one possible

interface.
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In particular, Smalltalk did not satisfy the properties stated by Tarski and Carnap as definitional

of a formal language, discussed in Chapter 2. The first of these was that the basic signs in the

language should be clearly described: this was not done for Smalltalk, and given the possibilities

for non-textual communication with the system, it is not clear that it could have been done.

Similarly, the second condition, that the sentences of the language should be distinguished by

purely structural means, was not satisfied. It was argued earlier that ‘sentence’ should be understood

as denoting the linguistic unit expressing the speech act most important to the users of a language:

indicative statements in the case of logic, and commands or programs in the case of conventional

programming languages. In the Smalltalk system, as Kay stressed, the sole and unifying speech

act was that of sending a message to an object. Certain textual forms for accomplishing this were

specified, but these were not presented as being the only possibilities. As well as the possibility of

non-textual messages, it would be quite possible within theSmalltalk metaphor for a user to send a

garbled or meaningless message to an object: the effect of this would be defined by the object rather

than by the syntax of the message.

In conclusion, then, the designers of Smalltalk do not appear to have thought of Smalltalk as a

formal language, or to have made any attempt to present it in these terms. As this was a corner-

stone of the Algol research programme, it is therefore possible to describe Smalltalk as marking a

significant departure from the Algol paradigm, despite the influence of Simula on the language.

Smalltalk’s computational model

The differences between Smalltalk and other languages are not simply to do with syntax, however,

but extend to the general understanding of what computationis.

As described in Chapter 3, the principal motivation for the development of electronic digital

computers was to automate calculation, and the canonical design that emerged, the so-called Von

Neumann architecture, split the computer into a data store,and control and arithmetic units which

processed data taken temporarily from the store. This architecture was reflected in the programming

languages developed in the Algol tradition, which by 1970 were commonly viewed as consisting of

features for expressing algorithms and a largely separate set of features for describing data struc-

tures. Within this tradition, programs were fundamentallyseen as expressing algorithms, which in

turn were understood as processes which carried out functional transformations on data.

Not all application areas fell neatly into this model, however: one which did not was the use of
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computers to carry out discrete event simulation, where thefocus of interest lay in the computational

process itself, or properties of it, rather than in the transformation between the initial and final states

of the data presented to the program. As described earlier inthis chapter, Simula 67 developed a

way to support simulation within the context of the Algol research programme, a process which

necessitated a number of extensions to Algol.

The designers of Smalltalk saw themselves as adopting the more radical approach of taking

the notion of simulation expressed in Simula as the fundamental representation of computation. A

Smalltalk system defines a simulated reality and rather thanproviding for the definition of isolated

algorithms, the language provides a way for the user to interact with this reality [Shoch, 1979].

Therefore a semantic account based on functions does not seem likely to be the most natural way to

understand the behaviour of a Smalltalk system.

It is notable that, like the Algol model, this design reflectsaspects of contemporary computer

architecture. Smalltalk was developed in the context of theDynabook project, widely viewed as

an originator of a type of ‘personal computing’ very different from traditional scientific computing.

The Dynabook was intended to enable the user to interact simultaneously with a wide range of

informational artifacts: documents, pictures, musical compositions and so on. Just as Pascal can

be seen as reflecting the distinction between store and control in the von Neumann architecture, the

design of Smalltalk can be seen as reflecting the conversational architecture of the Dynabook user

interface.

Smalltalk and compositional semantics

A further way in which Smalltalk differs from conventional formal languages emerges in the rela-

tionship between syntax and semantics. In the metalogical scheme developed by Tarski and Carnap,

the meaning of a sentence in a formal language stands in a functional relationship to its syntactic

form. An interpretation in a language assigns a meaning to the smallest linguistic elements, and the

meaning of larger expressions is defined in terms of the meanings of their component subexpres-

sions.

The idea of message passing, and in particular the concept ofdynamic binding, introduces

difficulties into this scheme. Dynamic binding is associated with the notion of virtual quantities in

Simula and was adopted as the default mechanism in Smalltalk. It provides a mechanism whereby

the effect of sending a message cannot be predicted by the sender. Objects are accessed by means
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of references, but in both languages it is not always possible to tell from a reference exactly what

kind of object is being referred to. The identity of the object being sent a message, then, is not in

general known until the program is run, and the same message may invoke different behaviour on

different occasions, depending on the history of the computation.

This means that the computational effect of an expression inSimula and Smalltalk cannot be told

from a purely static inspection of the program text. It is only by running a program that its detailed

behaviour can be known. This is an idea which has no counterpart in formal logic, where the

meaning of an expression is entirely determined by its syntactic form. Dynamic binding introduces

a new feature into object-oriented languages that appears to be incompatible with a key assumption

of classical metalogic.

The programming process

Smalltalk had a novel idea of what the activity of programming consisted of, one in which the

notion of inheritance was crucial. A Smalltalk program is not a self-contained linguistic entity

which is compiled and run. Rather, the programmer works in the context of a pre-existing Smalltalk

programming environment, itself written in Smalltalk, which provides support for both program

development and execution. Programming is not viewed as an activity of constructing a discrete

program, but rather as an activity of extending and modifying the environment, primarily using

inheritance to reuse existing functionality. In such an environment, the notion of programming as

a quasi-deductive activity can seem rather unnatural, and there is little if any evidence in the early

Smalltalk literature of the concerns with program derivation or proving properties of programs that

were characteristic of the Algol research programme.

It should be noted in passing that many aspects of the Smalltalk style of programming were also

characteristic of Lisp programming environments, though in a less pronounced form. The contrast

between this open, exploratory style of programming, and the more rigid, formal style of the Algol

tradition is a striking feature of the history of programming.

8.7 Conclusions

By the early 1970s, programming language researchers had identified as a key issue the definition of

linguistic structures that would support a unified treatment of data and algorithms. This chapter has

described the development of two proposed solutions to thisproblem, namely the concept of abstract
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data types developed as part of the Algol research programme, and the approach to object-oriented

programming embodied in Smalltalk.

Further, it was argued that Smalltalk marked a significant break with the Algol research pro-

gramme, and in contrast with many of the languages developedin the preceding decade it owed

little to the influence of logic. Not only were the inspiration and informal goals of the language

quite different, emphasizing an interactive approach to programming and the use of computers, but

the form of the language differed profoundly from those developed in the Algol tradition. The

Smalltalk project was addressing some of the same issues as the Algol research programme, but

proposed a quite distinct solution which owed little to the logic-influence approach characteristic of

that programme.



Chapter 9

Conclusions

This chapter summarizes the main substantive and methodological conclusions of the thesis, makes

a number of observations on the development of the field afterthe mid-1970s, and concludes by

highlighting areas for possible future research.

9.1 The influence of logic

The primary aim of this thesis has been to provide an account of the ways in which mathematical

logic was influential in the development of mainstream scientific and commercial programming lan-

guages. The account given recognizes, as have many others, that a crucial event in this development

was the publication of the Algol 60 report [Naur et al., 1960]. The significance of this report is here

explained, however, by proposing that it played the role of aconcrete paradigm, in Kuhn’s term, for

what has been described in this thesis as the Algol research programme.

The key characteristics of the Algol research programme have been highlighted by making use

of terminology introduced by Lakatos. For Lakatos, a research programme “consists of method-

ological rules: some tell us what paths of research to avoid (negative heuristic), and others what

paths to pursue (positive heuristic)” [Lakatos, 1970, p. 132]. The negative heuristic tells researchers

to preserve at all costs certain propositions, the “hard core” of the programme. For the Algol re-

search programme, it was suggested in Chapter 5 that the hardcore was roughly the proposition

that programming languages should be understand to be formal languages in the sense established

by mathematical logicians in the 1930s. This in turn was described, making use of Pickering’s

schematic account of conceptual innovation, as an example of bridging [Pickering, 1995].

By contrast, the positive heuristic of a research programmesets out the “research policy” of the

223
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programme, so that researchers will have a framework withinwhich they can set their work, and

which will save them from “becoming confused by the ocean of anomalies” [Lakatos, 1970, p. 135].

The positive heuristic of the Algol research programme was expounded most influentially by John

McCarthy in the early 1960s [McCarthy, 1961, McCarthy, 1962]. A large part of what McCarthy

suggested amounted to a programme for applying the metalinguistic framework of logic to the study

of programming languages. Some of the details of this work were described in Chapters 6 and

7, and illustrated Kuhn’s contention that a large part of normal science consists of puzzle solving

rather than profound innovation. Pickering’s descriptionof this phase as one oftranscription, where

the well-understood ideas and techniques from one area are applied to a new area, reinforces this

picture.

By the early 1970s, the Algol research programme had made significant progress and it was

argued in Chapter 7 that many of its results were making theirway to practical application in the

form of ‘structured programming’. In particular, this period saw the acceptance of particular forms

of data and control structures and approaches to the methodology of program development that

have remained central to the disciplines of computer science and software engineering ever since,

and which represent central achievements of the Algol research programme in the period under

study.

Paradigms and revolutions

The use of structural concepts such as ‘paradigm’ and ‘research programme’ in this account suggests

further observations about the history of programming languages. For example, it could be argued

that the Algol research programme was in fact the first paradigm within the field of programming

language design, a claim based not on an isolated evaluationof the merits of the Algol report, but

on the fact that after its publication the field acquired for the first time many of the characteristics of

Kuhnian normal science, as described in Chapter 6. A consequence of adopting this position would

be that the earlier work on automatic programming carried out in the 1950s would be described

as being preparadigmatic. This is not to underemphasize theimportance of earlier achievements,

in particular Fortran, but draws attention to the fact that this work was not informed by a shared

understanding of what the problems in the field were and on thebest ways in which to make progress

in solving them. The move towards automatic programming in the 1950s was driven by practical

motives, including the desire to make the most economical use possible of the available machines,
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but innovation took the form of a number of small and largely independent initiatives, as described

in Chapter 5, and it was only after 1960 that these began to coalesce into a coherent programme.

It could be objected that it is inappropriate to view the workof the 1950s as preparadig-

matic, because there existed an existing paradigm for programming based on the use of machine

code, a candidate concrete paradigm for which might be the textbook of Wilkes, Wheeler and

Gill [Wilkes et al., 1951]. To some extent this must remain a question of judgement and interpreta-

tion, and there are facts, such as the initially negative reaction of many machine code programmers

to Fortran, which bring to mind Kuhn’s descriptions of the behaviour of adherents to an existing

paradigm when confronted with a successor. However, it seems on the whole that the work on

automatic programming was addressing issues and problems distinct from those relevant to ma-

chine code programming, and that it is better viewed as the preliminary to the formation of a new

paradigm than as normal science in an established traditionof machine code programming.

Despite its influence and success, however, the Algol research programme did not encompass all

subsequent work on programming languages. Chapter 8 described the early development of object-

oriented programming and concluded that the Smalltalk project represented a new and independent

development that, despite certain historical links, differed profoundly from approaches to program

language design that were influenced by logic. It is outside the scope of this thesis to study in detail

the subsequent development of object-oriented programming and the interaction between it and the

logic-based tradition, but the following provisional remarks can be made.

Many widely-used programming languages of the present day,such as Java and C++, are de-

scribed as being object-oriented, and owe a lot to the example of the ideas developed in Simula and

Smalltalk [Stroustrup, 1994]. However, they do not differ as radically from Algol-like languages

as Smalltalk did, and the currently dominant form of programming language can reasonably be

described as a synthesis of the two approaches, as the following points suggest.

Firstly, the top-level structure of programs is based on theclass concept evolved in the object-

oriented tradition, not on the abstract data types of the Algol research programme, and the char-

acteristically object-oriented features of inheritance and dynamic binding are widely used. Source

code programs are structured as a set of class definitions, and an executing program is viewed as a

network of intercommunicating objects, not as a single process.

However, the resemblance between contemporary programming languages and formal languages

is stronger than in the case of Smalltalk. Programming in early versions of Smalltalk was a process
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of interacting with a complete system which included many aspects of what would now be classed

as the computer’s operating system, thus blurring the distinction between a program and its envi-

ronment. Reuse and extension of existing code has replaced the Smalltalk model of an extensible

programming environment, however, and programs are still largely understood to be fundamentally

textual objects which are processed in various ways by a programming system which is in principle

separate from the applications being written. As a result, the traditional metalogical distinctions

can be applied to these languages, and research into, for example, the semantics of object-oriented

languages has been able to make progress in a way that was difficult with Smalltalk.

Finally, it should be noted that contemporary programming languages include data and control

structures that are clearly derived from the results of structured programming. These provide a layer

of computational primitives which are used to define the classes that make up and object-oriented

program. Like Simula, then, these languages are clear descendants of Algol-like languages.

Object oriented programming has frequently been describedas a ‘revolution’, a description

perhaps partly enabled by the frequent use of the Kuhnian term ‘paradigm’ to describe different

approaches to programming language design. There does indeed seem to have been a significant

change in the dominant class of programming languages, which until the late 1980s, consisted

largely of languages which supported abstract data types. In a development reminiscent of the

way in which structured programming constructs were introduced into older languages like Fortran,

however, some of these languages later introduced object-oriented features, supporting the idea that

object-orientation is now in fact the dominant approach.

If the adoption of object-oriented languages was a revolution, however, it appears to have been

a conservative one, in the sense that many of the results fromthe previous paradigm have been

carried across the revolutionary divide and preserved in the new paradigm. Specifically, as noted

above, these results include the data and control structures of structured programming, and many of

the metalinguistic assumptions of the Algol research programme. It has been suggested that such

conservative revolutions characterize progress in mathematics and logic [Gillies, 1992], and it is

therefore possible to speculate that the similar pattern ofthe object-oriented ‘revolution’ reflects

the relationship that had been established by the Algol research programme between programming

languages and logic.

It is possible to ask, however, if there are any substantive reasons why the adoption of object-

orientation should have had a conservative character in which the new ideas were applied mostly to
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issues of large-scale program structure and not to all aspects of programming. One way to address

this question would be trace the relationship between the belief, which became widespread in dis-

cussions of the ‘software crisis’, that the most significantproblems for software engineering were

those which arose in the development of large-scale systems, and the subsequent uptake of object-

oriented ideas, not only in programming but also in program design. This, however, is a topic for

future research.

A further question is the issue of why object-oriented languages have proved more successful

than those based on abstract data types. A full answer to thisquestion is outside the scope of

thesis, but one possible factor is that object-orientationprovides a better ‘fit’ with a significant

range of applications than the simpler data abstraction model. For example, consider applications

which run over a network of distributed computers: this scenario fits very naturally with Alan Kay’s

vision of a Smalltalk program being composed out of many objects, each with the capabilities of

a computer. Further, since the widespread adoption of graphical user interfaces, programs are no

longer in control of when input takes place, but are requiredto respond to unpredictable input from

users. This again relates very naturally to the metaphor of objects responding to messages; in fact,

as argued in Chapter 8, it is plausible that this was an important influence in the development of the

ideas of object-oriented programming.

9.2 The nature of influence

This thesis has examined aspects of the influence a theoretical discipline, mathematical logic, has

had on more practical activities, namely the design of programming languages and the construction

of programs. Often, this direction of influence is describedas theapplicationof theoretical ideas

to practice and is taken to ground a distinction between science and engineering. For example, in

the 1980s a number of writers described how the logical and mathematical approach to software

developed by the Algol research programme would enable the “craft” of programming to transform

itself into a mature engineering discipline [Hoare, 1982, Shaw, 1990, for example].

Often, this process of application is seen as being unproblematic: for example, Chapter 3 con-

sidered that claims made by Davis and Mahoney that the invention of the computer could be char-

acterized simply as the application of ideas from logic, andthe computer as a ‘byproduct’, in Ma-

honey’s term, of theoretical research in logic. However, itappears that a far less certain and more

exploratory process took place than the simple term ‘application’ would suggest, and that within this



CHAPTER 9. CONCLUSIONS 228

process logical ideas were just one of many factors whose interplay led to the development of the

computer. The close connection between the computer and logic appears, on the contrary, to have

been established some years later, suggesting that the interaction between theory and application is

not a causal process, but rather a question of interpretation, of a scientific community coming to see

a new device in a particular way.

Similar points can be made about the relationship between logic and programming. Through-

out the 1950s, there were several explicit attempts to applylogical ideas to programming, such as

Turing’s ‘anticipation’ of program proving, Elgot’s use offormal language theory, and Hamblin’s

application of Łukasiewicz’s ideas [Turing, 1949, Elgot, 1954, Hamblin, 1957]. However, in the

absence of a more global understanding and acceptance of therole of logic, these pieces of work

had little if any immediate influence. By contrast, once the Algol research program had become

established in the 1960s, such applications of logic becameroutine. This suggests an answer to the

question of how to explain the problematic time-lag identified by Jones between anticipations and

the subsequent further development of similar ideas [Jones, 2003]: certain pieces of scientific work

only gain their full significance when interpreted in the context of a research programme which

shares their assumptions.

In the traditional view, application is seen as a separate stage that takes place after a research

programme has delivered significant theoretical results, the results themselves not being substan-

tially changed by their application. In this way, it was argued in Chapter 7 that the phenomenon

of structured programming in the early 1970s can be seen precisely as the application of the ideas

of the Algol research programme in practice. However, one striking feature of this process was

the extent to which the theoretical ideas were modified: in particular, the importance of program

proving was downplayed while new ideas about the managementof software projects were treated

as an integral part of the structured approach.

This phenomenon can be seen as related the third stage of Pickering’s schema,filling, where

results from the existing discipline do not provide a clear way forward and more open-ended work

is required than in the transcription stage. Whereas logic had provided an approach to the design

of data and control structures in languages, for example, its contribution to the practice of program

development was more problematic. Informal top-down design became a popular practice, but for-

mal program proving was not, and has not been, widely accepted. The belief that a proof-based

approach to programming would guarantee the correctness ofprograms has been repeatedly criti-
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cized [De Millo et al., 1979, Fetzer, 1988, for example], forexample, and a number of writers have

commented on the lack of practical application of theoretical results [Arden, 1980, Mahoney, 1997,

for example]. Proponents of the traditional model, such as Hoare, suggest that these problems can

be addressed by further development of the theory, or a greater effort in education. By contrast,

Pickering’s scheme suggests the possibility that there maybe limits to the extent to which a given

theory can be straightforwardly applied in a particular area.

9.3 Methodological conclusions

The subject matter of this thesis belongs to what it usually characterized as internal history. How-

ever, as discussed in the introduction, one aim of the thesiswas to explore the possibility of writing

about such material while avoiding the methodological errors that traditional ‘insider’ history has

been accused of. This section summarizes some of the ways in which this has been done, and the

conclusions drawn.

Context and explanation

Insider history tends to describe historical episodes in terms of their relationship with the current

state of knowledge, ignoring their historical context. An alternative tradition, associated with var-

ious approaches to the sociology of scientific knowledge, places emphasis instead on the external

context of developments, and in particular social, political and economic factors. It was suggested in

the introduction that such external factors might not be sufficient to explain certain internal features

of a particular subject matter, and this thesis has accordingly tried to remain agnostic about what

kinds of contextual factors might be explanatorily relevant in any particular case.

For example, in Chapter 2, Turing’s machine table notation was examined in the context of con-

temporary logical work on computability. Accounts of Turing’s work in the history of computing

tend to stress its novelty, and to stress its role in the origins of modern computing. However, as

argued in Chapter 2, there are many similarities between Turing’s notation and that of recursive

function theory and the�-calculus, and drawing attention to these makes, it was suggested, bet-

ter historical sense of Turing’s work. In 1936, after all, Turing was making a contribution to the

literature of mathematical logic, not to the then nonexistent subject of computer science.

In this case, then, related work in the theoretical discipline of mathematical logic provided a

useful context in which to gain a better understanding of Turing’s work. Chapter 3, by contrast,



CHAPTER 9. CONCLUSIONS 230

emphasized the importance of two other disciplines, namelycomputational mathematics and cy-

bernetics, in the formation of the stable concept of an automatic digital computer described by von

Neumann in 1945. As writers such as Paul Edwards have emphasized [Edwards, 1996], the Second

World War provided a historical context which cannot be ignored in discussing the development of

computers and the uses to which they were put, but this context is not sufficiently specific to explain

the fine detail of proposals such as von Neumann’s Draft Report.

External factors seem more directly relevant to the work described in Chapter 5: the principal

motivation for the development of automatic programming inthe 1950s was the need to make pro-

gramming less laborious and time-consuming, hence enabling the anticipated demand for program-

ming from industry and commerce to be met, and the emphasis onformula translation stemmed

from the preponderance of scientific applications, itself attributable to the wartime origins of the

computer. However, these factors are not, it was argued, sufficient to explain details such as the

form of the mathematical expressions that were adopted in programming languages, and a more

theoretical, ‘internal’ explanation was given for this.

As a final example of the possible range of relevant explanatory factors, it was suggested in

Chapter 8 that aspects of the high-level structure of programming languages can be explained by

the architecture of the machines on which the programming was to be carried out. This line of

thought could be developed, for example, by considering theextent to which the area in which a

given language was intended to be used, such as scientific or commercial applications, affected the

design, included features and style of the resulting language.

In general, then, it can be concluded that a historical interest in the technical or internal details of

a particular subject area does not preclude the possibilityof giving a contextual account of particular

episodes. However, obtaining an adequate understanding may in general involve a wider range of

explanatory factors than are sometimes found in external histories.

The construction of new concepts

Insider accounts of technical invention often treat episodes of innovation as if they were indivisible

moments of inspiration, not susceptible to analysis and explanation. This is a consequence of the

Whiggish perspective which sees in the past only those aspects relevant to present work. In contrast,

this thesis has emphasized the work involved in the construction of new concepts or techniques that

may now seem to be obvious and unquestionable, the alternatives that were considered, and the
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reasons behind the choices that were made by the historical actors. A repeated pattern can be

observed, in which a period of experimentation is followed by an episode of closure in which a

standard solution is widely accepted. The reasons for whicha particular solution is widely adopted

differ from case to case, however.

This process appears at every stage of the historical story.Chapter 2 outlined the process by

which a mathematical concept of effective computability emerged and gained acceptance, involving

the interactions between the work of a number of logicians inthe early 1930s. In this case, the

provable equivalence of a number of widely different definitions appears to have been the deciding

factor in generating closure.

A similar story can be told about the design of the computer embodied in von Neumann’s Draft

Report, as outlined in Chapter 3. The proposed EDVAC design appears to have won widespread

acceptance very quickly, as it provided an effective solution to the problem of automatically pro-

gramming electronic machines. The identification of computers of this type with Turing’s universal

machine concept, which is now often treated as axiomatic, took some time to become widely ac-

cepted, however. Furthermore, it was philosophical ratherthan technical arguments which seem

finally to have made the difference in this case.

A similar extended, exploratory process is involved in the development of more technical de-

tails. Chapter 4 described how even such a fundamental feature of programming as performing two

operations in sequence went through a period of negotiationbefore its final form was established;

the solution adopted in this case was largely determined by the needs of the programmers of the

machines, not by the intrinsic capabilities of the machinesthemselves.

A similar process to do with the types of formula that automatic translators would handle was

described in Chapter 5. The interest in formula translationwas prompted by a desire to widen the

field of people who could program computers, but it was suggested that the form of the expressions

handled was decided not by the mathematical needs of the users, but by the ease with which a

particular class of formulas could be defined and processed.

This notion of the work required in conceptual innovation provides an explanation for the prob-

lem of ‘blockages’ noted in the introduction. These are episodes where a historical actor fails to

make an inference or a discovery that with hindsight appearsobvious or inevitable. Rather than

simply accounting for such episodes as unaccountable failures, a more nuanced account of innova-

tion enables us to recognize that even simple-looking innovations can require a complex and con-
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tingent process of work before their final form is established, and that in many cases this can only

be achieved by the interaction and experience of many workers. To place responsibility on an indi-

vidual for a lack of insight, or failure to make a particular move is in many cases to misunderstand

the nature of the historical processes at work in technical innovation.

A striking example of this is the fact in the mid 1940s, neither von Neumann nor Turing included

in their machine codes a single instruction to perform a conditional jump, despite being fully aware

of the importance of this pattern to programming. In this case, the relevant general point that

syntactic and semantic structures should match only becameexplicitly recognized with Dijkstra’s

work in the mid 1960s, after much experience in writing programs had been gained.

9.4 Directions for further work

Although this thesis has tried to avoid some of the familiar pitfalls in writing internal history, it

does reflect traditional accounts in that it focuses on innovation rather the use of technology, in

Edgerton’s terms [Edgerton, 2006]. For example, in the account given in Chapter 5, the early 1950s

were significant for the early development of autocodes, leading up to the development of For-

tran. However, as Rosen pointed out, most programming in 1953 was being carried out on “the

Card-Programmed Calculator, an ingenious mating of an Electromechanical Accounting Machine

with an Electronic Calculating Punch” [Rosen, 1964]. Electronic computers were very thin on the

ground, and for most programmers the use of autocodes would have seemed a remote and theoret-

ical possibility. Similarly, in the early 1970s theoretical discussion of formal methods was being

carried out against a background in which overwhelmingly the most widely used languages were

still Fortran and Cobol [Rosen, 1972].

These observations suggest that there are a number of areas which would deserve more detailed

examination in a more complete history of programming in this period. One significant omission

is any consideration of the ways in which card processing systems were programmed to carry out

complex computations, and the relationship between these techniques and those later developed for

automatic calculators and stored-program machines. Punched-card technology was also of impor-

tance in the evolution of ideas about data structuring, and had been widely used in data processing

applications since Hollerith’s work during the 1890 US census [Austrian, 1982].

The relationships between different application areas andthe programming techniques devel-

oped for them deserves more detailed attention than was possible in this thesis, which has focused
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primarily on scientific computing. As well as the main alternative areas of commercial program-

ming and artificial intelligence, the 1950s and 1960s saw thedevelopment of a large number of

special-purpose languages motivated by the perceived needto develop a language suitable for use

in a restricted application area [Wexelblat, 1981].

A number of technical aspects of programming languages haveonly been mentioned in passing,

but also deserve more detailed study. Significant omissionsinclude concurrency and types and type

theory, though in both these cases significant theoretical investigation only took place towards the

end and after the period under study. It would also be worthwhile to study further the effect on

programming language design of the perception in the late 1960s of a ‘software crisis’, and the

subsequent construction and promulgation of a notion of software engineering intended to address

the crisis.

As discussed in Chapter 8, object-oriented programming challenged some of the ideas of the

Algol research programme, raising for example the questionof whether all practical computation

could be modelled on the mathematical notion of a function specifiable by its input and output

characteristics, or whether the recursive structure of Algol 60’s block structure was sufficient for

all needs. It would be worthwhile to study the ways in which logical models of programs and

programming languages were refined in response to these questions. This in turn leads on to the

question of the possible influence of programming language theory on logic: Gillies and Zheng have

suggested that in general the interaction between two disciplines is a dynamic process, in which first

one side dominates and then the other [Gillies and Zheng, 2001]. This thesis raises the interesting

possibility that the influence of logic on programming discussed in this thesis might have been

followed or accompanied by a period in which programming language research exerted a reciprocal

influence on logic.

Finally, Chapter 3 described the way in which the new kind of computer gradually became

understood in relation to Turing’s concept of the universalmachine. It would be interesting to study

in a similar way the history of the concept of the stored program machine. This is widely taken

to be the defining feature of the machine architecture developed in 1945, but in fact the term was

hardly used in the years up to 1950, and its salience was only gradually established. A related issue

is the history of the technique of self-modifying code: initially recognized as a valuable practical

technique, as described in Chapter 4, by the early 1950s thiswas thought to have much wider

significance, for example in connection with the possibility of machine learning and thought. The
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autocodes of the 1950s excluded the possibility of writing self-modifying programs, however, and

it found no place in the theoretical account of programming languages, based on a strict separation

of syntax and semantics, given by the Algol research programme.
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[Hilbert, 1926] Hilbert, D. (1926). Über das Unendliche.Mathmatische Annalen, 95:161–190.

Translated as “On the infinite” in [van Heijenoort, 1967], pages 367–392.

[Hilbert and Ackermann, 1928] Hilbert, D. and Ackermann, W.(1928). Grundz̈uge der theoretis-

chen Logik. Springer-Verlag.

[Hoare, 1968] Hoare, C. A. R. (1968). Record handling. In Genuys, F., editor,Programming

Languages, pages 291–347. Academic Press.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming.Communi-

cations of the ACM, 12(10):576–580.

[Hoare, 1971] Hoare, C. A. R. (1971). Proof of a program: FIND. Communications of the ACM,

14(1):39–45.

[Hoare, 1972a] Hoare, C. A. R. (1972a). A note on the for statement.BIT, 12:334–341.

[Hoare, 1972b] Hoare, C. A. R. (1972b). Notes on data structuring. In [Dahl et al., 1972], pages

83–173.

[Hoare, 1982] Hoare, C. A. R. (1982). Programming is an engineering profession. Technical Report

PRG-27, Programming Research Group, Oxford University.



BIBLIOGRAPHY 250

[Hoare, 1996] Hoare, C. A. R. (1996). How did software get so reliable without proof? In Gaudel,

M.-C. and Woodcock, J., editors,FME’96: Industrial Benefit and Advances in Formal Methods.

Proceedings of the Third International Symposium of FormalMethods Europe, volume 1051 of

Lecture Notes in Computer Science, pages 1–17. Springer-Verlag.

[Hobbes, 1651] Hobbes, T. (1651).Leviathan. Andrew Crooke, London.

[Hodges, 1983] Hodges, A. (1983).Alan Turing: The Engima. Burnett Books with Hutchinson.

[Holmevik, 1994] Holmevik, J. R. (1994). Educating the machine: A study in the history of com-

puting and the construction of the SIMULA programming language. Technical Report 22, Uni-

versity of Trondheim, Centre for Technology and Society.

[Hopper, 1952] Hopper, G. M. (1952). The education of a computer. In [ACM, 1952], pages 243–

249.

[Hopper, 1959] Hopper, G. M. (1959). Automatic programming: present status and future trends.

In [National Physical Laboratory, 1959], pages 155–194.

[Huskey, 1948] Huskey, H. D. (1948). The status of high-speed digital computing systems.Me-

chanical Engineering, 70(12):975–978.

[Huskey, 1951] Huskey, H. D. (1951). Semiautomatic instruction on the Zephyr. In

[Harvard, 1951], pages 83–90.

[Hyman, 1990] Hyman, R. A. (1990). Whiggism in the history ofscience and the study of the life

and work of Charles Babbage.Annals of the History of Computing, 12(1):62–67.

[IBM, 1956] IBM (1956). Programmer’s Reference Manual: The FORTRAN Automatic Coding

System for the IBM 704 EDPM. International Business Machines Corporation, 590 Madison

Ave., New York 22, N.Y. Applied Science Division and Programming Research Dept., Working

Committee: J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes, L. B.

Mitchell, R. A. Nelson, R. Nutt, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller.

[IBM, 1958] IBM (1958). Reference Manual: FORTRAN II for the IBM 704 Data Processing

System. International Business Machines Corporation, 590 Madison Ave., New York 22, N.Y.



BIBLIOGRAPHY 251

[Ingalls, 1978] Ingalls, D. H. H. (1978). The Smalltalk-76 system design and implementation.

In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of Programming

Languages, pages 9–16.

[International Computation Center, 1962] International Computation Center (1962).Symbolic Lan-

guages in Data Processing: Proceedings of the Symposium organized and edited by the Interna-

tional Computation Centre, Rome, March 26-31, 1962. Gordon and Breach.

[Irons, 1961] Irons, E. T. (1961). A syntax directed compiler for ALGOL 60. Communications of

the ACM, 4(1):51–55.

[Isaac, 1952] Isaac, E. J. (1952). Machine aids to coding. In[Forrester and Hamming, 1952], pages

17–19.

[Jeffress, 1951] Jeffress, L., editor (1951).Cerebral Mechanisms in Behavior. Wiley-Interscience.

[Jones, 2003] Jones, C. B. (2003). The early search for tractable ways of reasoning about programs.

IEEE Annals of the History of Computing, 25(2):26–49.

[Kalenich, 1965] Kalenich, W. A., editor (1965).Information Processing 1965: Proceedings of

IFIP Congress 65. Spartan Books, Inc.

[Katz, 1957] Katz, C. (1957). Systems of debugging automatic coding. InAutomatic Coding: Pro-

ceedings of the Symposium held January 24-25, 1957 at the Franklin Institute in Philadelphia,

Journal of the Franklin Institute, Monograph No. 3, pages 17–27.

[Kay and Goldberg, 1977] Kay, A. and Goldberg, A. (1977). Personal dynamic media.Computer,

10(3):31–41.

[Kay, 1996] Kay, A. C. (1996). The early history of Smalltalk. In [Bergin and Gibson, 1996], pages

511–579.

[Kleene, 1935a] Kleene, S. C. (1935a). A theory of positive integers in formal logic. Part I.Amer-

ican Journal of Mathematics, 57(1):153–173.

[Kleene, 1935b] Kleene, S. C. (1935b). A theory of positive integers in formal logic. Part II.Amer-

ican Journal of Mathematics, 57(2):219–244.



BIBLIOGRAPHY 252

[Kleene, 1936a] Kleene, S. C. (1936a). General recursive functions of natural numbers.Mathema-

tische Annalen, 112(5):727–742.

[Kleene, 1936b] Kleene, S. C. (1936b).�-definability and recursiveness.Duke Mathematical Jour-

nal, 2(2):340–353.

[Knuth, 1970] Knuth, D. E. (1970). Von Neumann’s first computer program.Computing Surveys,

2(4):247–260.

[Knuth, 1974] Knuth, D. E. (1974). Structured programming with go to statements.Computing

Surveys, 6(4):260–301.

[Knuth and McNeley, 1964] Knuth, D. E. and McNeley, J. L. (1964). SOL—a symbolic language

for general-purpose systems simulation.IEEE Transactions on Electronic Computers, EC–

13(4):401–408.

[Knuth and Trabb Pardo, 1980] Knuth, D. E. and Trabb Pardo, L.(1980). The early development

of programming languages. In [Metropolis et al., 1980].

[Kuhn, 1962] Kuhn, T. S. (1962).The Structure of Scientific Revolutions. The University of

Chicago Press.

[Kuhn, 1968] Kuhn, T. S. (1968). The history of science. In Sills, D. L., editor, International

Encyclopedia of the Social Sciences, volume 14, pages 74–83. The Macmillan Company & The

Free Press.

[Lakatos, 1967] Lakatos, I., editor (1967).Problems in the Philosophy of Mathematics. Amster-

dam: North-Holland.

[Lakatos, 1970] Lakatos, I. (1970). Falsification and the methodology of scientific research pro-

grammes. In Lakatos, I. and Musgrave, A., editors,Criticism and the Growth of Knowledge,

pages 91–196. Cambridge University Press.

[Lakatos, 1971] Lakatos, I. (1971). History of science and its rational reconstructions. In Buck,

R. C. and Cohen, R. S., editors,P. S. A. 1970 Boston Studies in the Philosophy of Science,

volume 8, pages 91–135. Dordrecht: Reidel. Reprinted as chapter 2 of [Lakatos, 1978].

[Lakatos, 1978] Lakatos, I. (1978).Philosophical papers. Vol. I: The methodology of scientific

research programmes. Cambridge University Press.



BIBLIOGRAPHY 253

[Landin, 1964] Landin, P. J. (1964). The mechanical evaluation of expressions.The Computer

Journal, 6(4):308–320.

[Landin, 1965a] Landin, P. J. (1965a). A correspondence between ALGOL 60 and Church’s

lambda-notation: Part I.Communications of the ACM, 8(2):89–101.

[Landin, 1965b] Landin, P. J. (1965b). A correspondence between ALGOL 60 and Church’s

lambda-notation: Part II.Communications of the ACM, 8(3):158–165.

[Landin, 1966] Landin, P. J. (1966). The next 700 programming languages.Communications of

the ACM, 9(3):157–166.

[Laning Jr. and Zierler, 1954] Laning Jr., J. H. and Zierler,N. (1954). A program for translation of

mathematical equations with Whirlwind I. Engineering Memorandum E-364, Instrumentation

Laboratory, Massachusetts Institute of Technology.

[Larman and Basili, 2003] Larman, C. and Basili, V. R. (2003). Iterative and incremental develop-

ment: A brief history.Computer, 36(6):47–56.

[Larvor, 1998] Larvor, B. (1998).Lakatos: An Introduction. Routledge: London and New York.

[Ledgard, 1974] Ledgard, H. F. (1974). The case for structured programming.BIT, 14:45–57.

[Lewis, 1918] Lewis, C. I. (1918).A Survey of Symbolic Logic. University of California Press.

[Liskov, 1973] Liskov, B. (1973). Report of session on structured programming.ACM SIGPLAN

Notices, 8(9):5–10.

[Liskov and Zilles, 1974] Liskov, B. and Zilles, S. (1974). Programming with abstract data types.

ACM SIGPLAN Notices, 9(4):50–59.

[Liskov and Zilles, 1975] Liskov, B. H. and Zilles, S. N. (1975). Specification techniques for data

abstractions.IEEE Transactions on Software Engineering, SE-1(1):7–19.

[Lombardi, 1960] Lombardi, L. (1960). Theory of files. InProceedings of the Eastern Joint Com-

puter Conference, pages 137–141.

[Lucas, 1972] Lucas, P. (1972). Formal definition of programming languages and systems. In

[Freiman, 1972], pages 291–297.



BIBLIOGRAPHY 254

[Lucas and Walk, 1969] Lucas, P. and Walk, K. (1969). On the formal description of PL/I.Annual

Review in Automatic Programming, 6(3):105–182.

[Lukoff, 1979] Lukoff, H. (1979).From Dits to Bits: A personal history of the electronic computer.

Robotics Press, Portland, Oregon.

[Mahoney, 1988] Mahoney, M. S. (1988). The history of computing in the history of technology.

Annals of the History of Computing, 10:113–125.

[Mahoney, 1989] Mahoney, M. S. (1989). Cybernetics and information technology. In Olby, R. C.,

editor,Companion to the History of Modern Science, chapter 34. Routledge, Chapman and Hall.

[Mahoney, 1997] Mahoney, M. S. (1997). Computer science: The search for a mathematical theory.

In Krige, J. and Pestre, D., editors,Science in the Twentieth Century, pages 617–634. Harwood

Academic Publishers.

[Mahoney, 2000] Mahoney, M. S. (2000). Software as science—science as software. In

[Hashagen et al., 2002], pages 25–48.

[Manchester University, 1951] Manchester University (1951). Manchester University Computer,

Inaugural Conference, July 1951. Reprinted in [Williams and Campbell-Kelly, 1989], pages

165–206.

[Manna and Waldinger, 1971] Manna, Z. and Waldinger, R. J. (1971). Toward automatic program

synthesis.Communications of the ACM, 14(3):151–165.

[Manna and Waldinger, 1978] Manna, Z. and Waldinger, R. J. (1978). The logic of computer pro-

gramming.IEEE Transactions on Software Engineering, SE-4(3):199–229.

[Marcus and Akera, 1996] Marcus, M. and Akera, A. (1996). Exploring the architecture of an early

machine: the historical relevance of the ENIAC machine architecture.IEEE Annals of the History

of Computing, 18(1):17–24.

[Markowitz et al., 1963] Markowitz, H. M., Hauser, B., and Kerr, H. W. (1963). SIMSCRIPT—A

Simulation Programing Language. Prentice-Hall, Inc.

[Martin, 1993] Martin, C. D. (1993). The myth of the awesome thinking machine.Communications

of the ACM, 36(4):120–133.



BIBLIOGRAPHY 255

[Masani et al., 1987] Masani, N., Randell, B., Ferry, D. K., and Saeks, R. (1987). The Wiener

memorandum on the mechanical solution of partial differential equations.Annals of the History

of Computing, 9(2):183–197.

[Mauchly, 1942] Mauchly, J. W. (1942). The use of high speed vacuum tubes for calculating.

Unpublished memorandum, quoted in [Stern, 1981], page 56.

[Mauchly, 1946] Mauchly, J. W. (1946). Code and control II: Machine design and instruction codes.

In [Campbell-Kelly and Williams, 1985], pages 453–461. Lecture delivered 9 August, 1946.

[Mauchly, 1947] Mauchly, J. W. (1947). Preparation of problems for EDVAC-type machines. In

[Harvard, 1947], pages 203–207.

[Mauchly, 1949] Mauchly, J. W. (1949). Suggested form for “BINAC BRIEF CODE”. Unpub-

lished notes, printed in [Schmitt, 1988], pages 17–18.

[McCarthy, 1960] McCarthy, J. (1960). Recursive functionsof symbolic expressions and their

computation by machine, part I.Communications of the ACM, 3(4):184–195.

[McCarthy, 1961] McCarthy, J. (1961). A basis for a mathematical theory of computation, prelim-

inary report. InProceedings of the Western Joint Computer Conference, pages 225–238.

[McCarthy, 1962] McCarthy, J. (1962). Towards a mathematical science of computation. In

[Popplewell, 1963], pages 21–28.

[McCarthy, 1963a] McCarthy, J. (1963a). A basis for a mathematical theory of computa-

tion. In [Braffort and Hirschberg, 1963], pages 33–70. Corrected and extended version

of [McCarthy, 1961].

[McCarthy, 1963b] McCarthy, J. (1963b). General discussion. Quoted in [Gorn, 1964].

[McCarthy, 1964] McCarthy, J. (1964). A formal descriptionof a subset of ALGOL. In

[Steel, 1966], pages 1–12.

[McCarthy, 1965] McCarthy, J. (1965). Problems in the theory of computation. In

[Kalenich, 1965], pages 219–222.

[McCarthy, 1981] McCarthy, J. (1981). History of LISP. In [Wexelblat, 1981], pages 173–185.



BIBLIOGRAPHY 256

[McCracken, 1973] McCracken, D. (1973). Revolution in programming: An overview.Datama-

tion, 19(12):50–52. Reprinted in [Yourdon, 1979].

[McCracken and Jackson, 1982] McCracken, D. D. and Jackson,M. A. (1982). Life cycle concept

considered harmful.ACM SIGSOFT Software Engineering Notes, 7(2):29–32.

[McCulloch, 1948] McCulloch, W. S. (1948). Contribution todiscussion follow-

ing [von Neumann, 1948]. In [Jeffress, 1951], pages 32–41.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas

immanent in nervous activity.Bulletin of Mathematical Biophysics, 5:115–133.

[Metropolis et al., 1980] Metropolis, N., Howlett, J., and Rota, G.-C., editors (1980).A History of

Computing in the Twentieth Century. Academic Press.

[Metropolis and Worlton, 1980] Metropolis, N. and Worlton,J. (1980). A trilogy of errors in the

history of computing.Annals of the History of Computing.

[Miller, 1949] Miller, J. C. P. (1949). Remarks on checking. In

[Cambridge University Mathematical Laboratory, 1950], pages 123–124.

[Mills, 1976] Mills, H. D. (1976). Software development.IEEE Transactions on Software Engi-

neering, SE-2(4):265–273.

[Mills, 1986] Mills, H. D. (1986). Structured programming:Retrospect and prospect.IEEE Soft-

ware, 3(6):58–66.

[Ministry of Supply, 1950] Ministry of Supply (1950).Symposium on Information Theory: Report

of Proceedings. Ministry of Supply, London.

[Misa, 2007] Misa, T. J. (2007). Understanding ‘how computing has changed the world’.IEEE

Annals of the History of Computing, 29(4):52–63.

[Mooers, 1946] Mooers, C. N. (1946). Code and control IV: Example of a three-address code and

the use of “stop order tags”. In [Campbell-Kelly and Williams, 1985], pages 465–484. Lecture

delivered 12 August, 1946.

[Morris, 1938] Morris, C. W. (1938).Foundations of the Theory of Signs, volume I, number 2 of

International Encyclopedia of Unified Science. The University of Chicago Press.



BIBLIOGRAPHY 257

[Morris Jr., 1973] Morris Jr., J. H. (1973). Protection in programming languages.Communications

of the ACM, 16(1):15–21.

[National Physical Laboratory, 1959] National Physical Laboratory (1959). Mechanisation of

Thought Processes: Proceedings of a Symposium held at the National Physical Laboratory on

24th, 25th, 26th and 27th November 1958. National Physical Laboratory, HMSO, London.

[Naur, 1959] Naur, P., editor (1959).ALGOL-Bulletin no. 1. Regnecentralen, Copenhagen.

[Naur, 1966] Naur, P. (1966). Proof of algorithms by generalsnapshots.BIT, 6:310–316.

[Naur, 1969] Naur, P. (1969). Programming by action clusters. BIT, 9:250–258.

[Naur, 1981] Naur, P. (1981). The European side of the last phase of the development of ALGOL

60. In [Wexelblat, 1981], pages 92–139.

[Naur et al., 1960] Naur, P., Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis,

A. J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J. H., van Wijngaarden, A., and

Woodger, M. (1960). Report on the algorithmic language ALGOL 60. Communications of the

ACM, 3(5):299–314.

[Naur and Randell, 1969] Naur, P. and Randell, B., editors (1969). Software Engineering: Report

on a conference sponsored by the NATO Science Committee. Garmisch, Germany, 7th to 11th

October 1968. Scientific Affairs Division, NATO, Brussels 39, Belgium.

[Newell and Simon, 1956] Newell, A. and Simon, H. A. (1956). The logic theory machine: A

complex information processing system.IRE Transactions on Information Theory, IT-2(3):61–

79.

[Newell and Tonge, 1960] Newell, A. and Tonge, F. M. (1960). An introduction to Information

Processing Language V.Communications of the ACM, 3(4):205–211.

[Newman, 1949] Newman, M. H. A. (1949). General principles of the design of all-purpose com-

puting machines.Proceedings of the Royal Society of London (Series A), 195:271–274. Record

of a discussion held on March 4, 1948.

[Nygaard and Dahl, 1981] Nygaard, K. and Dahl, O.-J. (1981).The development of the SIMULA

languages. In [Wexelblat, 1981], pages 439–480.



BIBLIOGRAPHY 258

[Oettinger, 1952] Oettinger, A. G. (1952). Programming a digital computer to learn.The Philo-

sophical Magazine, 43, Seventh Series:1243–1263.

[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decomposing systems into mod-

ules.Communications of the ACM, 15(12):1053–1058.

[Patterson, 1949] Patterson, G. W. (1949). Logical syntax and transformation rules. In

[Harvard, 1951], pages 125–133.
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[Zuse, 1948] Zuse, K. (1948).Über den Allgemeinen Plankalkül als Mittel zur Formalierung

schematisch-kombinativer Aufgaben.Archiv der Mathematik, 1(6):441–449.

[Zuse, 1993] Zuse, K. (1993).The Computer—My Life. Springer-Verlag.


